1
|
Azadeh AM, Tabar Heydar K, Amini MH. Investigation and characterization of deep eutectic solvent (DES) based stationary phase in gas chromatography. J Chromatogr A 2025; 1739:465511. [PMID: 39550878 DOI: 10.1016/j.chroma.2024.465511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
In this study, the preparation of the stationary phase based on the deep eutectic solvent (DES) was investigated along with the measurement of thermodynamic parameters. The physical characterization of the synthesized sample was investigated by Thermogravimetric (TGA), scanning electron microscope (SEM) and Fourier Transform Infrared Spectrometer (FTIR) analyses. Thermodynamic parameters measured to express the potential ability of the constructed stationary phase were McReynolds constants, partition coefficient, Abraham system constants, ∆, activity coefficient at infinite dilution (γi∞), and selectivity (Sij∞). For this purpose, the parameters were investigated in different amounts of stationary phase (SP) loading including 5, 10, 15 and 18 %w/w and also at three temperatures of 40, 70 and 100 °C. The prepared stationary phase with moderate polarity had the potential to separate BTEXs, aromatic compounds and alcohols due to strong interactions caused by hydrogen bonds. It was investigated the improved performance of the stationary phase prepared with carbowax. Finally, the performance of SP-DES stationary phase separation was investigated for different analytes including alkanes, alcohols and aromatic compounds.
Collapse
Affiliation(s)
- Amir Mohammad Azadeh
- Faculty of Clean Technologies, Chemistry& Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Kourosh Tabar Heydar
- Faculty of Clean Technologies, Chemistry& Chemical Engineering Research Center of Iran, Tehran, Iran.
| | - Mohammad Hassan Amini
- Faculty of Clean Technologies, Chemistry& Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
2
|
Poole CF. Guidelines for descriptor assignments for the solvation parameter model by separation techniques. J Chromatogr A 2024; 1729:464964. [PMID: 38843574 DOI: 10.1016/j.chroma.2024.464964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/17/2024]
Abstract
The solvation parameter model uses six compound descriptors to model equilibrium properties in biphasic systems formally defined as excess molar refraction, E, dipolarity/polarizability, S, overall hydrogen-bond acidity, A, overall hydrogen-bond basicity, B, McGowan's characteristic volume, V, and the gas-liquid partition constant on hexadecane at 25 °C, L. The V descriptor can be assigned from structure and the E descriptor for compounds liquid at 20 °C can be calculated from its refractive index and characteristic volume. The E descriptor for compounds solid at 20 °C and the S, A, B, and L descriptors are assigned from experimental properties traditionally obtained by chromatographic, liquid-liquid partition, and solubility measurements. Here I report an efficient experimental design using the Solver method for the accurate assignment of descriptors for neutral compounds that simultaneously minimizes laboratory resources. This multi-technique approach requires 3 retention factor measurements in a 60 °C temperature range per compound on four columns by gas chromatography, 3 retention factor measurements in a 30 % (v/v) acetonitrile composition range per compound on two columns by reversed-phase liquid chromatography, and eight partition constant measurements by liquid-liquid partition in totally organic and aqueous biphasic systems for a total of 26 experimental measurements. The accuracy of the descriptor assignments was validated by comparison with the values in the Wayne State University (WSU) descriptor database taken as the best estimate of the true descriptor values. The E, S, A, B and L descriptors were assigned simultaneously by the Solver method using the above approach without significant bias and with an average absolute deviation (AAD) of 0.054, 0.018, 0.015, 0.013, and 0.040, respectively, compared with the WSU database values, corresponding to a relative absolute average deviation in percent (RAAD) of 7.2, 1.9, 3.6, 5.1, and 0.84 %, respectively, for 32 varied compounds. This streamlined approach represents a significant improvement on earlier single-technique approaches used as the starting point for the development of the multi-technique approach. For compounds of variable hydrogen-bond basicity modifications to the multi-technique approach were implemented while maintaining the same number of experimental measurements. Acceptable descriptor assignments for B/B° were obtained for compounds liquid at 20 °C for which the E descriptor was available by calculation. For solid compounds at 20 °C the E and B/B° descriptors are restricted to qualitative application where approximate values may be acceptable.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
3
|
Brehmer T, Duong B, Boeker P, Wüst M, Leppert J. Simulation of gas chromatographic separations and estimation of distribution-centric retention parameters using linear solvation energy relationships. J Chromatogr A 2024; 1717:464665. [PMID: 38281342 DOI: 10.1016/j.chroma.2024.464665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
For method development in gas chromatography, suitable computer simulations can be very helpful during the optimization process. For such computer simulations retention parameters are needed, that describe the interaction of the analytes with the stationary phase during the separation process. There are different approaches to describe such an interaction, e.g. thermodynamic models like Blumberg's distribution-centric 3-parameter model (K-centric model) or models using chemical properties like the Linear Solvation Energy Relationships (LSER). In this work LSER models for a Rxi-17Sil MS and a Rxi-5Sil MS GC column are developed for different temperatures. The influences of the temperature to the LSER system coefficients are shown in a range between 40 and 200 °C and can be described with Clark and Glew's ABC model as fit function. A thermodynamic interpretation of the system constants is given and its contribution to enthalpy and entropy is calculated. An estimation method for the retention parameters of the K-centric model via LSER models were presented. The predicted retention parameters for a selection of 172 various compounds, such as FAMEs, PCBs and PAHs are compared to isothermal determined values. 40 measurements of temperature programmed GC separations are compared to computer simulations using the differently determined or estimated K-centric retention parameters. The mean difference (RSME) between the measured and predicted retention time is less than 8 s for both stationary phases using the isothermal retention parameters. With the LSER predicted parameters the difference is 20 s for the Rxi-5Sil MS and 38 s for the Rxi-17Sil MS. Therefore, the presented estimation method can be recommended for first method development in gas chromatography.
Collapse
Affiliation(s)
- Tillman Brehmer
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany.
| | - Benny Duong
- Hyperchrom GmbH Germany, Konrad-Zuse-Straße, 53115 Alfter, Germany
| | - Peter Boeker
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany; Hyperchrom GmbH Germany, Konrad-Zuse-Straße, 53115 Alfter, Germany
| | - Matthias Wüst
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany
| | - Jan Leppert
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany.
| |
Collapse
|
4
|
Ariyasena TC, Hewage KP, Poole CF. Determination of descriptors for the principal flavor compounds of the cinnamons of commerce by gas chromatography and liquid-liquid partition. J Chromatogr A 2024; 1714:464572. [PMID: 38113578 DOI: 10.1016/j.chroma.2023.464572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Descriptors for fourteen semivolatile organic compounds associated with the authenticity, botanical origin, and flavor potential of the cinnamons of commerce were determined using the Solver method and experimental retention factors determined by gas chromatography at several temperatures on a minimum of seven selectivity-selected, open-tubular columns and liquid-liquid partition constants in up to twenty totally organic biphasic systems. The six descriptors that encode the solvation properties of the compounds were used to predict water-gas, octanol-gas, and octanol-water partition constants commonly employed to assess environmental distribution properties. For octanol-water partition constants, log KOW, the predicted partition constants exhibited an average absolute deviation of 0.12 for log KOW experimental - log KOW predicted (n = 14). Soil-water, soil-air, urban aerosol-air, skin-water permeation, and non-specific toxicity to the fathead minnow were predicted for the same compounds to assess their potential environmental impact. The product terms of the solvation parameter model provide a useful insight into the contribution of individual intermolecular interactions to the distribution properties of the cinnamon compounds and their environmental impact.
Collapse
Affiliation(s)
- Thiloka C Ariyasena
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - K Pradeep Hewage
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Colin F Poole
- Department of Chemistry, Wayne State University, Rm 185 Chemistry, Detroit, MI 48202, USA.
| |
Collapse
|
5
|
Szucs R, Brown R, Brunelli C, Hradski J, Masár M. Impact of structural similarity on the accuracy of retention time prediction. J Chromatogr A 2023; 1707:464317. [PMID: 37634261 DOI: 10.1016/j.chroma.2023.464317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Quantitative Structure-Retention Relationships offer a valuable tool for de-risking chromatographic methods in relation to newly formed or hypothetical compounds, arising from synthetic processes or formulation activities. They can also be used to identify optimal separation conditions, or in support of structural elucidation. In this contribution, we provide a systematic study of the relationship between the accuracy of the retention model, the size of the training set and its structural similarity to the predicted compound. We compare structural similarity expressed either on a fingerprint basis (e.g., Tanimoto index), or by Euclidean distance calculated from of subset of molecular descriptors. The results presented indicate that accurate and predictive models can be built from a small dataset containing as few as 25 compounds, provided that the training set is structurally similar to the test compound. When the training set contains compounds selected by minimizing the Euclidean distance calculated from 3 descriptors most correlated with the retention time, root mean square error of 0.48 min and correlation coefficient of 0.9464 were observed for the test sets of 104 compounds. Moreover, these models meet the Tropsha predictivity criteria. These findings potentially bring the prediction of retention times within the practical reach of pharmaceutical analysts involved in chromatographic method development. We also present an optimisation approach to select algorithm settings in order to minimize the prediction error and ensure model predictivity.
Collapse
Affiliation(s)
- Roman Szucs
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-84215 Bratislava, Slovakia.
| | - Roland Brown
- Pfizer R&D UK Limited, Ramsgate Road, Sandwich CT13 9NJ, UK
| | | | - Jasna Hradski
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Marián Masár
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| |
Collapse
|
6
|
Brehmer T, Boeker P, Wüst M, Leppert J. Relation between characteristic temperature and elution temperature in temperature programmed gas chromatography - part I: Influence of initial temperature and heating rate. J Chromatogr A 2023; 1707:464301. [PMID: 37607429 DOI: 10.1016/j.chroma.2023.464301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
The development of new analytical methods can save resources, time and costs if there are prediction tools like computer simulation which support the optimization process. In GC the distribution-centric 3-parameter model (K-centric model) is well established for prediction of retention factors k and retention times but laborious isothermal measurements for determination of the characteristic parameters are needed. For the most important parameter, the characteristic temperature Tchar, the search for simpler determination methods or even estimates is an interesting research topic. In this work the elution temperatures for 37 fatty acid methyl esters, 6 BTEXs and 40 other volatile substances are determined by measurements under variable heating rates, initial temperatures, constant pressure mode and constant flow mode. The relationship between the measured elution temperature and the characteristic temperature was investigated. The novel multivariate curve fit model presented in this study describes accurately the relation between the characteristic temperature Tchar and elution temperatures Telu under variable heating rates RT, respectively, and initial temperature Tinit conditions. The novel model shows good accordance to earlier estimation models and expands the prediction range, especially for high volatile compounds. The model is suitable for determination of Tchar by estimated Telu and vice versa. Predictions of retention times of simple temperature programs were also possible by using the model with relative deviations < 5% compared to measurements.
Collapse
Affiliation(s)
- Tillman Brehmer
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany.
| | - Peter Boeker
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany; Hyperchrom GmbH Germany, Endenicher Allee 11 -13, 53115, Bonn, Germany
| | - Matthias Wüst
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany
| | - Jan Leppert
- University of Bonn, Institute of Nutritional and Food Sciences, Chair of Food Chemistry - Department Fast GC, Endenicher Allee 11 - 13, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Poole CF. The effect of the assigned descriptors for phthalate esters on the characterization of their separation properties using the solvation parameter model. J Chromatogr A 2023; 1707:464296. [PMID: 37595351 DOI: 10.1016/j.chroma.2023.464296] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Revised descriptors are determined for fifteen phthalate esters for use in the solvation parameter model and form part of the Wayne State University (WSU) compound descriptor database. For thirteen phthalate esters a comparison is made with the same compounds in the Abraham descriptor database. Gas chromatographic retention factors on poly(methyloctylsiloxane), SPB-Octyl, and poly(cyanopropylphenyldimethylsiloxane), DB-225, stationary phases are used to facilitate an assessment of the contribution of cavity formation and dispersion interactions, L descriptor, and dipole-type interactions, S descriptor, to the experimental retention factors (log k) for the phthalate esters with minimum interference from competing intermolecular interactions. The results indicate a systematic overprediction of the cavity and dispersion interaction term and underprediction of dipole-type interactions for the Abraham descriptors compared with the WSU descriptors for the phthalate esters. The average absolute deviation (AAD) for 13 phthalate esters on SPB-Octyl is 0.039 (WSU descriptors) compared with 0.252 (Abraham descriptors) and for 9 phthalate esters on DB-225 0.030 (WSU descriptors) compared with 0.167 (Abraham descriptors). The results for dipole-type interactions are confirmed and extended to include the hydrogen-bond basicity of the phthalate esters, B descriptor, by evaluation of partition constants in aqueous biphasic systems and the n-heptane-2,2,2-trifluoroethanol biphasic system. Differences in the contribution of the hydrogen-bond basicity of the phthalate esters to the experimental partition constants are largely random with respect to database selection but important for the accurate prediction of the partition constants. The AAD for the partition constant for 15 phthalate esters is 0.063 (WSU descriptors) compared with 0.320 (Abraham descriptors) for the heptane-2,2,2-trifluoroethanol biphasic system and 0.13 (WSU descriptors) compared with 0.25 (Abraham descriptors) for 9 phthalate esters in the octanol-water biphasic system. The WSU descriptors for the phthalate esters exhibit a better fit with the experimental data for separation systems and are free of the extreme values predicted for the Abraham descriptors for several phthalate esters.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
8
|
Poole CF. The effect of descriptor database selection on the physicochemical characterization and prediction of water-air, octanol-air and octanol-water partition constants using the solvation parameter model. J Chromatogr A 2023; 1706:464213. [PMID: 37567000 DOI: 10.1016/j.chroma.2023.464213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors (McGowan's characteristic volume, excess molar refraction, dipolarity/polarizability, hydrogen-bond acidity and basicity, and the gas-liquid partition constant on n-hexadecane at 298.15 K) are curated in two publicly accessible databases for hundreds (WSU compound descriptor database) or thousands (Abraham compound descriptor database). These databases were developed independently using different approaches resulting in descriptor values that vary for many compounds. Previously, it was shown that the two descriptor databases are not interchangeable, and the WSU descriptor database consistently demonstrated improved model performance for chromatographic systems where the uncertainty in the dependent variable was minimized by suitable quality control and calibration procedures. In this report we wish to evaluate whether the same conclusions are true for models with a dependent variable containing significant measurement uncertainty. To evaluate this hypothesis, we assembled databases for water-air, octanol-air, and octanol-water partition constants reported by multiple laboratories using various measurement methods. It was found that database selection has little effect on model quality or model predictive capability but significantly affects the assignment of the contribution of individual intermolecular interactions to the dependent variable. The latter information is database specific, and a quantitative comparison of system constants should be restricted to models using the same compound descriptor database.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
9
|
Poole CF. Selectivity evaluation of extraction systems. J Chromatogr A 2023; 1695:463939. [PMID: 36996617 DOI: 10.1016/j.chroma.2023.463939] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Extraction is the most common sample preparation technique prior to chromatographic analysis for samples which are too complex, too dilute, or contain matrix components incompatible with the further use of the separation system or interfere in the detection step. The most important extraction techniques are biphasic systems involving the transfer of target compounds from the sample to a different phase ideally accompanied by no more than a tolerable burden of co-extracted matrix compounds. The solvation parameter model affords a general framework to characterize biphasic extraction systems in terms of their relative capability for solute-phase intermolecular interactions (dispersion, dipole-type, hydrogen bonding) and within phase solvent-solvent interactions for cavity formation (cohesion). The approach is general and allows the comparison of liquid and solid extraction phases using the same terms and is used to explain the features important for the selective enrichment of target compounds by a specific extraction phase using solvent extraction, liquid-liquid extraction, and solid-phase extraction for samples in a gas, liquid, or solid phase. Hierarchical cluster analysis with the system constants of the solvation parameter model as variables facilitates the selection of solvents for extraction, the identification of liquid-liquid distribution systems with non-redundant selectivity, and evaluation of different approaches using liquids and solids for the isolation of target compounds from different matrices.
Collapse
|
10
|
Poole CF. The influence of descriptor database selection on the solvation parameter model for separation processes. J Chromatogr A 2023; 1692:463851. [PMID: 36773399 DOI: 10.1016/j.chroma.2023.463851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors characterize the size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. McGowan's characteristic volume and the excess molar refraction for liquids are available by calculation (E requires and experimental refractive index). The other descriptors and excess molar refraction for solids are experimental quantities and subject to greater variation or are estimated using computational or empirical models. Solute descriptors for several thousand compounds are available in the Abraham descriptor database and for several hundred compounds in the WSU descriptor database. These publicly accessible databases were developed independently using different approaches and for many compounds provide different descriptor values. In this report we evaluate the effect of mixing descriptors from the two databases on modeling chromatographic retention factors and liquid-liquid partition constants. It is shown that the two descriptor databases are not interchangeable. The WSU descriptor database consistently demonstrates improved model quality as determined by statistical parameters. Model system constants exhibit a general dependence on database selection with an approximately linear trend as a function of the fraction of compounds assigned descriptors from either database. There is no general model performance advantage to using mixed descriptor datasets and no real cause for concern for relatively large datasets containing < 15 % of compounds with descriptors assigned from the other database. For small datasets, descriptor quality is an important variable for adequate model performance.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
11
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
12
|
|
13
|
Poole CF. Solvation parameter model: Tutorial on its application to separation systems for neutral compounds. J Chromatogr A 2021; 1645:462108. [PMID: 33857674 DOI: 10.1016/j.chroma.2021.462108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 12/16/2022]
Abstract
The solvation parameter model affords a useful tool to model distribution properties of neutral compounds in biphasic separation systems. Common applications include column characterization and method development in gas chromatography; reversed-phase, micellar and hydrophilic interaction liquid chromatography; supercritical fluid chromatography; and micellar electrokinetic chromatography. The characterization of the distribution properties of liquid-liquid partition systems is another major application of this model. This tutorial is aimed at establishing good practices for the application of the model to separation systems. Suitable experimental protocols to determine system constants by multiple linear regression analysis and descriptors by the Solver method are presented; statistical tools to evaluate model quality are discussed; and model-specific data analysis tools based on system maps and correlation diagrams are described.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
14
|
Determination of physicochemical properties of ionic liquids by gas chromatography. J Chromatogr A 2021; 1644:461964. [PMID: 33741140 DOI: 10.1016/j.chroma.2021.461964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/27/2022]
Abstract
Over the years room temperature ionic liquids have gained attention as solvents with favorable environmental and technical features. Both chromatographic and conventional methods afford suitable tools for the study of their physicochemical properties. Use of gas chromatography compared to conventional methods for the measurement of physicochemical properties of ionic liquids have several advantages; very low sample concentrations, high accuracy, faster measurements, use of wider temperature range and the possibility to determine physicochemical properties of impure samples. Also, general purpose gas chromatography instruments are widely available in most laboratories thus alleviating the need to purchase more specific instruments for less common physiochemical measurements. Some of the main types of physicochemical properties of ionic liquids accessible using gas chromatography include gas-liquid partition constants, infinite dilution activity coefficients, partial molar quantities, solubility parameters, system constants of the solvation parameter model, thermal stability, transport properties, and catalytic and other surface properties.
Collapse
|
15
|
Poole CF, Atapattu SN. Selectivity evaluation of core-shell silica columns for reversed-phase liquid chromatography using the solvation parameter model. J Chromatogr A 2020; 1634:461692. [DOI: 10.1016/j.chroma.2020.461692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
|
16
|
Selection of calibration compounds for selectivity evaluation of siloxane-bonded silica columns for reversed-phase liquid chromatography by the solvation parameter model. J Chromatogr A 2020; 1633:461652. [DOI: 10.1016/j.chroma.2020.461652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 02/02/2023]
|