1
|
Oleksak P, Nepovimova E, Valko M, Alwasel S, Alomar S, Kuca K. Comprehensive analysis of prohibited substances and methods in sports: Unveiling trends, pharmacokinetics, and WADA evolution. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104447. [PMID: 38636744 DOI: 10.1016/j.etap.2024.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This review systematically compiles sports-related drugs, substances, and methodologies based on the most frequently detected findings from prohibited lists published annually by the World Anti-Doping Agency (WADA) between 2003 and 2021. Aligned with structure of the 2023 prohibited list, it covers all proscribed items and details the pharmacokinetics and pharmacodynamics of five representatives from each section. Notably, it explores significant metabolites and metabolic pathways associated with these substances. Adverse analytical findings are summarized in tables for clarity, and the prevalence is visually represented through charts. The review includes a concise historical overview of doping and WADA's role, examining modifications in the prohibited list for an understanding of evolving anti-doping measures.
Collapse
Affiliation(s)
- Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava 812 37, Slovakia; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove 500 03, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain.
| |
Collapse
|
2
|
Sakellariou P, Kiousi P, Petrou M, Angelis YS. Simultaneous quantitation and identification of intact Nandrolone phase II oxo-metabolites based on derivatization and inject LC-MS/(HRMS) methodology. Drug Test Anal 2024. [PMID: 38581282 DOI: 10.1002/dta.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Α sensitive and selective derivatization and inject method for the quantification of intact nandrolone phase II oxo-metabolites was developed and validated using liquid chromatography - (tandem high resolution) mass spectrometry (LC-MS/(HRMS)). For the derivatization, Girard's reagent T (GRT) was used directly in natural urine samples and the analysis of the metabolites of interest was performed by direct injection into LC-MS/(HRMS) system operating in positive ionization mode. Derivatization enabled the efficient detection of nandrolone oxo-metabolites, while at the same time producing intense product ions under collision-induced dissociation (CID) conditions that are related to metabolites of the steroid backbone and not to the conjugated moieties. Glucuronide and sulfate metabolites of nandrolone were chromatographically resolved and quantified in the same run in the range of 1-100 ng mL-1, while at the same time structure identification could be performed for each metabolite. Full validation of the method was performed according to the World Anti-Doping Agency (WADA) International Standard for Laboratories (ISL). Nandrolone oxo-metabolites were quantified in two sets of urine samples, the first set consisted of real urine samples previously detected as negative and the second set consisted of urine samples collected from two excretion studies after nandrolone decanoate administration. The results for 19-norandrosterone glucuronide (19-NAG) and 19-noretiocholanolone glucuronide (19-NEG) were compared with those obtained by traditional gas chromatography - (tandem) mass spectrometry (GC-MS/[MS]) method.
Collapse
Affiliation(s)
- Panagiotis Sakellariou
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Polyxeni Kiousi
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | | | - Yiannis S Angelis
- Doping Control Laboratory of Athens, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
3
|
Albertsdóttir AD, Van Gansbeke W, Van Eenoo P, Polet M. Evaluation of alternative gas chromatographic and mass spectrometric behaviour of trimethylsilyl-derivatives of non-hydrolysed sulfated anabolic steroids. Drug Test Anal 2023; 15:1344-1355. [PMID: 36843396 DOI: 10.1002/dta.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/28/2023]
Abstract
Sulfated metabolites have shown to have potential as long-term markers (LTMs) of anabolic-androgenic steroid (AAS) abuse. The compatibility of gas chromatography-mass spectrometry (GC-MS) with trimethylsilyl (TMS)-derivatives of non-hydrolysed sulfated steroids has been demonstrated, where, after derivatisation, generally, two closely eluting isomers are formed that both have the same molecular ion [M-H2 SO4 ]•+ . Sulfated reference standards are in limited commercial availability, and therefore, the current knowledge of the GC-MS behaviour of these compounds is mainly based on sulfating and analysing the available standard reference material. This procedure can unfortunately not cover all of the current known LTMs as these are often not available as pure substance. Therefore, in theory, some metabolites could be missed as they exhibit alternative behaviour. To investigate the matter, in-house sulfated reference materials that bear resemblance to known sulfated LTMs were analysed on GC-MS in their TMS-derivatised non-hydrolysed state. The (alternative) gas chromatographic and mass spectrometric behaviour was mapped, evaluated and linked to the corresponding steroid structures. Afterwards, using fraction collection, known sulfated LTMs were isolated from excretion urine to confirm the observed findings. The categories that were selected were mono-hydroxy-diones, 17-methyl-3,17-diols and 17-keto-3,16-diols as these are commonly encountered AAS conformations. The ability to predict the GC-MS behaviour of non-hydrolysed sulfated AAS metabolites is the corner stone of finding new metabolites. This knowledge is also essential, for example, for understanding AAS detection analyses, for the mass spectrometric characterization of metabolites of new designer steroids or when one needs to characterize an unknown steroid structure.
Collapse
Affiliation(s)
| | - Wim Van Gansbeke
- Doping Control Laboratory (DoCoLab), Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory (DoCoLab), Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael Polet
- Doping Control Laboratory (DoCoLab), Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Albertsdóttir AD, Van Gansbeke W, Van Eenoo P, Polet M. Detection time comparison of non-hydrolysed sulphated metabolites of metenolone, mesterolone and 17α-methyltestosterone analysed by four different mass spectrometric techniques. Drug Test Anal 2023; 15:853-864. [PMID: 37055939 DOI: 10.1002/dta.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
The frequent detection of anabolic androgenic steroids (AAS) indicates their popularity among rule-breaking athletes. The so called long-term metabolites play a crucial role in their detection, and non-hydrolysed sulphated metabolites have gained renewed interest, as research has demonstrated their extended detection time compared to the more conventional markers (e.g., for metenolone and mesterolone). Their potential has been investigated using liquid and gas chromatography-mass spectrometry (LC- and GC-MS). However, due to their complementary nature, chances are that the most promising metabolite on one technique does not necessarily exhibit the same behaviour on the other and vice versa. Therefore, a comparison was carried out where as a trial model, metenolone, mesterolone and 17α-methyltestosterone were selected and the most likely long-term sulphated metabolites identified on four mass spectrometric instruments. Additionally, using a modified sample preparation procedure, comparison between conventional and non-hydrolysed sulphated metabolites between different GC-MS instruments was also included. When focusing on each individual marker, no cases were observed where a single metabolite provided a superior detection time on all instruments. Furthermore, for each AAS, there were incidences where a metabolite provided the best detection time on one instrument but could only be detected for a shorter period or not at all on other instruments. This demonstrates that metabolite detection windows and hence their added-value as target substance are unique and dependent on the analytical technique and not only on their pharmacokinetic behaviour. Consequently, in each case, a metabolite versus instrument evaluation is needed to maximise the probabilities of detecting doping offences.
Collapse
Affiliation(s)
| | - Wim Van Gansbeke
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Michael Polet
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Liu YJ, Bian Y, Zhang Y, Zhang YX, Ren A, Lin SH, Feng XS, Zhang XY. Diuretics in Different Samples: Update on the Pretreatment and Analysis Techniques. Crit Rev Anal Chem 2023:1-33. [PMID: 37130012 DOI: 10.1080/10408347.2023.2202260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diuretics are drugs that promote the excretion of water and electrolytes in the body and produce diuretic effects. Clinically, they are often used in the treatment of edema caused by various reasons and hypertension. In sports, diuretics are banned by the World Anti-Doping Agency (WADA). Therefore, in order to monitor blood drug concentration, identify drug quality and maintain the fairness of sports competition, accurate, rapid, highly selective and sensitive detection methods are essential. This review provides a comprehensive summary of the pretreatment and detection of diuretics in various samples since 2015. Commonly used techniques to extract diuretics include liquid-liquid extraction, liquid-phase microextraction, solid-phase extraction, solid-phase microextraction, among others. Determination methods include methods based on liquid chromatography, fluorescent spectroscopy, electrochemical sensor method, capillary electrophoresis and so on. The advantages and disadvantages of various pretreatment and analytical techniques are elaborated. In addition, future development prospects of these techniques are discussed.
Collapse
Affiliation(s)
- Ya-Jie Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ai Ren
- School of Pharmacy, China Medical University, Shenyang, China
| | - Shu-Han Lin
- School of Food Science and Engineering, Dalian Ocean University, Dalian, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xin-Yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Walpurgis K, Piper T, Thevis M. Androgens, sports, and detection strategies for anabolic drug use. Best Pract Res Clin Endocrinol Metab 2022; 36:101609. [PMID: 35120801 DOI: 10.1016/j.beem.2021.101609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
For decades, anabolic androgenic agents have represented the substance class most frequently observed in doping control samples. They comprise synthetic and pseudoendogenous anabolic androgenic steroids and other, mostly non-steroidal compounds with (presumed) positive effects on muscle mass and function. While exogenous substances can easily be detected by gas/liquid chromatography and mass spectrometry, significantly more complex methodologies including the longitudinal monitoring of individual urinary steroid concentrations/ratios and isotope ratio mass spectrometry are required to provide evidence for the exogenous administration of endogenous compounds. This narrative review summarizes the efforts made within the last 5 years to further improve the detection of anabolic agents in doping control samples. Different approaches such as the identification of novel metabolites and biomarkers, the acquisition of complementary mass spectrometric data, and the development of new analytical strategies were employed to increase method sensitivity and retrospectivity while simultaneously reducing method complexity to facilitate a higher and faster sample throughput.
Collapse
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | - Thomas Piper
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany.
| |
Collapse
|
7
|
Karashima S, Osaka I. Rapidity and Precision of Steroid Hormone Measurement. J Clin Med 2022; 11:jcm11040956. [PMID: 35207229 PMCID: PMC8879901 DOI: 10.3390/jcm11040956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Steroids are present in all animals and plants, from mammals to prokaryotes. In the medical field, steroids are commonly classified as glucocorticoids, mineralocorticoids, and gonadal steroid hormones. Monitoring of hormones is useful in clinical and research fields for the assessment of physiological changes associated with aging, disease risk, and the diagnostic and therapeutic effects of various diseases. Since the discovery and isolation of steroid hormones, measurement methods for steroid hormones in biological samples have advanced substantially. Although immunoassays (IAs) are widely used in daily practice, mass spectrometry (MS)-based methods have been reported to be more specific. Steroid hormone measurement based on MS is desirable in clinical practice; however, there are several drawbacks, including the purchase and maintenance costs of the MS instrument and the need for specialized training of technicians. In this review, we discuss IA- and MS-based methods currently in use and briefly present the history of steroid hormone measurement. In addition, we describe recent advances in IA- and MS-based methods and future applications and considerations.
Collapse
Affiliation(s)
- Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa 921-1192, Japan
- Correspondence: (S.K.); (I.O.)
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu 939-0398, Japan
- Correspondence: (S.K.); (I.O.)
| |
Collapse
|
8
|
Parr MK, Botrè F. Supercritical fluid chromatography mass spectrometry as an emerging technique in doping control analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Interest of HRMS systems in analytical toxicology: Focus on doping products. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2020/2021. Drug Test Anal 2021; 14:7-30. [PMID: 34788500 DOI: 10.1002/dta.3199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Most core areas of anti-doping research exploit and rely on analytical chemistry, applied to studies aiming at further improving the test methods' analytical sensitivity, the assays' comprehensiveness, the interpretation of metabolic profiles and patterns, but also at facilitating the differentiation of natural/endogenous substances from structurally identical but synthetically derived compounds and comprehending the athlete's exposome. Further, a continuously growing number of advantages of complementary matrices such as dried blood spots have been identified and transferred from research to sports drug testing routine applications, with an overall gain of valuable additions to the anti-doping field. In this edition of the annual banned-substance review, literature on recent developments in anti-doping published between October 2020 and September 2021 is summarized and discussed, particularly focusing on human doping controls and potential applications of new testing strategies to substances and methods of doping specified in the World Anti-Doping Agency's 2021 Prohibited List.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|