1
|
Catalá-Icardo M, Gómez-Benito C, Martínez-Pérez-Cejuela H, Simó-Alfonso EF, Herrero-Martínez JM. Green synthesis of MIL53(Al)-modified paper-based analytical device for efficient extraction of neonicotinoid insecticides from environmental water samples. Anal Chim Acta 2024; 1316:342841. [PMID: 38969405 DOI: 10.1016/j.aca.2024.342841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is a need to develop low-cost, reliable and portable devices to enhance the efficiency of microextraction techniques in complex samples. Metal-organic frameworks (MOFs) have proven to be promising sorbents due to their well-documented properties. However, their green preparation and combination with paper-based substrates have not been satisfactorily explored to fabricate sustainable sorptive phases. RESULTS In this work, the hybridization of a paper substrate (as a sustainable support) with MOFs (as a sorptive phase) was carried out by one-pot approach. Concretely, the selected MOF, MIL-53(Al), was in-situ growth onto the paper surface in aqueous solution without the need for high temperature or pressure, thereby aligning with the Green Analytical Chemistry principles. The optimized composite (MIL-53(Al)@cellulose paper) was characterized and evaluated as extraction sorbent for five neonicotinoids (NEOs) (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid). Furthermore, its feasibility was demonstrated by isolating these pollutants from environmental water samples, followed their determination by HPLC coupled to diode array detection. The whole method showed satisfactory analytical performance with recoveries between 86 and 114 %, suitable precision (with RSD lower than 14 %), and limits of detection ranged from 1.0 to 1.6 μg L-1. Besides, the greenness of the method was assessed by application of different existing metrics. The developed extraction device was affordable (<0.08 €/device) and mechanical and chemically stable, being possible its reuse more than 11 cycles, thus demonstrating its suitability for rapid screening of pesticides in environmental samples. SIGNIFICANCE This report presents, for the first time, the green synthesis of MIL-53(Al)cellulose paper composite and its application as a sorptive phase for the extraction of NEOs from environmental water samples. We believe that the proposed strategy for fabricating these sustainable paper-based sorptive phases paves the way for further hybridizations with other MOFs or materials. Additionally, it opens up large possibilities for their application in extraction of pollutants or other hazardous compounds in aquatic environments.
Collapse
Affiliation(s)
- Mónica Catalá-Icardo
- Research Institute for the Integrated Management of Coastal Zones, Gandía Campus, Universitat Politècnica de València, C/ Paranimf 1, Grao de Gandía, 46730, Valencia, Spain.
| | - Carmen Gómez-Benito
- Research Institute for the Integrated Management of Coastal Zones, Gandía Campus, Universitat Politècnica de València, C/ Paranimf 1, Grao de Gandía, 46730, Valencia, Spain
| | | | | | | |
Collapse
|
2
|
Yang B, Tu M, Wang S, Ma W, Zhu Y, Ma Z, Li X. Neonicotinoid insecticides in plant-derived Foodstuffs: A review of separation and determination methods based on liquid chromatography. Food Chem 2024; 444:138695. [PMID: 38346362 DOI: 10.1016/j.foodchem.2024.138695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Neonicotinoids (NEOs) are the most widely used insecticides globally. They can contaminate or migrate into foodstuffs and exert severe neonic toxicity on humans. Therefore, lots of feasible analytical methods were developed to assure food safety. Nevertheless, there is a lack of evaluation that the impacts of food attributes on the accurate determination of NEOs. This review aims to provide a comprehensive overview of sample preparation methods regarding 6 categories of plant-derived foodstuffs. Currently, QuEChERS as the common strategy can effectively extract NEOs from plant-derived foodstuffs. Various enrichment technologies were developed for trace levels of NEOs in processed foodstuffs, and multifarious novel sorbents provided more possibility for removing complex matrices to lower matrix effects. Additionally, detection methods based on liquid chromatography were summarized and discussed in this review. Finally, some limitations were summarized and new directions were proposed for better advancement.
Collapse
Affiliation(s)
- Bingxin Yang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengling Tu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Sheng Wang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunxiao Zhu
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xianjiang Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
3
|
Liu LZ, Zhou R, Li YL, Pang YH, Shen XF, Liu J. Covalent organic framework-sodium alginate-Ca 2+-polyacrylic acid composite beads for convenient dispersive solid-phase extraction of neonicotinoid insecticides in fruit and vegetables. Food Chem 2024; 441:138357. [PMID: 38199109 DOI: 10.1016/j.foodchem.2024.138357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Neonicotinoids, the fastest-growing class of insecticides, have posed a multi-media residue problem with adverse effects on environment, biodiversity and human health. Herein, covalent organic framework-sodium alginate-Ca2+-polyacrylic acid composite beads (CACPs), facilely prepared at room temperature, were used in convenient dispersive solid-phase extraction (dSPE) and combined with high-performance liquid chromatography (HPLC) for the detection of five neonicotinoid insecticides (thiamethoxam, acetamiprid, dinotefuran, clothianidin, imidacloprid). CACPs can be completely separated within 1 min without centrifugation. After seven adsorption/desorption cycles, it maintained high extraction efficiencies (>90%). The developed method exhibited a wide linear range (0.01 ∼ 10 μg mL-1), low limits of detection (LODs, 0.0028 ∼ 0.0031 mg kg-1), and good repeatability (RSD ≤ 8.11%, n = 3). Moreover, it was applied to the determination of five neonicotinoids in fruit and vegetables (peach, pear, lettuce, cucumber, tomato), and recoveries ranged from 73.6% to 116.2%.
Collapse
Affiliation(s)
- Ling-Zhi Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Rui Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yong-Li Li
- Technology Center of Chengdu Customs, Chengdu 610041, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Jun Liu
- Technology Center of Chengdu Customs, Chengdu 610041, China.
| |
Collapse
|
4
|
Xia Z, Teng X, Cheng Y, Huang Y, Zheng L, Ji L, Wang L. Fabrication of Nitrogen Based Magnetic Conjugated Microporous Polymer for Efficient Extraction of Neonicotinoids in Water Samples. Molecules 2024; 29:2189. [PMID: 38792054 PMCID: PMC11124481 DOI: 10.3390/molecules29102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Facile and sensitive methods for detecting neonicotinoids (NEOs) in aquatic environments are crucial because they are found in extremely low concentrations in complex matrices. Herein, nitrogen-based magnetic conjugated microporous polymers (Fe3O4@N-CMP) with quaternary ammonium groups were synthesized for efficient magnetic solid-phase extraction (MSPE) of NEOs from tap water, rainwater, and lake water. Fe3O4@N-CMP possessed a suitable specific surface area, extended π-conjugated system, and numerous cationic groups. These properties endow Fe3O4@N-CMP with superior extraction efficiency toward NEOs. The excellent adsorption capacity of Fe3O4@N-CMP toward NEOs was attributed to its π-π stacking, Lewis acid-base, and electrostatic interactions. The proposed MSPE-HPLC-DAD approach based on Fe3O4@N-CMP exhibited a wide linear range (0.1-200 µg/L), low detection limits (0.3-0.5 µg/L), satisfactory precision, and acceptable reproducibility under optimal conditions. In addition, the established method was effectively utilized for the analysis of NEOs in tap water, rainwater, and lake water. Excellent recoveries of NEOs at three spiked levels were in the range of 70.4 to 122.7%, with RSDs less than 10%. This study provides a reliable pretreatment method for monitoring NEOs in environmental water samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Ji
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (Z.X.); (X.T.); (Y.C.); (Y.H.); (L.Z.)
| | - Leilei Wang
- Shandong Province Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (Z.X.); (X.T.); (Y.C.); (Y.H.); (L.Z.)
| |
Collapse
|
5
|
Jia Q, Liao GQ, Chen L, Qian YZ, Yan X, Qiu J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem 2024; 438:137974. [PMID: 37979266 DOI: 10.1016/j.foodchem.2023.137974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Pesticides are widely used in the cultivation and breeding of agricultural products all over the world. However, their direct use or indirect pollution in animal breeding may lead to residual accumulation, migration, and metabolism in animal-derived foods, posing potential health risks to humans through the food chain. Therefore, it is necessary to detect pesticide residues in animal-derived food using simple, reliable, and sensitive methods. This review summarizes sample extraction and clean-up methods, as well as the instrumental determination technologies such as chromatography and chromatography-mass spectrometry for residual analysis in animal-derived foods, including meat, eggs and milk. Additionally, we perspectives on the future of this field. This information aims to assist relevant researchers in this area, contribute to the development of ideas and novel technical methods for residual detection, metabolic research and risk assessment of pesticides in animal-derived food.
Collapse
Affiliation(s)
- Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd./Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan 610023, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
6
|
Zuščíková L, Bažány D, Greifová H, Knížatová N, Kováčik A, Lukáč N, Jambor T. Screening of Toxic Effects of Neonicotinoid Insecticides with a Focus on Acetamiprid: A Review. TOXICS 2023; 11:598. [PMID: 37505564 PMCID: PMC10383352 DOI: 10.3390/toxics11070598] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Recently, neonicotinoids have become the fastest-growing class of insecticides in conventional crop protection, with extensive usage against a wide range of sucking and chewing pests. Neonicotinoids are widely used due to their high toxicity to invertebrates, simplicity, flexibility with which they may be applied, and lengthy persistence, and their systemic nature ensures that they spread to all sections of the target crop. However, these properties raise the risk of environmental contaminations and potential toxicity to non-target organisms. Acetamiprid is a new generation insecticide, which is a safer alternative for controlling insect pests because of its low toxicity to honeybees. Acetamiprid is intended to target nicotinic acetylcholine receptors in insects, but its widespread usage has resulted in negative impacts on non-target animals such as mammals. This review summarizes in vivo and in vitro animal studies that investigated the toxicity of specific neonicotinoids. With summarized data, it can be presumed that certain concentrations of neonicotinoids in the reproductive system cause oxidative stress in the testis; spermatogenesis disruption; spermatozoa degradation; interruptions to endocrine function and Sertoli and Leydig cell function. In the female reproductive system, acetamiprid evokes pathomorphological alterations in follicles, along with metabolic changes in the ovaries.
Collapse
Affiliation(s)
- Lucia Zuščíková
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Denis Bažány
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kováčik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
7
|
Zhang J, Liu J, Wang Y, Wang Y, Yang R, Zhou X. Simultaneous determination of ten neonicotinoid insecticides and a metabolite in human whole blood by QuEChERS coupled with UPLC-Q Exactive orbitrap high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123689. [PMID: 37059012 DOI: 10.1016/j.jchromb.2023.123689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Since neonicotinoid insecticides are now the most extensively used insecticides worldwide, there are increasing cases of neonicotinoid poisoning. A rapid and sensitive method was developed for the determination of ten neonicotinoid insecticides and a metabolite 6-chloronicotinic acid in human whole blood. The types and amounts of extraction solvent, salting-out agent, and adsorbent in the QuEChERS method were optimized by comparing the absolute recoveries of 11 analytes. The separation was performed on an Agilent EC18 column with the gradient elution with 0.1% formic acid in water and acetonitrile as the mobile phase. The quantification was achieved by Q Exactive orbitrap high-resolution mass spectrometry under parallel reaction monitoring scan mode. The 11 analytes showed good linearity with R2 ≥ 0.9950, LODs ranging from 0.01 μg/L to 0.30 μg/L, and LOQs from 0.05 μg/L to 1.00 μg/L. The recoveries ranged from 78.3% to 119.9% at low, medium, and high spiked concentrations of blank blood, with matrix effects ranging from 80.9% to 117.8%, inter-day RSDs from 0.7% to 6.7%, and intra-day RSDs from 2.7% to 9.8%. The method was furthermore applied to a real case of neonicotinoid insecticide poisoning to demonstrate its feasibility. The proposed method is suitable for the rapid screening of neonicotinoid insecticides in poisoned human blood in the field of forensic science, as well as monitoring of neonicotinoid insecticide residues in humans in the field of environmental safety, compensating for a lack of studies on neonicotinoid insecticide determination in biological samples.
Collapse
|
8
|
Martins RO, de Araújo GL, Simas RC, Chaves AR. ELECTROMEMBRANE EXTRACTION (EME): FUNDAMENTALS AND APPLICATIONS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
9
|
Ambrus Á, Doan VVN, Szenczi-Cseh J, Szemánné-Dobrik H, Vásárhelyi A. Quality Control of Pesticide Residue Measurements and Evaluation of Their Results. Molecules 2023; 28:molecules28030954. [PMID: 36770626 PMCID: PMC9920035 DOI: 10.3390/molecules28030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Pesticide residues are monitored in many countries around the world. The main aims of the programs are to provide data for dietary exposure assessment of consumers to pesticide residues and for verifying the compliance of the residue concentrations in food with the national or international maximum residue limits. Accurate residue data are required to reach valid conclusions in both cases. The validity of the analytical results can be achieved by the implementation of suitable quality control protocols during sampling and determination of pesticide residues. To enable the evaluation of the reliability of the results, it is not sufficient to test and report the recovery, linearity of calibration, the limit of detection/quantification, and MS detection conditions. The analysts should also pay attention to and possibly report the selection of the portion of sample material extracted and the residue components according to the purpose of the work, quality of calibration, accuracy of standard solutions, and reproducibility of the entire laboratory phase of the determination of pesticide residues. The sources of errors potentially affecting the measured residue values and the methods for controlling them are considered in this article.
Collapse
Affiliation(s)
- Árpád Ambrus
- Doctoral School of Nutrition and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence:
| | - Vy Vy Ngoc Doan
- Southern Pesticide Control and Testing Center, Plant Protection Department, 71007 Ho Chi Minh City, Vietnam
| | | | - Henriett Szemánné-Dobrik
- Food Chain Safety Centre, Non-profit Ltd., Pesticide Residue Analytical Laboratory, 3529 Miskolc, Hungary
| | | |
Collapse
|
10
|
Łukaszewicz P, Stepnowski P, Haliński ŁP. The first fully optimized and validated SPE-LC-MS/MS method for determination of the new-generation neonicotinoids in surface water samples. CHEMOSPHERE 2023; 310:136868. [PMID: 36265709 DOI: 10.1016/j.chemosphere.2022.136868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Widespread use of the new generation neonicotinoids (NQs) results in their constant inflow to water bodies. Both their persistence in waters and mechanism of action similar to older compounds already banned in the EU raise concerns about potential ecotoxicological effects. Information about presence of the new NQs in the aquatic environment is still sparse, and the consequences for aquatic organisms remain mostly unknown, due to the lack of sensitive and selective analytical tools. Therefore, a method utilizing solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) has been developed and optimized, enabling the monitoring of EU-approved NQs: acetamiprid (ACT), sulfoxaflor (SFX) and flupyradifurone (FLU), and common NQ metabolite 6-chloronicotinoic acid (6-CNA) in surface waters. To optimize their extraction from natural water samples, the response surface methodology (RSM) was used. An increase in pH value favored higher absolute recoveries (AR) of ACT, SFX and FLU, while the opposite effect was observed for 6-CNA. Increasing water sample volume had adverse effect on the extraction of all compounds. The optimal conditions for simultaneous extraction of all compounds included the use of Oasis HLB sorbent, 200 mL of a water sample at pH of 4.6, and application of 0.3% HCOOH in acetonitrile as an eluent, allowing to obtain AR values above 80% in most cases. Further increase in pH value had positive impact on extraction effectiveness of ACT, SFX and FLU. The method was subjected to full matrix-matched validation and was proven to be fully reliable for the analysis of ACT, SFX and FLU, while the successful isolation of 6-CNA depends on the matrix composition. Finally, the method was applied to the analysis of NQs in surface water samples, proving its sensitivity and selectivity. It can be easily adapted as a tool for trace analysis of NQs and for NQ-associated risk assessment in aquatic ecosystems.
Collapse
Affiliation(s)
- Paulina Łukaszewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Łukasz P Haliński
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
11
|
Guo L, Tian M, Wang L, Zhou X, Wang Q, Hao L, Wu Q, Wang Z, Wang C. Synthesis of hydroxyl-functional magnetic hypercrosslinked polymer as high efficiency adsorbent for sensitively detecting neonicotinoid residues in water and lettuce samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
A comprehensive review on the pretreatment and detection methods of neonicotinoid insecticides in food and environmental samples. Food Chem X 2022; 15:100375. [PMID: 36211748 PMCID: PMC9532719 DOI: 10.1016/j.fochx.2022.100375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 01/10/2023] Open
Abstract
The metabolism and residue status of neonicotinoids were briefly summarized in this work. Sample pretreatment techniques for the analysis of neonicotinoids were critically discussed. The commonly used detection methods for neonicotinoids residues were also pointed out.
In recent years, the residues of neonicotinoid insecticide in food and environmental samples have attracted extensive attention. Neonicotinoids have many adverse effects on human health, such as cancer, chronic disease, birth defects, and infertility. They have substantial toxicity to some non-target organisms (especially bees). Hence, monitoring the residues of neonicotinoid insecticides in foodstuffs is necessary to guarantee public health and ecological stability. This review aims to summarize and assess the metabolic features, residue status, sample pretreatment methods (solid-phase extraction (SPE), Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS), and some novel pretreatment methods), and detection methods (instrument detection, immunoassay, and some innovative detection methods) for neonicotinoid insecticide residues in food and environmental samples. This review provides detailed references and discussion for the analysis of neonicotinoid insecticide residues, which can effectively promote the establishment of innovative detection methods for neonicotinoid insecticide residues.
Collapse
|
13
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|
14
|
Effect of phenyl numbers in polyphenyl ligand on retention properties of aromatic stationary phases. J Chromatogr A 2022; 1674:463152. [PMID: 35597197 DOI: 10.1016/j.chroma.2022.463152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Aromatic phase, as one type of reversed-phase stationary phases, shows complementary selectivity to the n-alkyl counterparts especially for certain challenging separation tasks. However, effect of phenyl numbers in aromatic ligands on retention behaviors has rarely been addressed compared with the alkyl stationary phases. To illustrate the issue, a series of polyphenyl stationary phases were facially prepared via the coupling chemistry of isocyanate with amine, including aniline (π1), 4-aminobiphenyl (π2), 4-amino-p-terphenyl (π3) and [1,1':4',1'':4'',1'''-quaterphenyl]-4-amine (π4), respectively. The chromatographic behaviors of the new stationary phases as well as the traditional C18 were systematically compared in terms of retention mode, hydrophobic and aromatic selectivity, shape selectivity and π-π interaction by various analytes, including alkylbenzenes, polycyclic aromatic hydrocarbons congeners and substituted benzenes with electron-withdrawing groups. Due to the homologous structure of four polyphenyl ligands, the hydrophobic selectivity, aromatic selectivity and shape selectivity of stationary phases increase with phenyl numbers in the bonded polyphenyl ligands, whereas the increment becomes insignificant from U-π3 to U-π4. This phenomenon is explained by the insertion degree of analytes in the polyphenyl ligand brushes. Compared with the homemade C18, the polyphenyl phases indicate insignificant changes of shape selectivity with temperature. Notably, the new polyphenyl phases demonstrate the great selective separation towards the electron-deficient compounds through the π-π interaction. These findings make up for the understanding of the retention behavior of aromatic stationary phases.
Collapse
|
15
|
Chen X, Huang M, Xu Z, Gao Y, Yu G. Ethanol-ammonium sulfate system based modified quick, easy, cheap, effective, rugged and safe method for the determination of four neonicotinoid pesticide and metabolite residues in two canned fruits. J Sep Sci 2022; 45:2632-2641. [PMID: 35522796 DOI: 10.1002/jssc.202200016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
As the pesticide and its metabolite residues in processed fruits could become a significant route of human exposure. The work presented herein focuses on developing a feasible quick, easy, cheap, effective, rugged and safe method with improved extraction and cleanup system for the determination of imidacloprid, acetamiprid, thiamethoxam and clothianidin (metabolite of thiamethoxam) in canned fruits. The low toxic solvent ethanol was used to extract the analytes, and ammonium sulfate was used to promote the phase separation. Moreover, the carboxylated multi walled carbon nanotube was acted as the clean-up sorbent for removal of high solubility impurities. The proposed method was validated with fortified real samples at different concentration levels (20∼200 μg kg-1 ). Recoveries obtained from three spiked levels (20, 50, 200 μg kg-1 ) were ranged from 74.9% to 86.4% with relative standard deviations of the intra-day and inter-day in the range of 0.8 to 5.5% and 2.0 to 7.1%, respectively. Limit of detections were ranged from 0.2 to 0.5 μg kg-1 and 0.2 to 0.6 μg kg-1 for orange and peach, respectively. The results demonstrated that the proposed method could be considered appropriate, comparatively lower toxic for the analysis of neonicotinoid pesticide residues in canned fruit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaochu Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Minxing Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Zhuoyan Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Yufeng Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| | - Goubin Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, 510316, China.,Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangzhou, 510316, China
| |
Collapse
|
16
|
Zhao WH, Shi YP. A porous boron nitride nanorods-based QuEChERS analysis method for detection of five neonicotinoid pesticide residues in goji berries. J Chromatogr A 2022; 1670:462968. [PMID: 35339745 DOI: 10.1016/j.chroma.2022.462968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/03/2023]
Abstract
To accurately determine neonicotinoid pesticide residues in goji berries, porous boron nitride nanorods (p-BNNRs) were prepared and used as a new QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) clean-up sorbent. Combined with ultrahigh-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), a modified QuEChERS method was developed to determine five neonicotinoid pesticide residues in goji berries. In goji berries, the p-BNNRs were shown to have a greater clean-up ability than typical clean-up materials (C18, PSA) The recoveries of the five targets ranged from 78.1 to 117.3% at three fortified levels, and the LODs ranged from 2.2 to 3.7 μg kg-1. The results indicate that this approach could be successfully used to quickly determine of the five neonicotinoid insecticide residues in goji berries for risk assessment purposes, demonstrating the applicability and suitability of p-BNNRs for the routine evaluation of neonicotinoid insecticide residues in goji berries.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Zhou H, Yan Z, Yu S, Wu A, Liu N. Development of a Novel UPLC-MS/MS Method for the Simultaneous Determination of 16 Mycotoxins in Different Tea Categories. Toxins (Basel) 2022; 14:toxins14030169. [PMID: 35324666 PMCID: PMC8951691 DOI: 10.3390/toxins14030169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
The contamination of potential mycotoxins in tea production and consumption has always been a concern. However, the risk monitoring on multiple mycotoxins remains a challenge by existing methods due to the high cost and complex operation in tea matrices. This research has developed a simple ultra-performance liquid chromatography-tandem mass spectrometry strategy based on our homemade purification column, which can be applied in the detections of mycotoxins in complex tea matrices with high-effectively purifying and removing pigment capacity for 16 mycotoxins. The limits of detection and the limits of quantification were in the ranges of 0.015~15.00 and 0.03~30.00 µg·kg−1 for 16 mycotoxins, respectively. Recoveries from mycotoxin-fortified tea samples (0.13~1200 µg·kg−1) in different tea matrices ranged from 61.27 to 118.46%, with their relative standard deviations below 20%. Moreover, this method has been successfully applied to the analysis and investigation of the levels of 16 mycotoxins in major categories of tea and the monitoring of multiple mycotoxins in processed samples of ripened Pu-erh. In conclusion, the proposed strategy is simple, effective, time-saving, and low-cost for the determination of a large number of tea samples.
Collapse
Affiliation(s)
- Haiyan Zhou
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Zheng Yan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Song Yu
- Division of Chemical Toxicity and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200030, China; (H.Z.); (Z.Y.); (A.W.)
- Correspondence: ; Tel.: +86-21-54-920-716
| |
Collapse
|
18
|
Kawakami T, Tahara M, Ikarashi Y. Analysis of isothiazolinone preservatives in household deodorizers and air fresheners through solid-phase extraction and liquid chromatography–tandem mass spectrometry. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1990944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tsuyoshi Kawakami
- Division of Environmental Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Maiko Tahara
- Division of Environmental Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshiaki Ikarashi
- Division of Environmental Chemistry, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|