1
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
2
|
Chu D, Yang X, Wang J, Zhou Y, Gu JH, Miao J, Wu F, Liu F. Tau truncation in the pathogenesis of Alzheimer's disease: a narrative review. Neural Regen Res 2024; 19:1221-1232. [PMID: 37905868 PMCID: PMC11467920 DOI: 10.4103/1673-5374.385853] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Alzheimer's disease is characterized by two major neuropathological hallmarks-the extracellular β-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein. Recent studies suggest that dysregulation of the microtubule-associated protein Tau, especially specific proteolysis, could be a driving force for Alzheimer's disease neurodegeneration. Tau physiologically promotes the assembly and stabilization of microtubules, whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers, resulting in them gaining prion-like characteristics. In addition, Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner. This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments, investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease, and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xingyue Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Yan Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province, China
| | - Jin Miao
- Laboratory of Animal Center, Nantong University, Nantong, Jiangsu Province, China
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
3
|
Ahmad F, Karan A, Sharma R, Sharma NS, Sundar V, Jayaraj R, Mukherjee S, DeCoster MA. Evolving therapeutic interventions for the management and treatment of Alzheimer's disease. Ageing Res Rev 2024; 95:102229. [PMID: 38364913 DOI: 10.1016/j.arr.2024.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Alzheimer's Disease (AD) patients experience diverse symptoms, including memory loss, cognitive impairment, behavioral abnormalities, mood changes, and mental issues. The fundamental objective of this review is to discuss novel therapeutic approaches, with special emphasis on recently approved marketed formulations for the treatment of AD, especially Aducanumab, the first FDA approved moiety that surpasses the blood-brain barrier (BBB) and reduces amyloid plaques in the brain, thereby reducing associated cognitive decline. However, it is still in the phase IV trial and is to be completed by 2030. Other drugs such as lecanemab are also under clinical trial and has recently been approved by the FDA and is also discussed here. In this review, we also focus on active and passive immunotherapy for AD as well as several vaccines, such as amyloid-beta epitope-based vaccines, amyloid-beta DNA vaccines, and stem cell therapy for AD, which are in clinical trials. Furthermore, ongoing pre-clinical trials associated with AD and other novel strategies such as curcumin-loaded nanoparticles, Crispr/ cas9, precision medicine, as well as some emerging therapies like anti-sense therapy are also highlighted. Additionally, we discuss some off-labeled drugs like non-steroidal anti-inflammatory drugs (NSAID), anti-diabetic drugs, and lithium, which can manage symptoms of AD and different non-pharmacological approaches are also covered which can help to manage AD. In summary, we have tried to cover all the therapeutic interventions which are available for the treatment and management of AD under sections approved, clinical phase, pre-clinical phase or futuristic interventions, off-labelled drugs, and non-pharmacological interventions for AD, offering positive findings and well as challenges that remain.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi, India
| | - Anik Karan
- Department of Mechanical and Bioengineering, University of Kansas, Lawrence, KS, USA.
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi, India
| | - Navatha Shree Sharma
- Department of Surgery Transplant, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Richard Jayaraj
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Sudip Mukherjee
- Biomedical Engineering, Indian Institute of Technology- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
4
|
Xu Q, Guo X, Wang S, Feng Q, Yan S, Yan Y. Combination of click chemistry and Schiff base reaction: Post-synthesis of covalent organic frameworks as an immobilized metal ion affinity chromatography platform for efficient capture of global phosphopeptides in serum with chronic obstructive pulmonary disease. J Sep Sci 2024; 47:e2300900. [PMID: 38356233 DOI: 10.1002/jssc.202300900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Reasonable design and construction of functionalized materials are of great importance for the enrichment of global phosphopeptides. In this work, Ti4+ functionalized hydrophilic covalent organic frameworks by introducing glutathione (GSH) and 2,3,4-trihydroxy benzaldehyde (THBA) via click chemistry and Schiff base reaction (COF-V@GSH-THBA-Ti4+ ) was constructed and applied for selective enrichment of phosphopeptides in serum. Benefit from the high surface area, excellent hydrophilicity as well as regular mesoporous structure, COF-V@GSH-THBA-Ti4+ displayed high selectivity (molar ratio of 2000:1), low limit of detection (0.5 fmol), high load capacity (100.0 mg/g) and excellent size-exclusion effect (1:10000) for enrichment of phosphopeptides. For actual bio-sample analysis, 15 phosphopeptides assigned to 10 phosphoproteins with 16 phosphorylated sites and 33 phosphopeptides assigned to 25 phosphoproteins with 34 phosphorylated sites were detected from the serum of patients with chronic obstructive pulmonary disease (COPD), and normal controls. Biological processes and molecular functions analysis further disclosed the difference of serums with phosphoproteomics between COPD and normal controls.
Collapse
Affiliation(s)
- Qian Xu
- Tongji University School of Medicine, Shanghai, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xiaoli Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Simeng Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shi Yan
- Tongji University School of Medicine, Shanghai, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Guo X, Yan L, Zhang D, Zhao Y. Passive immunotherapy for Alzheimer's disease. Ageing Res Rev 2024; 94:102192. [PMID: 38219962 DOI: 10.1016/j.arr.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/03/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by cognitive impairment with few therapeutic options. Despite many failures in developing AD treatment during the past 20 years, significant advances have been achieved in passive immunotherapy of AD very recently. Here, we review characteristics, clinical trial data, and mechanisms of action for monoclonal antibodies (mAbs) targeting key players in AD pathogenesis, including amyloid-β (Aβ), tau and neuroinflammation modulators. We emphasized the efficacy of lecanemab and donanemab on cognition and amyloid clearance in AD patients in phase III clinical trials and discussed factors that may contribute to the efficacy and side effects of anti-Aβ mAbs. In addition, we provided important information on mAbs targeting tau or inflammatory regulators in clinical trials, and indicated that mAbs against the mid-region of tau or pathogenic tau have therapeutic potential for AD. In conclusion, passive immunotherapy targeting key players in AD pathogenesis offers a promising strategy for effective AD treatment.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Li Yan
- School of Traditional Chinese Medicine, Jinan University, 601 Huangpu Avenue West, Guangzhou, Guangdong 510632, China
| | - Denghong Zhang
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yingjun Zhao
- Center for Brain Sciences, the First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| |
Collapse
|
6
|
Meng L, Wang B, Wang B, Feng Q, Zhang S, Xiong Z, Zhang S, Cai T, Ding CF, Yan Y. Post-synthesis of a titanium-rich magnetic COF nanocomposite with flexible branched polymers for efficient enrichment of phosphopeptides from human saliva and serum. Analyst 2023; 148:4738-4745. [PMID: 37646154 DOI: 10.1039/d3an00989k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A Ti4+-functionalized magnetic covalent organic framework material with flexible branched polymers (mCOF@ε-PL@THBA-Ti4+) built via an immobilized metal ion affinity chromatography (IMAC) enrichment strategy was proposed through post-synthesis modification. Hydrophilic ε-poly-L-lysine (ε-PL) rich in amino active groups was first introduced in the fabrication of the phosphopeptide enrichment material to increase the hydrophilicity while providing more functional modification pathways of the material. 2,3,4-Trihydroxy-benzaldehyde (THBA) provides abundant binding sites for the immobilization of numerous Ti4+, which is advantageous for the subsequent efficient phosphopeptide enrichment. The magnetic nanocomposite exhibited outstanding performance of phosphopeptide enrichment with good selectivity (1 : 5000), a low detection limit (2 fmol), and relatively high loading capacity (66.7 mg g-1). What's more, after treatment with mCOF@ε-PL@THBA-Ti4+, 16 endogenous phosphopeptides from fresh saliva of healthy people were recognized by MALDI-TOF MS, and 50 phosphopeptides belonging to 35 phosphoproteins from the serum of uremia patients were detected by nano-LC-MS/MS. Proteomics data analysis for the differential protein selection between uremia and normal controls was conducted using R software, and four down-regulated and three up-regulated proteins were obtained. The results suggested that the prepared material has potential applications in biomarker discovery.
Collapse
Affiliation(s)
- Luyan Meng
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Sijia Zhang
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Zi Xiong
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Shun Zhang
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Ting Cai
- Department of Experimental Medical Science, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315099, China.
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315099, China
| | - Chuan-Fan Ding
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yinghua Yan
- Ningbo Key Laboratory of Precision Medicine and Anticancer Drugs, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China.
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
7
|
Li L, Miao J, Jiang Y, Dai CL, Iqbal K, Liu F, Chu D. Passive immunization inhibits tau phosphorylation and improves recognition learning and memory in 3xTg-AD mice. Exp Neurol 2023; 362:114337. [PMID: 36717015 DOI: 10.1016/j.expneurol.2023.114337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Tau pathology is essential in the pathogenesis of Alzheimer's disease (AD) and related tauopathies. Tau immunotherapy aimed at reducing the progression of tau pathology provides a potential therapeutic strategy for treating these diseases. By screening monoclonal antibodies 43D, 63B, 39E10, and 77G7 that recognize epitopes ranging from tau's N-terminus to C-terminus, we found the 77G7, which targets the microtubule-binding domain promoted tau clearance in a dose-dependent manner by entering neuronal cells in vitro. Intra-cerebroventricular injection of 77G7 antibody reduced tau levels in the wild-type FVB mouse brain. Without influencing the levels of detergent-insoluble and aggregated tau, intravenous injection of 77G7 reduced tau hyperphosphorylation in the brain and improved novel object recognition but not spatial learning and memory in 15-18-month-old 3xTg-AD mice. These studies suggest that epitopes recognized by tau antibodies are crucial for the efficacy of immunotherapy. Immunization with antibody 77G7 provides a novel potential opportunity for tau-directed immunotherapy of AD and related tauopathies.
Collapse
Affiliation(s)
- Longfei Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jin Miao
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| |
Collapse
|
8
|
Bijttebier S, Rodrigues Martins D, Mertens L, Grauwen K, Bruinzeel W, Willems R, Bartolomé-Nebreda JM, Theunis C, Bretteville A, Ebneth A, Dillen L. IP-LC-MSMS Enables Identification of Three Tau O-GlcNAcylation Sites as O-GlcNAcase Inhibition Pharmacodynamic Readout in Transgenic Mice Overexpressing Human Tau. J Proteome Res 2023; 22:1309-1321. [PMID: 36888912 DOI: 10.1021/acs.jproteome.2c00822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
O-β-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).
Collapse
Affiliation(s)
- Sebastiaan Bijttebier
- Bioanalytical Discovery & Development Sciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Liesbeth Mertens
- R&D Neurosciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Karolien Grauwen
- R&D Neurosciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Wouter Bruinzeel
- R&D Structural & Protein Sciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Roland Willems
- R&D Neurosciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Clara Theunis
- R&D Neurosciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Andreas Ebneth
- R&D Neurosciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Lieve Dillen
- Bioanalytical Discovery & Development Sciences, Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
9
|
Zhang X, Feng Q, Xie Z, Xu F, Yan Y, Ding C. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes. Anal Bioanal Chem 2022; 414:7885-7895. [PMID: 36136112 DOI: 10.1007/s00216-022-04323-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
Abstract
In this work, on the basis of an immobilized metal ion affinity chromatography enrichment strategy, a new kind of covalent organic framework (COF) material for enrichment of phosphorylated peptides and exosomes was successfully prepared in a facile method, and Ti4+ and Nb5+ were used as dual-functional ions (denoted as COF-S-S-COOH-Ti4+/Nb5+). With the advantage of unbiased enrichment towards phosphopeptides, COF-S-S-COOH-Ti4+/Nb5+ shows ultra-high selectivity (maximum molar ratio of β-casein: BSA is 1:20,000) and low limit of detection (0.2 fmol). In addition, the material has an excellent phosphopeptide loading capacity (100 μg/mg) and reusability (at least seven times). Furthermore, applying the material to the actual sample, 4 phosphopeptides were selectively extracted from the serum of renal carcinoma patients. At the same time, exosomes with an intact structure in the serum of renal carcinoma patients were successfully isolated rapidly using this strategy. All experiments have shown that COF-S-S-COOH-Ti4+/Nb5+ exhibits exciting potential in practical applications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuanfan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
10
|
Simultaneous enrichment and sequential separation of O-linked glycopeptides and phosphopeptides with immobilized titanium (IV) ion affinity chromatography materials. J Chromatogr A 2022; 1681:463462. [DOI: 10.1016/j.chroma.2022.463462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
|
11
|
Han ZZ, Kang SG, Arce L, Westaway D. Prion-like strain effects in tauopathies. Cell Tissue Res 2022; 392:179-199. [PMID: 35460367 PMCID: PMC9034081 DOI: 10.1007/s00441-022-03620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, “strains”. Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luis Arce
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Wu YQ, Wang YN, Zhang LJ, Liu LQ, Pan YC, Su T, Liao XL, Shu HY, Kang M, Ying P, Xu SH, Shao Y. Regional Homogeneity in Patients With Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Imaging Study. Front Aging Neurosci 2022; 14:877281. [PMID: 35493938 PMCID: PMC9050296 DOI: 10.3389/fnagi.2022.877281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 12/31/2022] Open
Abstract
Objective To analyze the potential changes in brain neural networks in resting state functional magnetic resonance imaging (rs-fMRI) scans by regional homogeneity (ReHo) in patients with mild cognitive impairment (MCI). Methods We recruited and selected 24 volunteers, including 12 patients (6 men and 6 women) with MCI and 12 healthy controls matched by age, sex, and lifestyle. All subjects were examined with rs-fMRI to evaluate changes in neural network connectivity, and the data were analyzed by ReHo method. Correlation analysis was used to investigate the relationship between ReHo values and clinical features in different brain regions of MCI patients. The severity of MCI was determined by the Mini-Mental State Examination (MMSE) scale. Results The signals of the right cerebellum areas 4 and 5, left superior temporal, right superior temporal, left fusiform, and left orbital middle frontal gyri in the patient group were significantly higher than those in the normal group (P < 0.01 by t-test of paired samples). The signal intensity of the right inferior temporal and left inferior temporal gyri was significantly lower than that of the normal group (P < 0.01). The ReHO value for the left inferior temporal gyrus correlated negatively with disease duration, and the value for the right inferior temporal gyrus correlated positively with MMSE scores. Conclusion Mild cognitive impairment in patients with pre- Alzheimer's disease may be related to the excitation and inhibition of neural networks in these regions. This may have a certain guiding significance for clinical diagnosis.
Collapse
Affiliation(s)
- Yu-Qian Wu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Ning Wang
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Juan Zhang
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Qi Liu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Cong Pan
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Hui-Ye Shu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Kang
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - San-Hua Xu
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology and Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yi Shao,
| |
Collapse
|
13
|
Song C, Shi J, Zhang P, Zhang Y, Xu J, Zhao L, Zhang R, Wang H, Chen H. Immunotherapy for Alzheimer's disease: targeting β-amyloid and beyond. Transl Neurodegener 2022; 11:18. [PMID: 35300725 PMCID: PMC8932191 DOI: 10.1186/s40035-022-00292-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly worldwide. However, the complexity of AD pathogenesis leads to discrepancies in the understanding of this disease, and may be the main reason for the failure of AD drug development. Fortunately, many ongoing preclinical and clinical studies will continually open up avenues to unravel disease mechanisms and guide strategies for AD diagnosis and drug development. For example, immunotherapeutic strategies targeting amyloid-β (Aβ) and tau proteins were once deemed almost certainly effective in clinical treatment due to the excellent preclinical results. However, the repeated failures of clinical trials on vaccines and humanized anti-Aβ and anti-tau monoclonal antibodies have resulted in doubts on this strategy. Recently, a new anti-Aβ monoclonal antibody (Aducanumab) has been approved by the US Food and Drug Administration, which brings us back to the realization that immunotherapy strategies targeting Aβ may be still promising. Meanwhile, immunotherapies based on other targets such as tau, microglia and gut-brain axis are also under development. Further research is still needed to clarify the forms and epitopes of targeted proteins to improve the accuracy and effectiveness of immunotherapeutic drugs. In this review, we focus on the immunotherapies based on Aβ, tau and microglia and their mechanisms of action in AD. In addition, we present up-to-date advances and future perspectives on immunotherapeutic strategies for AD.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianrong Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Clinical Pharmacy, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Golde TE. Disease-Modifying Therapies for Alzheimer's Disease: More Questions than Answers. Neurotherapeutics 2022; 19:209-227. [PMID: 35229269 PMCID: PMC8885119 DOI: 10.1007/s13311-022-01201-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
Scientific advances over the last four decades have steadily infused the Alzheimer's disease (AD) field with great optimism that therapies targeting Aβ, amyloid, tau, and innate immune activation states in the brain would provide disease modification. Unfortunately, this optimistic scenario has not yet played out. Though a recent approval of the anti-Aβ aggregate binding antibody, Aduhelm (aducanumab), as a "disease-modifying therapy for AD" is viewed by some as a breakthrough, many remain unconvinced by the data underlying this approval. Collectively, we have not succeeded in changing AD from a largely untreatable, inevitable, and incurable disease to a treatable, preventable, and curable one. Here, I will review the major foci of the AD "disease-modifying" therapeutic pipeline and some of the "open questions" that remain in terms of these therapeutic approaches. I will conclude the review by discussing how we, as a field, might adjust our approach, learning from our past failures to ensure future success.
Collapse
Affiliation(s)
- Todd E Golde
- Departments of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, Evelyn F. and William L. McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|