1
|
Wang S, Liu W, Lei X, Huang T, Huang G, Lin C, Wu X. Surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes for pipette tip solid-phase extraction of microcystins in water. J Chromatogr A 2024; 1736:465390. [PMID: 39326382 DOI: 10.1016/j.chroma.2024.465390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The occurrence of microcystins (MCs) during harmful algal blooms (HABs) represents a major threat to freshwater environments. In this work, a novel surface amphiphilic hybrid porous polymers based on cage-like organosiloxanes (PCSs) was prepared for the enrichment of MCs. The copolymerization of bifunctional amphiphilic monomers, 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-benzylquininium chloride (BQN), with the cross-linker methacryl substituted polyhedral oligomeric silsesquioxane (POSS) was achieved in an ionic liquid-based porogenic medium. The hierarchical porous structure, a variety of surface functional groups and weak hydrophilicity were well characterized on the prepared materials using scanning electron microscopy, nitrogen adsorption/desorption analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential analysis and water contact angle testing, respectively. The as-prepared surface amphiphilic PCSs was used as an adsorbent for pipette tip solid-phase extraction (PT-SPE) to enrich microcystins (MCs) from surface waters before their analysis by capillary electrochromatography (CEC) and liquid chromatography-mass spectrometry (LC-MS). Under the optimal conditions, the established PT-SPE-LC-MS method exhibited a wide linear range (10-10,000 ng L-1), low limits of detection (4.0-8.0 ng L-1) and satisfactory recoveries (89.5-102.8 %) for MCs. An adsorption mechanism involving electrostatic interactions, hydrogen bonding, hydrophilic interactions, and π-π stacking has been proposed. The findings suggest that the use of surface amphiphilic PCSs materials as adsorbents in the PT-SPE platform facilitates efficient enrichment of MCs for subsequent chromatographic analysis. These investigations offer a new perspective on the simple and uncomplicated pretreatment of complex environmental samples.
Collapse
Affiliation(s)
- Shuqiang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Wenning Liu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Xiaoyun Lei
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Ting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China
| | - Guobin Huang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety, Fuzhou 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China; International (HongKong Macao and Taiwan) Joint Laboratory on food safety and environmental analysis, Fuzhou 350116, Fuzhou University, China.
| |
Collapse
|
2
|
Han Y, Sun P, Liu P, Wei X, Bai L, Liu H. Fabrication of a Composite Monolithic Column of Poly (IL@MOF) for Adsorption of Acacetin in Medicinal and Food Homologous Plants. ChemistrySelect 2023. [DOI: 10.1002/slct.202203690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yamei Han
- College of Pharmaceutical Sciences Key Laboratory of Public Health Safety of Hebei Province Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education Hebei University Baoding 071002 China
| | - Peiye Sun
- College of Pharmaceutical Sciences Key Laboratory of Public Health Safety of Hebei Province Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education Hebei University Baoding 071002 China
| | - Ping Liu
- College of Pharmaceutical Sciences Key Laboratory of Public Health Safety of Hebei Province Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education Hebei University Baoding 071002 China
| | - Xuanwen Wei
- College of Pharmaceutical Sciences Key Laboratory of Public Health Safety of Hebei Province Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education Hebei University Baoding 071002 China
| | - Ligai Bai
- College of Pharmaceutical Sciences Key Laboratory of Public Health Safety of Hebei Province Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education Hebei University Baoding 071002 China
| | - Haiyan Liu
- College of Pharmaceutical Sciences Key Laboratory of Public Health Safety of Hebei Province Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education Hebei University Baoding 071002 China
| |
Collapse
|
3
|
Li J, Qiu D, Li F, Kang J. Preparation of poly(N-vinylpyrrolidone-co-pentaerythritol triacrylate) monolithic column for hydrophilic interaction chromatography. J Sep Sci 2023; 46:e2201033. [PMID: 36774335 DOI: 10.1002/jssc.202201033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
A method for the preparation of poly(N-vinylpyrrolidone-co-pentaerythritol triacrylate copolymerization)-based monolithic capillary column was reported for the separation of polar small molecular weight compounds with nano-liquid chromatography in hydrophilic interaction chromatography mode. The monolithic columns were prepared by in situ copolymerization of N-vinylpyrrolidone and a cross-linker pentaerythritol triacrylate in a binary porogenic agent consisting of methanol and water. The composition of the polymerization solution was systematically optimized in terms of column permeability, theoretical plate number, asymmetric factor, and retention factor. A typical hydrophilic chromatography retention mechanism was observed with a mobile phase composed of a high content of organic solvent. The preparation method is simple and robust, the precursor N-vinylpyrrolidone is chemically stable, cheap, and easily available. The N-vinylpyrrolidone-based hydrophilic interaction chromatography stationary phase displays satisfactory separation selectivity for a range of polar test analytes, including benzoic acid derivatives, nucleosides, and phenols.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China.,School of Physical Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Danye Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Feng Li
- School of Chemical Engineering, Xi'an Key Laboratory of Food Safety Testing and Risk Assessment, Xi'an University, Xi'an, P. R. China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, P. R. China.,School of Physical Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| |
Collapse
|
4
|
Guo Y, Zhao W, Dai S, Mao J, Zhang Q, Xie Z, Zhang W, Zhao W, Yu A, Zhang S. A monolithic azacalix[4]pyridine column for high-resolution and high-efficiency pressurized capillary electrochromatographic separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Si H, Wang Q, Guo Y, Zhao Y, Li H, Li S, Wang S, Zhu B. Functionalized monolithic columns: Recent advancements and their applications for high-efficiency separation and enrichment in food and medicine. Front Chem 2022; 10:951649. [PMID: 35991596 PMCID: PMC9388943 DOI: 10.3389/fchem.2022.951649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The chromatographic column is the core of a high-performance liquid chromatography (HPLC) system, and must have excellent separation efficiency and selectivity. Therefore, functional modification materials for monolithic columns have been rapidly developed. This study is a systematic review of the recently reported functionalized monolithic columns. In particular, the study reviews the types of functional monomers under different modification conditions, as well as the separation and detection techniques combined with chromatography, and their development prospects. In addition, the applications of functionalized monolithic columns in food analysis, biomedicine, and the analysis of active ingredient of Chinese herbal medicines in recent years are also discussed. Also reviewed are the functionalized monolithic columns for qualitative and quantitative analysis. It provided a reference for further development and application of organic polymer monolithic columns.
Collapse
Affiliation(s)
- Helong Si
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
| | - Quan Wang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
- *Correspondence: Quan Wang,
| | - Yuanyuan Guo
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Yuxin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Hongya Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Shuna Li
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Shuxiang Wang
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| | - Baocheng Zhu
- College of Life Science, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei, China
- Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei, China
| |
Collapse
|
6
|
Rusli H, Putri RM, Alni A. Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules 2022; 27:907. [PMID: 35164170 PMCID: PMC8840574 DOI: 10.3390/molecules27030907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Compound separation plays a key role in producing and analyzing chemical compounds. Various methods are offered to obtain high-quality separation results. Liquid chromatography is one of the most common tools used in compound separation across length scales, from larger biomacromolecules to smaller organic compounds. Liquid chromatography also allows ease of modification, the ability to combine compatible mobile and stationary phases, the ability to conduct qualitative and quantitative analyses, and the ability to concentrate samples. Notably, the main feature of a liquid chromatography setup is the stationary phase. The stationary phase directly interacts with the samples via various basic mode of interactions based on affinity, size, and electrostatic interactions. Different interactions between compounds and the stationary phase will eventually result in compound separation. Recent years have witnessed the development of stationary phases to increase binding selectivity, tunability, and reusability. To demonstrate the use of liquid chromatography across length scales of target molecules, this review discusses the recent development of stationary phases for separating macromolecule proteins and small organic compounds, such as small chiral molecules and polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Handajaya Rusli
- Analytical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Rindia M. Putri
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Anita Alni
- Organic Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Lei X, Zhang B, Zhang Y, Huang T, Tang F, Wu X. In situ photoinitiated fabrication of phosphorylcholine-functionalized polyhedral oligomeric silsesquioxane hybrid monolithic column for mixed-mode capillary electrochromatography. Analyst 2022; 147:2253-2263. [DOI: 10.1039/d2an00195k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A phosphorylcholine-functionalized POSS hybrid monolithic column was synthesized via UV curing. It exhibits hydrophilic interaction and weak cation exchange chromatography retention mechanism for the separation of typical polar and charged compounds.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Bingyu Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yi Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ting Huang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fengxiang Tang
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|