1
|
Ye J, Du J, Wang B, Yan Y, Ding CF. Identification and quantification of bipyridyl dicarboxylic acid isomers by ion mobility spectrometry. J Chromatogr A 2024; 1715:464630. [PMID: 38184990 DOI: 10.1016/j.chroma.2024.464630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The identification of positional isomers is of interest because different isomers have different chemical or biological functions and applications. The analysis of positional isomers is sometimes challenging since they have similar chemical structures and properties. For example, the analysis of mass cannot identify different positional isomers because they have identical mass-to-charge ratios and show a single mass peak in mass spectrometry. In this study, an efficient and simple qualitative and quantitative analytical method for differentiating 2,2'-bipyridine-3,3'-dicarboxylic acid (3,3'-BDA), 2,2'-bipyridine-4,4'-dicarboxylic acid (4,4'-BDA), and 2,2'-bipyridine-5,5'-dicarboxylic acid (5,5'-BDA) was developed by using ion mobility spectrometry (IMS). The results revealed that the three BDA isomers formed non-covalent complexes with cyclodextrins (CDs) and Mg2+ ions in the gas phase: [β-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ and [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+, which were distinguished by measuring the mobility of the complexes because of their spatial conformational differences. The peak-to-peak resolution (Rp-p) values of the three isomers of [γ-CD+3,3'/4,4'/5,5'-BDA+Mg]2+ reached 2.983 and 2.892, respectively. The conformations of the ternary complexes simulated by the theoretical calculations revealed the different interactions and shapes of the stereoisomers, and the predicted results agreed with the experimental results. Simultaneously, further studies on the collisional dissociation of the ternary complexes revealed that the dissociation energies of the different complex ions varied were different owing to the diverse different conformations. Finally, the relative quantitative analysis of the different isomers in mixed samples was performed and satisfactory linearity results (R2 > 0.99) were obtained. Thus, an effective analytical method was proposed for the identification and quantification of BDA isomers without chemical derivatization, offering a promising approach for the identification of similar derivatives or positional isomers that could be applied in various fields including chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jiacheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jianglong Du
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Jakabfi-Csepregi R, Alberti Á, Felegyi-Tóth CA, Kőszegi T, Czigle S, Papp N. A Comprehensive Study on Lathyrus tuberosus L.: Insights into Phytochemical Composition, Antimicrobial Activity, Antioxidant Capacity, Cytotoxic, and Cell Migration Effects. PLANTS (BASEL, SWITZERLAND) 2024; 13:232. [PMID: 38256785 PMCID: PMC10821300 DOI: 10.3390/plants13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In this study, in vitro antioxidant, antimicrobial, cytotoxic, and cell migration effects of phenolic compounds of Lathyrus tuberosus leaves, known in the Transylvanian ethnomedicine, were investigated. Ultra-high-performance liquid chromatography-tandem mass spectrometry was employed for the analysis of the ethanolic and aqueous extracts. The antimicrobial properties were determined using a conventional microdilution technique. Total antioxidant capacity techniques were used using cell-free methods and cell-based investigations. Cytotoxic effects were conducted on 3T3 mouse fibroblasts and HaCaT human keratinocytes using a multiparametric method, assessing intracellular ATP, total nucleic acid, and protein levels. Cell migration was visualized by phase-contrast microscopy, employing conventional culture inserts to make cell-free areas. Together, 93 polyphenolic and monoterpenoid compounds were characterized, including flavonoid glycosides, lignans, hydroxycinnamic acid, and hydroxybenzoic acid derivatives, as well as iridoids and secoiridoids. The ethanolic extract showed high antioxidant capacity and strong antimicrobial activity against Bacillus subtilis (MIC80 value: 354.37 ± 4.58 µg/mL) and Streptococcus pyogenes (MIC80 value: 488.89 ± 4.75 µg/mL). The abundance of phenolic compounds and the results of biological tests indicate the potential for L. tuberosus to serve as reservoirs of bioactive compounds and to be used in the development of novel nutraceuticals.
Collapse
Affiliation(s)
- Rita Jakabfi-Csepregi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, HU-7624 Pécs, Hungary; (R.J.-C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, HU-7624 Pécs, Hungary
| | - Ágnes Alberti
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (C.A.F.-T.)
| | - Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (C.A.F.-T.)
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, HU-7624 Pécs, Hungary; (R.J.-C.); (T.K.)
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, HU-7624 Pécs, Hungary
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| |
Collapse
|
3
|
Domínguez-Rodríguez G, Montero L, Herrero M, Cifuentes A, Castro-Puyana M. Capillary electromigration methods for food analysis and Foodomics: Advances and applications in the period March 2021 to March 2023. Electrophoresis 2024; 45:8-34. [PMID: 37603373 DOI: 10.1002/elps.202300126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Laboratory of Foodomics, CIAL, CSIC, Madrid, Spain
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| | | | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona, Madrid, Spain
| |
Collapse
|
4
|
Takács O, Nagyné Nedves A, Boldizsár I, Höhn M, Béni S, Gampe N. Analysis of 3-nitropropionic acid in Fabaceae plants by HPLC-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1205-1213. [PMID: 36111358 PMCID: PMC10087496 DOI: 10.1002/pca.3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION 3-Nitropropionic acid (3-NPA) is a toxic compound that can accumulate in esterified form in the Fabaceae family. In the Lotae tribe, many species have been identified as 3-NPA producers (e.g., Securigera varia), while some of the genetically close Lotae plants were formerly reported as 3-NPA-free (e.g., Lotus corniculatus and Anthyllis vulneraria). These plants are used as forage and have a tradition in ethnomedicine, also, the extracts of A. vulneraria are used in cosmetics. OBJECTIVES Our aim was to investigate the 3-NPA content of these selected Fabaceae species and to develop a validated quantitative method to evaluate 3-NPA concentrations in extracts of different herbal parts and cosmetic products. MATERIALS AND METHODS A UHPLC-ESI-Orbitrap-MS/MS method was applied for detection and identification of 3-NPA derivatives in the form of glucose esters. For the quantitative analysis, an optimized sample processing method was developed. The free 3-NPA content was determined using HPLC-ESI-MS/MS. RESULTS 3-NPA esters could be detected in all three species, but their quantity showed a high variation. S. varia contained 0.5-1.0 g/100 g of 3-NPA, while in L. corniculatus samples only trace quantities were detectable, below the LOQ (25 ng/ml). Most of the A. vulneraria samples showed similarly low concentrations, but one sample had 3-NPA levels comparable to S. varia. 3-NPA could not be detected in the tested cosmetics containing A. vulneraria extracts. CONCLUSIONS Using highly sensitive analytical methods, new 3-NPA-containing species were identified. The developed validated quantitative method is suitable for the determination of 3-NPA concentrations in herbal samples.
Collapse
Affiliation(s)
- Orsolya Takács
- Department of PharmacognosySemmelweis UniversityBudapestHungary
| | | | - Imre Boldizsár
- Department of PharmacognosySemmelweis UniversityBudapestHungary
- Department of Plant Anatomy, Institute of Biology, Bioactive Compounds Group, Institutional Excellence ProgramEötvös Loránd UniversityBudapestHungary
| | - Mária Höhn
- Department of BotanyHungarian University of Agriculture and Life SciencesBudapestHungary
| | - Szabolcs Béni
- Department of PharmacognosySemmelweis UniversityBudapestHungary
| | - Nóra Gampe
- Department of PharmacognosySemmelweis UniversityBudapestHungary
| |
Collapse
|