1
|
Wang S, Wang S, Chen T, Yu J, Shi Y, Chen G, Xu J, Qiu J, Zhu F, Ouyang G. Detection and health implications of phthalates in tea beverages in market: Application of novel solid-phase microextraction fibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176031. [PMID: 39236820 DOI: 10.1016/j.scitotenv.2024.176031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Assessment and control of emerging organic pollutants in food have become critical for global food safety and health. The European Union has set standards for certain emerging organic pollutants, such as phthalic acid esters (PAEs) in food. Because of being endocrine disruptors, PAEs are toxic and carcinogenic to humans. Release of PAEs from packaging materials poses a potential risk to human health and causes environmental pollution. In this study, a highly sensitive analytical method for the detection of PAE contents in tea beverages was established using hydroxyl-functionalized covalent organic frameworks (COFs) as solid-phase microextraction (SPME) coating. Results indicate that functionalization with hydroxyl groups enhances the adsorption of PAEs. The proposed method exhibits a wide linear range (1-20,000 ng L-1), low limits of detection (> 0.048 ng L-1), and satisfactory recovery (72.8 %-127.3 %). To investigate the PAE contamination in beverages, contamination levels of six typical PAEs and their health impacts were surveyed across various brands/types/packaging materials of tea beverages sold in China. Results of the hazard quotient and hazard index approaches suggest no or extremely low health concerns regarding PAE levels. We observe that hydroxyl groups functionalized on COFs enhance the adsorption of PAEs. Moreover, an important outcome of this study is development of an efficient and sensitive direct detection method for PAEs in complex tea matrices, providing a reliable approach for the assessment of PAEs in other complex matrices.
Collapse
Affiliation(s)
- Shaohan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhuang Wang
- College of Economics and Management, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Tianning Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yueru Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
2
|
Klotz M, Schmidt S, Wiesinger H, Laner D, Wang Z, Hellweg S. Increasing the Recycling of PVC Flooring Requires Phthalate Removal for Ensuring Consumers' Safety: A Cross-Checked Substance Flow Analysis of Plasticizers for Switzerland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18686-18700. [PMID: 39373472 PMCID: PMC11500398 DOI: 10.1021/acs.est.4c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
As our planet grapples with the severe repercussions of plastic pollution, mechanical recycling has been proposed as a potential remedy. However, increasing mechanical recycling may have unintended negative consequences. For example, recycling of PVC flooring containing hazardous plasticizers that were used in the past may lead to continued exposure. Here we propose measures to increase recycling while circumventing adverse health impacts caused by legacy additives. For this, we conduct a dynamic substance flow analysis for Switzerland and the time period from 1950 to 2100, focusing on three plasticizers: di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and di(2-ethylhexyl) terephthalate (DEHT). We quantify the uncertainty of results, check their plausibility against measured concentrations in samples representative for the Swiss market, and compare them with modeled substance flows in Germany. Based on the cross-checked model, future average concentrations of DEHP in PVC flooring on the Swiss market are expected to be above the legal limit of 0.1 wt % for several decades if increased recycling rates are implemented without additional measures. Phasing out the potentially concerning DiNP, too, and preventing phthalates from entering recycling would lower their average market concentrations to values below 0.1 wt % and enable increasing recycling rates without compromising product safety. Analogous measures could help achieve this goal across other European countries and product groups.
Collapse
Affiliation(s)
- Magdalena Klotz
- Chair
of Ecological Systems Design, Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Sarah Schmidt
- Center
for Resource Management and Solid Waste Engineering, Institute of
Water, Waste and Environmental Engineering, University of Kassel, 34125 Kassel, Germany
| | - Helene Wiesinger
- Chair
of Ecological Systems Design, Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - David Laner
- Center
for Resource Management and Solid Waste Engineering, Institute of
Water, Waste and Environmental Engineering, University of Kassel, 34125 Kassel, Germany
| | - Zhanyun Wang
- Empa
- Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Valverde-Som L, Herrero A, Reguera C, Sarabia LA, Ortiz MC, Sánchez MS. Model inversion and three-way decompositions in the analytical quality by design strategy for the determination of phthalates BY HS-SPME-GC-MS. Talanta 2024; 267:125265. [PMID: 37826997 DOI: 10.1016/j.talanta.2023.125265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
In this work, strategies within Analytical Quality by Design (AQbD) with tools of the Process Analytical Technology (PAT) were used in the development of a head space-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) procedure for the multiresidue analysis of four phthalic acid esters, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, dibutyl phthalate and diethyl phthalate (regulated by Commission Regulation (EU) No 10/2011). The approach is based on the fact that the intended quality of the resulting chromatograms is defined in terms of the loadings on the sample mode of a Parallel Factor Analysis (PARAFAC2) decomposition. These loadings are the ones used for the inversion of a Partial Least Squares (PLS2) prediction model that has been previously fitted. The inversion gives the experimental conditions that represent a compromise solution in terms of the desired or target values of the responses (Critical Quality Attributes, CQAs), while guaranteeing that these experimental conditions are inside the experimental domain of the Control Method Parameters (CMPs). This strategy results in experimental conditions of extraction time and temperature that lead to a chromatogram of predefined quality for the four analytes together, with the subsquent saving of time and energy. The experimental conditions achieved have been experimentally verified and figures of merit of the analytical method have been determined. The method has been applied to a case study, bottled natural and flavoured mineral water. Concentrations around 0.3 μg L-1 of dibutyl phthalate have been found in 5 of the 22 bottles of water analysed.
Collapse
Affiliation(s)
- Lucía Valverde-Som
- Department of Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Ana Herrero
- Department of Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Celia Reguera
- Department of Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Luis Antonio Sarabia
- Department of Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - María Cruz Ortiz
- Department of Chemistry, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos Spain.
| | - María Sagrario Sánchez
- Department of Mathematics and Computation, Faculty of Sciences, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| |
Collapse
|
4
|
Li W, Zhang X, Zhang H, Zhang C, Chen Y, Li C, Hu Y, Yu X, Zhang B, Lin X. A Nanozymatic-Mediated Smartphone Colorimetric Sensing Platform for the Detection of Dimethyl Phthalate (DMP) and Dibutyl Phthalate (DBP). BIOSENSORS 2023; 13:919. [PMID: 37887112 PMCID: PMC10605576 DOI: 10.3390/bios13100919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
Plasticizers are a type of toxic substance that may remain in food, posing significant health risks including carcinogenic, teratogenic, mutagenic, and other adverse effects. In this study, a novel strategy was employed by combining Pt@Au nanozymes with high catalytic properties to created two catalytic signal probes, designated as Pt@Au@Ab1 and Pt@Au@Ab2, specifically designed for the detection of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). These catalytic signal probes served as the foundation for the development of a colorimetric immunoassay, enabling the simultaneous detection of both DMP and DBP. The colorimetric immunoassay is capable of detecting DMP in the range of 0.5-100 μg/L with a limit of detection as low as 0.1 μg/L and DBP in the range of 1-32 μg/L with a low limit of detection of 0.5 μg/L. The developed immunoassay can be used for the determination of the DMP and DBP in baijiu and plastic bottled drinks. The recovery rate is in the range of 96.4% and 100.5% and the coefficient of variation is between 1.0% and 7.2%. This innovative colorimetric immunoassay offers a robust tool for the simultaneous quantification of DMP and DBP in real samples.
Collapse
Affiliation(s)
- Wenhui Li
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211816, China; (W.L.); (Y.H.)
| | - Xuecheng Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (H.Z.); (C.Z.); (Y.C.); (X.Y.); (B.Z.)
| | - Haojie Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (H.Z.); (C.Z.); (Y.C.); (X.Y.); (B.Z.)
| | - Cheng Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (H.Z.); (C.Z.); (Y.C.); (X.Y.); (B.Z.)
| | - Yingjie Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (H.Z.); (C.Z.); (Y.C.); (X.Y.); (B.Z.)
| | - Cong Li
- Agriculture and Rural Bureau of Zhuozhou, Zhuozhou 072750, China;
| | - Yonghong Hu
- College of Food and Light Industry, Nanjing Tech University, Nanjing 211816, China; (W.L.); (Y.H.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (H.Z.); (C.Z.); (Y.C.); (X.Y.); (B.Z.)
| | - Biao Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (H.Z.); (C.Z.); (Y.C.); (X.Y.); (B.Z.)
| | - Xiaodong Lin
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519000, China
| |
Collapse
|
5
|
Bhogal S, Grover A, Mohiuddin I. A Review of the Analysis of Phthalates by Gas Chromatography in Aqueous and Food Matrices. Crit Rev Anal Chem 2023; 54:3428-3452. [PMID: 37647342 DOI: 10.1080/10408347.2023.2250876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
As a commonly well-known industrial chemical, phthalates are produced in high volumes to be used in various consumer products (e.g., plasticizers, medical devices, construction materials, and toys) to enhance softness, durability, transparency, and flexibility. Phthalates are generally not chemically bonded to the polymer chain of the plastic in which they are mixed. Thus, they may leach, migrate, or evaporate into indoor/outdoor air, and foodstuffs. In this review, a comprehensive overview of several sample preparation methods coupled with gas chromatography for the analysis of phthalates in various kinds of complex matrices, with a focus on the last 20 years' worth of papers. The review begins by highlighting the environmental significance of phthalate pollution along with the various routes to their exposure to general population. Then, the discussion is extended to cover the pretreatment and extraction techniques for phthalates for their quantitation based on gas chromatographic approach. Finally, the present and future challenges for the detection of phthalates in aqueous and food matrices are discussed.
Collapse
Affiliation(s)
- Shikha Bhogal
- University Centre for Research and Development, Chandigarh University, Mohali, India
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Aman Grover
- Department of Chemistry, Punjabi University, Patiala, India
| | | |
Collapse
|
6
|
Lin L, Huang Y, Wang P, Chen CC, Qian W, Zhu X, Xu X. Environmental occurrence and ecotoxicity of aquaculture-derived plastic leachates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132015. [PMID: 37437480 DOI: 10.1016/j.jhazmat.2023.132015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Plastic products such as fishing nets and foam buoys have been widely used in aquaculture. To enhance the desirable characteristics of the final equipment, plastic gear for aquaculture is mixed with a wide range of additives. Recent studies have shown that additives could be leached out to the environment with a long-term use of aquaculture plastics, forming aquaculture-derived plastic leachates. It should be emphasized that some leachates such as phthalic acid esters (PAEs) and organophosphate esters (OPEs) are endocrine disruptors, which could increase the exposure risk of aquatic products and subsequently display potential threats to human health via food chain. However, systematic studies on the release, occurrence, bioaccumulation, and toxic effects of aquaculture-derived plastic leachates are missing, overlooking their potential sources and ecotoxicological risks in aquatic environments. We have reviewed and compared the concentrations of major plastic leachates in the water environment and organisms of global aquaculture and non-farmed areas, confirming that aquaculture leachate is an important source of contaminants in the environment. Moreover, the toxic effects of aquaculture-derived plastic additives and the related mechanisms are summarized with fish as a representative, revealing their potential health risk. In addition, we proposed current challenges and future research needs, which provides scientific guidance for the use and management of plastic products in aquaculture industries.
Collapse
Affiliation(s)
- Lin Lin
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Pu Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Laboratory of Southern Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
7
|
Wang YX, Zhang W, Shen XF, Qiao JY, Pang YH. Magnetic covalent organic frameworks for rapid solid-phase extraction of phthalate esters and bisphenol A in beverage samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1135-1144. [PMID: 36779345 DOI: 10.1039/d2ay01989b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) and bisphenol A (BPA) are endocrine-disrupting chemicals (EDCs), which are widely used in the production of food plastic packaging and easily migrate to food. Continuous exposure to EDCs may cause harm to human health. Herein, magnetic covalent organic framework TFP-NDA/Fe3O4 was synthesized by magnetizing covalent organic framework TFP-NDA through a facile coprecipitation method, and used as an adsorbent for rapid solid-phase extraction of PAEs (diethyl phthalate (DEP), diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP)) and BPA. The extraction equilibrium can be reached within 12 min. By combination with a gas chromatography-flame ionization detector, the limits of detection were 0.7-2.3 μg L-1 and the linear ranges were 10-500 μg L-1 for diethyl phthalate (DEP) and 10-1000 μg L-1 for diisobutyl phthalate (DIBP), dibutyl phthalate (DBP) and BPA with R2 > 0.9916. In beverage samples (plastic bottled drinking water, juice and carbonated drink), the developed method was successfully applied to extract and quantify PAEs and BPA with recoveries ranging from 81.7% to 114.2%.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Wang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Jin-Yu Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Tumu K, Vorst K, Curtzwiler G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr Rev Food Sci Food Saf 2023; 22:1337-1359. [PMID: 36789797 DOI: 10.1111/1541-4337.13113] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
Phthalates and bisphenol chemicals have been widely used globally in packaging materials and consumer products for several decades. These highly functional chemicals have become a concern due to their toxicity (i.e., endocrine/hormone modulators) and ability to migrate from food contact materials (FCMs) into food matrices and the environment resulting in human and environmental health risks. FCMs, composed of postconsumer materials, are particularly high risk for containing these compounds. The evaluation of postconsumer recycled feedstocks in FCMs is compulsory and selection of an appropriate detection method to comply with applicable regulations is necessary to evaluate human and environmental safety. Numerous regulations have been proposed and passed globally for both compound classes that are recognized as priority pollutants by the United States Environmental Protection Agency and the European Union. Several brand owners and retailers have also released their own "restricted substance lists" due to the mounting consumer and regulatory concerns. This review article has two goals: (1) discuss the utilization, toxicology, human exposure routes, and occurrence levels of phthalates and bisphenols in FCMs and associated legislation in various countries and (2) discuss critical understanding and updates for detection/quantification techniques. Current techniques discussed include extraction and sample preparation methods (solid-phase microextraction [SPME], headspace SPME, Soxhlet procedure, ultrasound-assisted extraction), chromatographic techniques (gas, liquid, detectors), and environmental/blank considerations for quantification. This review complements a previous review of phthalates in foods from 2009 by discussing phthalate and bisphenol characteristics, analytical methods of determining concentrations in packaging materials, and their influence on the migration potential into food.
Collapse
Affiliation(s)
- Khairun Tumu
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Liotta L, Litrenta F, Lo Turco V, Potortì AG, Lopreiato V, Nava V, Bionda A, Di Bella G. Evaluation of Chemical Contaminants in Conventional and Unconventional Ragusana Provola Cheese. Foods 2022; 11:foods11233817. [PMID: 36496625 PMCID: PMC9740842 DOI: 10.3390/foods11233817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Organic contaminants belonging to various classes (plasticizers, bisphenols, pesticides, PCBs, and PAHs,) were analyzed in samples of provola cheese produced from Friesian dairy cows fed with a conventional diet (group CTR), and an unconventional diet (group BIO) enriched with olive cake (OC). The results show that for most determined contaminants, the differences between the two diets were very slight, indicating that the contamination does not depend on the olive cake integrated in the unconventional diet. The results also indicate that the minimal contamination could result from environmental contamination or the production process. It can be concluded that unconventional provola is as safe for the consumer as conventional provola.
Collapse
Affiliation(s)
- Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Federica Litrenta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
- Correspondence: ; Tel.: +39-0906766993
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Lopreiato
- Department of Veterinary Sciences, University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Vincenzo Nava
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Viale Palatucci, 13, 98168 Messina, Italy
| |
Collapse
|
10
|
Ovchinnikov DV, Falev DI, Solovyova PV, Ul'yanovskii NV, Kosyakov DS. Rapid determination of phthalates in paper products by supercritical fluid chromatography / tandem mass spectrometry. J Sep Sci 2022; 45:4116-4127. [PMID: 36099363 DOI: 10.1002/jssc.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Phthalic acid esters (PAEs) are widely used as components of industrial and consumer products including paper and cardboard packaging materials contacting with food or human skin. Being endocrine-disrupting chemicals, PAEs have a negative effect on human health and must be controlled in pulp and paper products. In the present study, supercritical fluid chromatography - tandem mass spectrometry in combination with pressurized liquid extraction was proposed for PAEs determination in such objects. Octadecyl stationary phase with non-endcapped silanol groups ensured rapid (4 min) separation of the ten priority PAEs in isocratic elution mode and allowed for effective elimination of interferences from the trace impurities of PAEs in the mobile phase. The attained LOQs are in the range of 0.7-10 μg/L in extracts and 0.02-0.3 μg/g in paper and cardboard samples. The developed method is distinguished by analysis rapidity, easy sample preparation procedure, high selectivity, low susceptibility to mobile phase contamination with analytes, low cost and environmental friendliness due to the use of carbon dioxide as a main component of the mobile phase. The method was successfully tested on real samples of toilet paper and food packaging paper and cardboard in which eight analytes were found at the levels of 0.03-43.5 μg/g. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Denis V Ovchinnikov
- Core Facility Center «Arktika», M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Danil I Falev
- Core Facility Center «Arktika», M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Polina V Solovyova
- Core Facility Center «Arktika», M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Center «Arktika», M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| | - Dmitry S Kosyakov
- Core Facility Center «Arktika», M.V. Lomonosov Northern (Arctic) Federal University, Arkhangelsk, Russia
| |
Collapse
|