1
|
Lardeux H, Bagci S, Gao M, Holkenjans W, Pell R, Guillarme D. Understanding the fundamentals of the on-off retention mechanism of oligonucleotides and their application to high throughput analysis. J Chromatogr A 2025; 1739:465523. [PMID: 39550879 DOI: 10.1016/j.chroma.2024.465523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Ion-pair reversed-phase liquid chromatography (IP-RPLC) is clearly recognized as the gold standard for analyzing therapeutic oligonucleotides (ONs). Recent studies have shown that ONs exhibit an on-off retention behavior in IP-RPLC, meaning that minor changes in acetonitrile (ACN) proportion can significantly impact retention. However, this behavior was initially demonstrated with only a single mobile phase condition. The aim of this study is to gain a deeper understanding of ON elution behavior by measuring the S values (slope of the retention model, log k vs.%ACN) across a broad range of mobile phase conditions. We systematically calculated the S values for both a 20-mer and 100-mer model ON under various conditions, including different IP reagents, IP concentrations, mobile phase pH, column temperatures, and two different buffering acids. We demonstrated that these mobile phase conditions impact the S values in the following order: IP hydrophobicity > IP concentration > column temperature > buffering acid > mobile phase pH. The main explanation for this trend is that mobile phase conditions that reduce the ion-pair retention mechanism (such as low IP hydrophobicity or concentration) will enhance the impact of% ACN on retention, leading to higher S values. In the second part of the study, this knowledge was used to develop ultra-fast separations for two therapeutic oligonucleotides: a 20-mer antisense oligonucleotide (ASO) without phosphorothioate (PS) modifications and a large single guide RNA (sgRNA) that includes certain PS modifications. The mobile phase conditions were optimized to maximize S values, while preventing the separation of diastereomers. It is important to notice that an S-value of at least 30 is required to benefit from the use of ultra-short columns. This approach allows the successful separation of the main species (ASO and sgRNA) and related impurities in less than one minute using a 5 mm length column.
Collapse
Affiliation(s)
- Honorine Lardeux
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Selin Bagci
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Mimi Gao
- Bayer AG, 42096 Wuppertal, Germany
| | | | | | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
2
|
Peng T, Li X, Tong X. Insights into the methods for separation and chromatographic determination of nucleotides/nucleosides in Cordyceps spp. J Chromatogr A 2024; 1734:465279. [PMID: 39197362 DOI: 10.1016/j.chroma.2024.465279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024]
Abstract
Cordyceps genus is entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries. Nucleosides (Ns), nucleotide(Nt), Nucleobases (Nb) and their analogues play a critically physiological role and have a great potential in drug development, such as pentostatin and cordycepin (COR). Due to their significance bioactivity, several Nt/Ns were used as markers for quality evaluation for medicinal Cordyceps, including adenosine, inosine, guanosine, uridine and COR. Among them, COR is the most considerable adenosine analogue, exhibiting significant therapeutic potential and has many intracellular targets. Nt/Ns contains polar compounds and the phosphate groups of Nt deprotonate and carry negative charges with a broad range of pH values. Recent years, various advanced methods of extraction and separation, and nanomaterials have been developed to extract, isolate and determine these molecules, such as ultrasound-assisted extraction (UAE), Supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) for the extraction, the solid phase extraction (SPE) methods (microextraction SPE (SPME), magnetic SPE (MSPE), and unique SPE materials based on the boronate affinity for the separation, and chromatography methods employing ultraviolet (UV), fluorescence, MS detection and electrospray ionization (ESI), along with matrix-assisted laser desorption/ ionization (MALDI) for the determination. COR derived from adenosine and its structure is very similar to that of 2'-deoxyadenosine (2'-dA) and adenosine, resulting in an incorrect identification, which will influence its therapeutic effects. Therefore, this review primarily focused on the characteristics of Nt/Ns, the advanced methods, strategies, nanomaterials for extracting and determining Nt/Ns (COR in particular) in Cordyceps spp, as well as the methods for distinguishing COR from its structure analogs.
Collapse
Affiliation(s)
- Ting Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xiaoxing Li
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610000, China.
| |
Collapse
|
3
|
Li F, Knappe C, Carstensen N, Favorat E, Gao M, Holkenjans W, Hetzel T, Pell R, Lämmerhofer M. Two-dimensional sequential selective comprehensive chiral×reversed-phase liquid chromatography of synthetic phosphorothioate oligonucleotide diastereomers. J Chromatogr A 2024; 1730:465076. [PMID: 38879975 DOI: 10.1016/j.chroma.2024.465076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
In recent years, many nucleic acid-based pharmaceuticals have been approved and entered the market, and even a larger number are in late stage clinical trials. Conventional oligonucleotides are facing issues in vivo like fast renal clearance and nuclease degradation. Therefore, to increase their stability, phosphorothioation is a frequent modification of therapeutic oligonucleotides (ONs) which also leads to improved binding affinity facilitating cell internalization and intracellular distribution. At the same time, by replacing a phosphodiester linkage with a phosphorothioate group, a phosphorous stereogenic center is generated which causes the formation of Rp- and Sp-diastereomers. It increases the structural diversity. For example, with 15 of those phosphorothioate (PS) linkages, 32,768 different diastereomers are expected. Since the phosphorothioate is introduced non-stereoselectively, the molecular complexity of the resultant phosphorothioate ON products is tremendously increased impeding the chromatographic separation in the course of quality control. Since distinct phosphorothioate diastereomers have different bioactivities and pharmacological properties, there is increasing interest in implications of stereoisomerism of phosphorothiate oligonucleotides. From a quality and regulatory viewpoint, batch-to-batch reproducibility of the diastereomer profile may be of significant concern. In order to address this issue, this study investigates the stereoselectivity of LC methods for two phosphorothioate oligonucleotide (PSO) compounds differing in their molecular size and numbers of PS linkages. Diastereoselectivity of ion-pairing reversed-phase liquid chromatography (IP-RPLC), RPLC without ion-pairing agents and LC with chiral polysaccharide-based column were evaluated for model PSOs and an active pharmaceutical ingredient (API) of PSO with trivalent N-acetylgalactosamine (GalNAc) conjugate. Due to the structural complexity of PSOs, the separation power for the diastereomer mixture was increased by using sequential selective comprehensive two-dimensional chromatography with an amylose tris(α-methylbenzylcarbamate)-immobilized chiral stationary phase (CSP) in the first dimension and ion-pair RPLC with ethylammonium acetate in the second dimension. Improved diastereomer selectivity was obtained and a larger number of peaks could be separated.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Niklas Carstensen
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Enrico Favorat
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mimi Gao
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Wiebke Holkenjans
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Terence Hetzel
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Reinhard Pell
- Bayer AG, Pharmaceutical Division, Friedrich-Ebert-Strasse 217-333 42117 Wuppertal, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
4
|
Vosáhlová Z, Gilar M, Kalíková K. Impact of ion-pairing systems choice on diastereomeric selectivity of phosphorothioated oligonucleotides in reversed-phase liquid chromatography. J Chromatogr A 2024; 1730:465074. [PMID: 38870581 DOI: 10.1016/j.chroma.2024.465074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Ion-pairing reversed-phase liquid chromatography was utilized for the analysis of native and phosphorothioated oligonucleotides differing in the length (2-6mers and 21mer) and the number and position of phosphorothioate modifications. We investigated the influence of counterion (acetate vs. hexafluoroisopropanol) on the adsorption of eleven alkylamines on the stationary phases. A stronger adsorption of charged alkylamines on octadecyl- and phenyl-based stationary phases led to greater retention of oligonucleotides, and the adsorption of alkylamines was promoted with greater concentration of hexafluoroisopropanol in the mobile phase. Selected amines (triethylamine, dipropylamine, hexylamine) were used to study the resolution of n and n-x mers (main peak and its impurities shortened at 5´end), and diastereomeric separation of phosphorothioated oligonucleotides. The results confirmed a crucial role of alkylamine and counterion choice on the diastereomeric separation. The increasing hydrophobicity of alkylamine led to diminished diastereomeric selectivity which produced narrower phosphorothioated oligonucleotides peaks and led to improved n/n-x separation. Using hexafluoroisopropanol instead of acetate as counterion further enhances this effect (except for 100 mM concentration of hexafluoroisopropanol in combination with highly hydrophobic hexylamine). The elevated column temperature led to suppression of the diastereomeric resolution and improved resolution of n and n-x mers oligonucleotides. Baseline separation of oligonucleotides with different number of phosphorothioate linkages was achieved; this may be useful for therapeutic oligonucleotide analysis.
Collapse
Affiliation(s)
- Zuzana Vosáhlová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic.
| |
Collapse
|
5
|
Lardeux H, Stavenhagen K, Paris C, Dueholm R, Kurek C, De Maria L, Gnerlich F, Leek T, Czechtizky W, Guillarme D, Jora M. Unravelling the Link between Oligonucleotide Structure and Diastereomer Separation in Hydrophilic Interaction Chromatography. Anal Chem 2024; 96:9994-10002. [PMID: 38855895 PMCID: PMC11190878 DOI: 10.1021/acs.analchem.4c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.
Collapse
Affiliation(s)
- Honorine Lardeux
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Kathrin Stavenhagen
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Clément Paris
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Rikke Dueholm
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Camille Kurek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Leonardo De Maria
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Felix Gnerlich
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Tomas Leek
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Werngard Czechtizky
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of
Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, Geneva 4 1211, Switzerland
| | - Manasses Jora
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| |
Collapse
|
6
|
Coombes PE, Dickman MJ. Optimisation of denaturing ion pair reversed phase HPLC for the purification of ssDNA in SELEX. J Chromatogr A 2024; 1719:464699. [PMID: 38382212 DOI: 10.1016/j.chroma.2024.464699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Aptamers have shown great promise as oligonucleotide-based affinity ligands for various medicinal and industrial applications. A critical step in the production of DNA aptamers via selective enhancement of ligands by exponential enrichment (SELEX) is the generation of ssDNA from dsDNA. There are a number of caveats associated with current methods for ssDNA generation, which can lower success rates of SELEX experiments. They often result in low yields thereby decreasing diversity or fail to eliminate parasitic PCR by-products leading to accumulation of by-products from round to round. Both contribute to the failure of SELEX protocols and therefore potentially limit the impact of aptamers compared to their peptide-based antibody counterparts. We have developed a novel method using ion pair reversed phase HPLC (IP RP HPLC) employed under denaturing conditions for the ssDNA re-generation stage of SELEX following PCR. We have utilised a range of 5' chemical modifications on PCR primers to amplify PCR fragments prior to separation and purification of the DNA strands using denaturing IP RP HPLC. We have optimised mobile phases to enable complete denaturation of the dsDNA at moderate temperatures that circumvents the requirement of high temperatures and results in separation of the ssDNA based on differences in their hydrophobicity. Validation of the ssDNA isolation and purity assessment was performed by interfacing the IP RP HPLC with mass spectrometry and fluorescence-based detection. The results show that using a 5' Texas Red modification on the reverse primer in the PCR stage enabled purification of the ssDNA from its complimentary strand via IP RP HPLC under denaturing conditions. Additionally, we have confirmed the purity of the ssDNA generated as well as the complete denaturation of the PCR product via the use of mass-spectrometry and fluorescence analysis therefore proving the selective elimination of PCR by-products and the unwanted complementary strand. Following lyophilisation, ssDNA yields of up to 80% were obtained. In comparison the streptavidin biotin affinity chromatography also generates pure ssDNA with a yield of 55%. The application of this method to rapidly generate and purify ssDNA of the correct size, offers the opportunity to improve the development of new aptamers via SELEX.
Collapse
Affiliation(s)
- Paul E Coombes
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Mark J Dickman
- Department of Chemical & Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
7
|
Stoll D, Sylvester M, Meston D, Sorensen M, Maloney TD. Development of multiple heartcutting two-dimensional liquid chromatography with ion-pairing reversed-phase separations in both dimensions for analysis of impurities in therapeutic oligonucleotides. J Chromatogr A 2024; 1714:464574. [PMID: 38103311 DOI: 10.1016/j.chroma.2023.464574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Oligonucleotides constitute an emerging and highly complex bioanalytical challenge and it is becoming increasingly clear that 1D methodologies are unable to fully resolve all possible impurities present in these samples. 2D-LC therefore constitutes a perfect solution wherein critical pairs can be sampled from a steep gradient 1D and separated in a shallower 2D gradient. Herein, we provide a facile 2D-LC method development approach to quickly generate high selectivity gradients utilizing ion pairing reverse phase (IPRP-IPRP). In particular we demonstrate how to iteratively generate a 12 % gradient from two training runs and then to utilize that data to predict retentions of analytes with a 2 % gradient with retention prediction errors as low as 3 and 11 %, respectively. This iterative method development workflow was applied to impurity profiling down to 1:1000 for the full-length product and phosphorothioate modified impurities. Additionally, we demonstrated the elucidation of critical pairs in complex crude pharmaceutical oligonucleotide samples by applying tailored high selectivity gradients in the second dimension. It was found that the iterative retention modeling approach allows fast and facile 2D-LC method development for complex oligonucleotide separations.
Collapse
Affiliation(s)
- Dwight Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA.
| | - Maria Sylvester
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - Daniel Meston
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - Matt Sorensen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Todd D Maloney
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
8
|
Vosáhlová Z, Kalíková K, Gilar M, Szymarek J, Mazurkiewicz-Bełdzińska M, Studzińska S. Hydrophilic interaction liquid chromatography with mass spectrometry for the separation and identification of antisense oligonucleotides impurities and nusinersen metabolites. J Chromatogr A 2024; 1713:464535. [PMID: 38039623 DOI: 10.1016/j.chroma.2023.464535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
With the development of therapeutic oligonucleotides for antisense and gene therapies, the demand for analytical methods also increases. For the analysis of complex samples, for example plasma samples, where the use of mass detection is essential, hydrophilic interaction liquid chromatography is a suitable choice. The aim of the present work was to develop a method for separation and identification of the oligonucleotide impurities and metabolites by hydrophilic interaction liquid chromatography. First of all, the effects of different chromatographic conditions (e.g. pH of the aqueous part of the mobile phase, buffer concentration, column temperature) on the retention and separation of phosphorothioate oligonucleotides standards on the amide stationary phase were investigated. A set of model oligonucleotides containing a fully modified 21mer and its typical impurities (shortmers and oligonucleotides with different number of thiophosphate modifications) was used. The results showed that the concentration of the salt in the mobile phase as well as its pH, are the most influential parameters with regard to peak shape and separation. The knowledge gained was applied to the analysis of an unpurified 18mer oligonucleotides, analogues of the drug nusinersen used for the treatment of spinal muscular atrophy. The successful separation and identification of twenty-six and twenty-eight impurities was performed with the developed HILIC method. The method was applied to analysis of nusinersen metabolites of serum samples of patients treated with Spinraza.
Collapse
Affiliation(s)
- Zuzana Vosáhlová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic.
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Jakub Szymarek
- Department of Developmental Neurology, Medical University of Gdansk, 7 Dębinki Str., PL-80-952, Gdańsk, Poland
| | | | - Sylwia Studzińska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic; Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 4 Wilenska St., 87-100 Toruń, Poland.
| |
Collapse
|
9
|
Gilar M, Koshel BM, Birdsall RE. Ion-pair reversed-phase and hydrophilic interaction chromatography methods for analysis of phosphorothioate oligonucleotides. J Chromatogr A 2023; 1712:464475. [PMID: 39491274 DOI: 10.1016/j.chroma.2023.464475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
In this study we investigated the separation of a 25 mer fully phosphorothioated oligonucleotide from its truncated n-1 (24 mer) species and selected phosphodiester 25 mer impurities using ion-pair reversed-phase chromatography. The hydrophobicity of ion-pairing agents (alkylamines) impacts n-1 separation selectivity. 25 mer impurities with single and double phosphodiester bonds eluted prior to the parent phosphorothioate oligonucleotide in the same region as 24 mer impurities, which complicated the chromatographic separation. An alternative technique, hydrophilic interaction chromatography, provided a different retention pattern; 24 mer n-1 impurities eluted prior to the 25 mer, while the phosphodiester impurities eluted after the full-length oligonucleotide. This enabled an improved chromatographic separation of the truncated and phosphodiester impurities from the phosphorothioate oligonucleotide of interest.
Collapse
Affiliation(s)
- Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA.
| | | | | |
Collapse
|
10
|
Goyon A, Blevins MS, Napolitano JG, Nguyen D, Goel M, Scott B, Wang J, Koenig SG, Chen T, Zhang K. Characterization of antisense oligonucleotide and guide ribonucleic acid diastereomers by hydrophilic interaction liquid chromatography coupled to mass spectrometry. J Chromatogr A 2023; 1708:464327. [PMID: 37660562 DOI: 10.1016/j.chroma.2023.464327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Oligonucleotides have become an essential modality for a variety of therapeutic approaches, including cell and gene therapies. Rapid progress in the field has attracted significant research in designing novel oligonucleotide chemistries and structures. Beyond their polar nature, the length of large RNAs and presence of numerous diastereomers for phosphorothioate (PS)-modified RNAs pose heightened challenges for their characterization. In this study, the stereochemistry of a fully-modified antisense oligonucleotide (ASO) and partially-modified guide RNAs (gRNAs) was investigated using HILIC and orthogonal techniques. The profiles of three lots of a fully-modified ASO with PS linkages were compared using ion-pairing RPLC (IPRP) and HILIC. Interestingly, three isomer peaks were partially resolved by HILIC for two lots while only one peak was observed on the IPRP profile. Model oligonucleotides having the same sequence of the five nucleotides incorporated to the 3'-end of the gRNA but differing in their number and position of PS linkages were investigated by HILIC, IPRP, ion mobility spectrometry-mass spectrometry (IM-MS) and nuclear magnetic resonance (NMR). An strategy was ultimately designed to aid in the characterization of gRNA stereochemistry. Ribonuclease (RNase) T1 digestion enabled the characterization of gRNA diastereomers by reducing their number from 32 at the gRNA intact level to 4 or 8 at the fragment level. To our knowledge, this is the first time that HILIC has successfully been utilized for the profiling of diastereomers for various oligonucleotide formats and chemical modifications.
Collapse
Affiliation(s)
- Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Molly S Blevins
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - José G Napolitano
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daniel Nguyen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meenakshi Goel
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brandon Scott
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jenny Wang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly Zhang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
11
|
Sorensen MJ, Paulines MJ, Maloney TD. Evaluating orthogonality between ion-pair reversed phase, anion exchange, and hydrophilic interaction liquid chromatography for the separation of synthetic oligonucleotides. J Chromatogr A 2023; 1705:464184. [PMID: 37419013 DOI: 10.1016/j.chroma.2023.464184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
The orthogonality of separation between ion-pair reversed phase (IP-RP), anion exchange (AEX), and hydrophilic interaction liquid chromatography (HILIC) was evaluated for oligonucleotides. A polythymidine standard ladder was first used to evaluate the three methods and showed zero orthogonality, where retention and selectivity were based on oligonucleotide charge/size under all three conditions. Next, a model 23-mer synthetic oligonucleotide containing 4 phosphorothioate bonds with 2' fluoro and 2'-O-methyl ribose modifications typical of small interfering RNA was used for evaluating orthogonality. The resolution and orthogonality were evaluated between the three modes of chromatography in terms of selectivity differences for nine common impurities, including truncations (n-1, n-2), addition (n + 1), oxidation, and de-fluorination. We first evaluated different ion-pairing reagents that provided the best separation of the key impurities while suppressing diastereomer separation due to phosphorothioate linkages. Although different ion-pairing reagents affected resolution, very little orthogonality was observed. We then compared the retention times between IP-RP, HILIC, and AEX for each impurity of the model oligonucleotide and observed various selectivity changes. The results suggest that coupling HILIC with either AEX or IP-RP provide the highest degree of orthogonality due to the differences in retention for hydrophilic nucleobases and modifications under HILIC conditions. IP-RP provided the highest overall resolution for the impurity mixture, whereas more co-elution was observed with HILIC and AEX. The unique selectivity patterns offered by HILIC provides an interesting alternative to IP-RP or AEX, in addition to the potential for coupling with multidimensional separations. Future work should explore orthogonality for oligonucleotides with subtle sequence differences such as nucleobase modifications and base flip isomers, longer strands such as guide RNA and messenger RNA, and other biotherapeutic modalities such as peptides, antibodies, and antibody-drug-conjugates.
Collapse
Affiliation(s)
- Matthew J Sorensen
- Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Mellie June Paulines
- Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Todd D Maloney
- Synthetic Molecule Design and Development, Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN 46285, United States.
| |
Collapse
|
12
|
Li F, Chen S, Studzińska S, Lämmerhofer M. Polybutylene terephthalate-based stationary phase for ion-pair-free reversed-phase liquid chromatography of small interfering RNA. Part 2: Use for selective comprehensive two-dimensional liquid chromatography. J Chromatogr A 2023; 1701:464069. [PMID: 37216850 DOI: 10.1016/j.chroma.2023.464069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
With the increasing numbers of nucleic acid-based pharmaceuticals like antisense oligonucleotides (ASO), small interfering ribonucleic acid (siRNA) entering the market, research facilities, pharmaceutical industries and also regulatory authorities have been looking for efficient analytical methods for these synthetic oligonucleotides (ON). Besides of conventional one-dimensional (1D) reversed-phase liquid chromatography with or without ion-pairing (IP-RP-LC, RP-LC), hydrophilic liquid chromatography (HILIC) and mixed-mode chromatography (MMC), two-dimensional (2D) approaches combining two orthogonal chromatographic techniques also become more relevant due to the high structural complexity of oligonucleotides. Recently, we tested a polybutylene terephthalate(PBT)-based stationary phase under ion-pairing free RP mode for the liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) analysis of siRNA (Patisiran). In this study, retention profile and chromatographic orthogonality, respectively, were compared to other LC-modes like HILIC, IP-RPLC, another ion-pair free cholesterol-bonded RPLC and MMC considering their normalized retention times. Finally, because of higher orthogonality, the ion-pairing free PBT-bonded RPLC as first dimension (1D) was hyphenated with HILIC in the second dimension (2D) in a selective comprehensive 2D-LC setup leading to an enhanced resolution for peak purity evaluation of the main ON entities.
Collapse
Affiliation(s)
- Feiyang Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Shenkai Chen
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Sylwia Studzińska
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Str., PL-87-100 Toruń, Poland
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Comprehensive evaluation of zwitterionic hydrophilic liquid chromatography stationary phases for oligonucleotide characterization. J Chromatogr A 2023; 1690:463785. [PMID: 36641941 DOI: 10.1016/j.chroma.2023.463785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/09/2023]
Abstract
Hydrophilic interaction chromatography (HILIC) has been proposed as a valuable alternative to ion-pairing reversed-phase chromatography (IP-RPLC) for oligonucleotide (ON) analysis. In this context, the potential of seven zwitterionic HILIC columns has been evaluated against amide- and poly-hydroxy fructan-functionalized HILIC columns and a C18 column operated under IP-RPLC mode. Based on the retention characteristics of key small molecule pairs, each zwitterionic HILIC column showed a unique radar-shaped profile, suggesting different selectivities for distinct structural differences. Unmodified DNA and RNA samples were then evaluated, and the columns classified based on their retentivity. Two zwitterionic columns were particularly promising in terms of overall resolution, especially for the largest ONs (> 40-mer). Finally, separations between a chemically modified drug-like ON and its closely related impurities were performed. Although the ZIC-cHILIC column showed similar selectivity values as compared to the reference IP-RPLC technique, all columns demonstrated a general decrease in selectivity due to the minor structural differences present in the highly complex samples. This work highlights the utility of zwitterionic HILIC mode for ON analysis and it reveals the importance of understanding columns characteristics - in terms of retention and selectivity - when selecting a stationary phase for specific ON applications.
Collapse
|
14
|
Kadlecová Z, Kalíková K, Tesařová E, Gilar M. Phosphorothioate oligonucleotides separation in ion-pairing reversed-phase liquid chromatography: effect of temperature. J Chromatogr A 2022; 1681:463473. [PMID: 36113338 DOI: 10.1016/j.chroma.2022.463473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
Abstract
Analysis of diastereomers of phosphorothioate oligonucleotides in ion-pairing reversed-phase liquid chromatography is affected not only by the character and concentration of ion-pairing system, but also by the separation temperature. In this work, eight ion-pairing systems at two concentrations buffered with acetic acid were used with octadecyl column to investigate the effects of temperature (in the range from 20 °C to 90 °C) on retention, diastereomeric separation, resolution of mers of different length and resolution of oligonucleotides with different number of phosphorothioate linkages. It was observed that elevated temperature suppresses the diastereomeric separation and oligonucleotide peaks become narrower. This improves the resolution of n and n-1 mers at elevated temperature. Plots of ln k (k = retention factor) versus reciprocal absolute temperature show that for 100 mM ion-pairing systems the increase in temperature does not lead to simple decrease in oligonucleotides retention as generally observed in reversed-phase liquid chromatography. The aim of this work is to improve chromatographic method for analysis of phosphorothioate oligonucleotides.
Collapse
Affiliation(s)
- Zuzana Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic.
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800, Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, United States of America.
| |
Collapse
|