1
|
Das RS, Kumar A, Gaharwar SS, Senapati SK, Mandavgane SA. DFT simulated Quercetin imprinted polymer: Selective recovery of Quercetin from onion solid waste. J Chromatogr A 2024; 1730:465151. [PMID: 39002509 DOI: 10.1016/j.chroma.2024.465151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Onion peels (OP) are byproduct of food processing industries that poses economic and environmental challenges. However, being rich source of bioactive compounds like Quercetin (Qt), a polyphenolic antioxidant with potential health benefits, harnessing value from such waste can imbibe sustainable practices and protect environment. With this view, the present study targets selective recovery of Qt from OP waste using rationally designed molecularly imprinted polymer (MIP). Density Functional Theory (DFT) was used for the theoretical selection of the best conformer of Qt (template), methacrylic acid (MAA) as functional monomer, ratio of Qt-MAA for getting stable pre-polymerization complex, and to avoid hit and trial experiments. The theoretical results were validated experimentally by synthesizing MIP/ control polymer (NIP) using MAA as functional monomer, EGDMA as a cross-linker and AIBN as initiator. Synthesized MIP/NIP were characterized using various characterization techniques to confirm successful imprinting. Prepared MIP and NIP could effectively rebind the Qt molecule with binding capacity of 46.67 and 20.89 mg g-1 respectively. Furthermore, synthesized MIP could selectively recover 62.81 % of Qt from 1 g of dry onion peel powder. This study can be effectually used for sustainable recovery of Qt in large scale for various foods, cosmetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Ranjita S Das
- Department of Chemistry, VNIT, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, VNIT, Nagpur 440010, India.
| | | | | | | |
Collapse
|
2
|
Tan D, Wang Y, Fan H, Jin J, Sun X, Dhanjai, Wang D. Magnetic surface-imprinted polymer microspheres coupled with HPLC-MS/MS for sensitive detection of amphetamine-type drugs in water. J Chromatogr A 2024; 1730:465097. [PMID: 38889583 DOI: 10.1016/j.chroma.2024.465097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Magnetic surface imprinted polymer microspheres (Fe3O4@MIPs) were successfully synthesized via Pickering emulsion polymerization, utilizing N-Methylphenethylamine as a surrogate template for amphetamine-type drugs. Fe3O4@MIPs not only possessed excellent dispersibility and enough magnetic properties in aqueous solutions, but also displayed good selectivity towards six amphetamines, with an imprinting factor ranging from 1.8 to 2.6. The adsorption kinetics closely aligned with the pseudo-second-order model, and the adsorption efficiency exceeds 80 % for each amphetamine at equilibrium. Fe3O4@MIPs were then employed as the efficient adsorbents for the extraction of amphetamine drugs. Extraction parameters, including sample pH, the mass of adsorbent, and the type and volume of eluting solvent, were carefully optimized. In combination with the high performance liquid chromatography tandem triple quadrupole mass spectrometry (HPLC-MS/MS), a selective magnetic solid-phase extraction (MISPE) method utilizing Fe3O4@MIPs was developed for the detection of six amphetamines in water samples. The limits of detection and limits of quantitation were determined to be 5.2∼23 ng L-1 and 17∼77 ng L-1, respectively. Recoveries for the six target drugs from lake water and sewage samples fell within the range of 87.2∼110 %. Additionally, the MISPE-HPLC-MS/MS method exhibited excellent repeatability, with a precision below 8.5 % at two spiking levels. The prepared Fe3O4@MIPs possessed the advantages of high selectivity, straightforward preparation, facile separation and good reusability, and was highly suitable for the efficient extraction of amphetamine-type substances in complex environmental water.
Collapse
Affiliation(s)
- Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, China.
| | - Yue Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, China
| | - Haocheng Fan
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, China
| | - Jing Jin
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui, 32300, China
| | - Dhanjai
- Department of Chemistry, University of Allahabad, India
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, China
| |
Collapse
|
3
|
Cao Z, Zhou J. Research progress on pretreatment technology for the analysis of amphetamine biological samples. J Sep Sci 2024; 47:e2400337. [PMID: 39189599 DOI: 10.1002/jssc.202400337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Sample pretreatment technology is crucial for drug analysis and detection, because the effect of sample pretreatment directly determinates the final analysis results. In recent years, with the continuous innovation of microextraction and other technologies like material preparation technologies and assistant technologies for extraction, the sample pretreatment techniques in the process of drug analysis have become more and more mature and diverse. This article takes amphetamine (AM) or methamphetamine as an example to review the recent development of pretreatment methods for AM-containing biological samples from the perspectives of extraction techniques, extraction media and auxiliary technologies. Extraction techniques are summarized with the categories of contact microextraction, separate microextraction and membrane-based microextraction for better guidance of application according to their features. Prevailing and innovative extraction media including carbon-based material, silicon-based material, metal organic framework, molecularly selective materials, supramolecular solvents and ionic liquids are reviewed. Auxiliary technologies like magnetic field, electric field, microwave, ultrasound and so on which can enhance extraction efficiency and accuracy are also reviewed. In the last, prospects of the future development of pretreatment technology for the analysis of AM biological samples are provided.
Collapse
Affiliation(s)
- Zebin Cao
- College of Biological and Chemical Engineering, Zhe Jiang University of Science and Technology, Hangzhou, China
| | - Jianping Zhou
- Key Laboratory of Agro-products Chemistry and Bioprocessing Technology of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
4
|
Yuan S, Xiang Y, Chen L, Xiang P, Li Y. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS. J Chromatogr A 2024; 1718:464703. [PMID: 38340459 DOI: 10.1016/j.chroma.2024.464703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The quantification of illicit drugs in wastewater has become a valuable tool for monitoring illicit drug abuse. The commonly utilized methods for detecting drugs in wastewater require a substantial sample volume, extended pretreatment durations, and intricate procedures. This study first employed polydopamine-coated magnetic nanocomposites as adsorbents for magnetic solid-phase extraction, combined with UPLC-MS/MS, to simultaneously determine the concentrations of eleven common illicit drugs in wastewater. The synthesis process for Fe3O4@PDA is straightforward and high-yield. Benefiting from the strong magnetic response, good dispersibility, and abundant binding sites of the prepared nanocomposites, the extraction of illicit drugs from wastewater could be achieved in just 15 min. The method exhibited satisfactory limits of quantitation (ranging from 5 to 10 ng/L), commendable accuracy (ranging from 90.59 % to 106.80 %), good precision (with RSDs below 10 %), and less sample consumption (only 1 mL). The efficacy of this method was successfully validated through its application to actual wastewater samples collected from ten wastewater treatment plants. The results indicated that morphine, codeine, methamphetamine, and ketamine were the predominant illicit drugs present in the samples. The method developed is able to meet the needs of common illicit drug monitoring and high-throughput analysis requirements.
Collapse
Affiliation(s)
- Shuai Yuan
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ping Xiang
- Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai 200063, China.
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
5
|
Wu Y, Xiong J, Wei S, Tian L, Shen X, Huang C. Molecularly imprinted polymers by reflux precipitation polymerization for selective solid-phase extraction of quinolone antibiotics from urine. J Chromatogr A 2024; 1714:464550. [PMID: 38043167 DOI: 10.1016/j.chroma.2023.464550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) possess high specific cavities towards the template molecules, thus solid-phase extraction (SPE) based on MIPs using the target as the template has been widely used for selective extraction. However, the performance of SPE depends strongly on the shape and the distribution of the MIP sorbents, and rapid synthesis of MIPs with uniform particles remains a challenge. Our previous studies have shown that reflux precipitation polymerization (RPP) was a simple and rapid method for the synthesis of uniform MIPs. However, synthesis of MIPs by RPP for a group of targets using only one of the targets as the template has rarely been reported. In this work, MIPs with specific recognition capability for a group of quinolone antibiotics were synthesized for the first time via RPP with only ofloxacin as the template. The synthesized MIPs displayed good adsorption performance and selectivity (IF > 3.5) towards five quinolones, and subsequently were used as SPE adsorbents. Based on this MIPs-SPE, after systematic optimization of the SPE operation parameters during loading, washing and elution, an efficient and sensitive enough SPE method for separation and enrichment of the five quinolones in urine was developed and evaluated in combination with LC-MS/MS. The results showed that MIPs-SPE-LC-MS/MS has a good correlation (R2 ≥ 0.9961) in the linear range of 1-500 μg L-1. The limit of detection (LOD) and limit of quantification (LOQ) for the five quinolones were 0.10-0.14 μg L-1 and 0.32-0.48 μg L-1, respectively. In addition, the proposed method demonstrated good reproducibility (≤ 13 %) and high accuracy (92 %-113 %). We are confident that this method holds significant promise for the analysis of quinolones within the contexts of forensic medicine, epidemiology, and environmental chemistry.
Collapse
Affiliation(s)
- Yuzhen Wu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Shujun Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Linxin Tian
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China.
| |
Collapse
|