1
|
Gomes CN, Campioni F, Vilela FP, Duque SS, Falcão JP. Campylobacter coli strains from Brazil can invade phagocytic and epithelial cells and induce IL-8 secretion. Braz J Microbiol 2021; 52:859-867. [PMID: 33590448 PMCID: PMC8105435 DOI: 10.1007/s42770-021-00450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/06/2021] [Indexed: 11/27/2022] Open
Abstract
Campylobacter spp. have been a predominant cause of bacterial foodborne gastroenteritis worldwide, causing substantial costs to public healthcare systems. This study aimed to assess the invasion and pro-inflammatory cytokine production capacity of Campylobacter coli strains isolated in Brazil. A total of 50 C. coli isolated from different sources in Brazil were analyzed for their capacity of invasion in Caco-2 and U-937 cell lines. The production of pro-inflammatory cytokines was quantitatively measured in response to C. coli. All the strains studied showed invasion percentage ≥ 40% in polarized Caco-2 cells. In U-937 cells assay, 35 of 50 C. coli strains studied showed invasion percentage ≥ 50%. A significant increase in IL-8 production by infected U-937 cells was observed for 17.5% of the C. coli isolates. The high percentages of invasion in Caco-2 and U-937 cells observed for all studied strains, plus the increased production of IL-8 by U-937 cells against some strains, highlighted the pathogenic potential of the C. coli studied and bring extremely relevant data since it has never been reported for strains isolated in Brazil and there are a few data for C. coli in the literature.
Collapse
Affiliation(s)
- Carolina N Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Felipe P Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Sheila S Duque
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto Oswaldo Cruz-IOC, Pavilhão Rocha Lima, sala 516, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
2
|
Lobo de Sá FD, Schulzke JD, Bücker R. Diarrheal Mechanisms and the Role of Intestinal Barrier Dysfunction in Campylobacter Infections. Curr Top Microbiol Immunol 2021; 431:203-231. [PMID: 33620653 DOI: 10.1007/978-3-030-65481-8_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Campylobacter enteritis is the most common cause of foodborne bacterial diarrhea in humans. Although various studies have been performed to clarify the pathomechanism in Campylobacter infection, the mechanism itself and bacterial virulence factors are yet not completely understood. The purpose of this chapter is to (i) give an overview on Campylobacter-induced diarrheal mechanisms, (ii) illustrate underlying barrier defects, (iii) explain the role of the mucosal immune response and (iv) weigh preventive and therapeutic approaches. Our present knowledge of pathogenetic and diarrheal mechanisms of Campylobacter jejuni is explained in the first part of this chapter. In the second part, the molecular basis for the Campylobacter-induced barrier dysfunction is compared with that of other species in the Campylobacter genus. The bacteria are capable of overcoming the intestinal epithelial barrier. The invasion into the intestinal mucosa is the initial step of the infection, followed by a second step, the epithelial barrier impairment. The extent of the impairment depends on various factors, including tight junction dysregulation and epithelial apoptosis. The disturbed intestinal epithelium leads to a loss of water and solutes, the leak flux type of diarrhea, and facilitates the uptake of harmful antigens, the leaky gut phenomenon. The barrier dysfunction is accompanied by increased pro-inflammatory cytokine secretion, which is partially responsible for the dysfunction. Moreover, cytokines also mediate ion channel dysregulation (e.g., epithelial sodium channel, ENaC), leading to another diarrheal mechanism, which is sodium malabsorption. Future perspectives of Campylobacter research are the clarification of molecular pathomechanisms and the characterization of therapeutic and preventive compounds to combat and prevent Campylobacter infections.
Collapse
Affiliation(s)
- Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
3
|
Bücker R, Krug SM, Fromm A, Nielsen HL, Fromm M, Nielsen H, Schulzke JD. Campylobacter fetus impairs barrier function in HT-29/B6 cells through focal tight junction alterations and leaks. Ann N Y Acad Sci 2017; 1405:189-201. [PMID: 28662272 DOI: 10.1111/nyas.13406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Infections by Campylobacter species are the most common foodborne zoonotic disease worldwide. Campylobacter jejuni and C. coli are isolated most frequently from human stool samples, but severe infections by C. fetus (Cf), which can cause gastroenteritis, septicemia, and abortion, are also found. This study aims at the characterization of pathological changes in Cf infection using an intestinal epithelial cell model. The Cf-induced epithelial barrier defects appeared earlier than those of avian Campylobacter species like C. jejuni/C. coli. Two-path impedance spectroscopy (2PI) distinguished transcellular and paracellular resistance contributions to the overall epithelial barrier impairment. Both transcellular and paracellular resistance of Cf-infected HT-29/B6 monolayers were reduced. The latter was attributed to activation of active anion secretion. Western blot analysis showed no decrease in tight junction (TJ) protein expression (claudin-1, -2, -3, and -4) but showed redistribution of claudin-1 off the TJ domain. In addition, Cf induced epithelial cell death, cell detachment, and lesions (focal leaks), as the result of which macromolecule flux (10-kDa dextran) was increased in Cf-invaded cell monolayers. In conclusion, barrier dysfunction from Cf infection was due to TJ protein redistribution, cell death induction, and leak formation, resulting in bacterial translocation, ion leak flux, and antigen uptake (leaky gut).
Collapse
Affiliation(s)
- Roland Bücker
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne M Krug
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Michael Fromm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg, Denmark
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Maunder CL, Reynolds ZF, Peacock L, Hall EJ, Day MJ, Cogan TA. Campylobacter Species and Neutrophilic Inflammatory Bowel Disease in Cats. J Vet Intern Med 2016; 30:996-1001. [PMID: 27362482 PMCID: PMC5108413 DOI: 10.1111/jvim.14374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/19/2016] [Accepted: 06/11/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a common cause of signs of gastrointestinal disease in cats. A subset of cats with IBD has neutrophilic inflammation of the intestinal mucosa. HYPOTHESIS Neutrophilic enteritis in cats is associated with mucosal invasion by microorganisms, and specifically Campylobacter spp. ANIMALS Seven cats with neutrophilic IBD and 8 cats with lymphoplasmacytic IBD. METHODS Retrospective review of duodenal biopsy specimens that were collected endoscopically for histologic examination. Cases were identified and selected by searching the histopathology archive for cats with a diagnosis of neutrophilic and lymphoplasmacytic IBD. Fluorescence in situ hybridization (FISH) targeting either all eubacteria or individual Campylobacter spp. was performed on archived samples. Neutrophils were detected on the same samples using a FISH probe for neutrophil elastase. RESULTS Campylobacter coli was present in (6/7) cats with neutrophilic IBD and in (1/8) cats with lymphoplasmacytic IBD (P = .009). Cats with neutrophilic IBD had significantly higher number of C. coli (median bacteria 0.7/hpf) in the mucosa than cats with lymphoplasmacytic IBD (median bacteria 0/hpf) (P = 0.002). Colocalization of neutrophils and C. coli was demonstrated, with C. coli closer to the neutrophils than any other bacteria (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE Identification of C. coli associated with neutrophilic inflammation suggests that C. coli is able either to produce compounds which stimulate neutrophils or to induce feline intestinal cells to produce neutrophil chemoattractants. This association should allow a directed therapeutic approach in cats with neutrophilic IBD, potentially improving outcome and reducing any zoonotic risk.
Collapse
Affiliation(s)
- C L Maunder
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | - Z F Reynolds
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | - L Peacock
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | - E J Hall
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | - M J Day
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | - T A Cogan
- School of Veterinary Sciences, University of Bristol, Langford, UK
| |
Collapse
|
5
|
Aguilar C, Jiménez-Marín Á, Martins RP, Garrido JJ. Interaction between Campylobacter and intestinal epithelial cells leads to a different proinflammatory response in human and porcine host. Vet Immunol Immunopathol 2014; 162:14-23. [DOI: 10.1016/j.vetimm.2014.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
6
|
Wu D, Liu X, Su H, Chen X, Zhang H, Hu D, Huang Z, Yang PC, Liu Z. Oral antigens induce rheumatoid arthritis-like inflammation in a rat model. Inflamm Res 2012; 62:291-7. [PMID: 23229722 DOI: 10.1007/s00011-012-0577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/16/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS The pathogenesis of rheumatoid arthritis (RA) is to be further elucidated. The present study aims to investigate the role of oral antigen in the induction of RA-like inflammation in the articular joints of rats. METHODS An RA animal model was developed by gavage-feeding with antigen and aspirin, and lipopolysaccharide intraperitoneal injection. The gut epithelial barrier function was assessed by the absorption of mannitol and lactose. The absorption of the specific antigen was observed by the immune fluorescent method. The frequency of antigen specific CD4+ T cells in the peripheral system was assessed by flow cytometry. The inflammation in the ankle joints was evaluated by light microscopy and immunohistochemistry. RESULTS Rats treated with aspirin showed intestinal barrier dysfunction; high contents of the specific antigen were absorbed into the lamina propria. The antigen specific CD4+ T cells were detected in the spleen that could be activated by exposure to the specific antigen as well as the extracts of joint tissue. High levels of proinflammatory cytokines were detected in the sera. Antigen specific immune complexes were localized in the ankle joints. Heavy extravasation was observed in the synovial cavity. The histology showed an inflammatory feature in the ankle joints. CONCLUSIONS Oral antigen can induce RA-like inflammation in the articular joints under certain environment such as gut epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Dandan Wu
- Institute of Allergy and Immunology, Shenzhen University, Shenzhen, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bratz K, Bücker R, Gölz G, Zakrzewski SS, Janczyk P, Nöckler K, Alter T. Experimental infection of weaned piglets with Campylobacter coli--excretion and translocation in a pig colonisation trial. Vet Microbiol 2012; 162:136-43. [PMID: 22986057 DOI: 10.1016/j.vetmic.2012.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Campylobacter (C.) is one of the most common food-borne pathogen causing bacterial enteric infections in humans. Consumption of meat and meat products that have been contaminated with Campylobacter are the major source of infection. Pigs are a natural reservoir of Campylobacter spp. with C. coli as the dominant species. Even though some studies focussed on transmission of C. coli in pig herds and the excretion in faeces, little is known about the colonisation and excretion dynamics of C. coli in a complex gut microbiota present in weaned piglets and the translocation to different tissues. Therefore, an experimental trial was conducted to evaluate the colonisation and translocation ability of the porcine strain C. coli 5981 in weaned pigs. Thus, ten 35 days old piglets were intragastrically inoculated with strain C. coli 5981 (7 × 10(7)CFU/animal) encoding resistances against erythromycin and neomycin. Faecal samples were taken and C. coli levels were enumerated over 28 days. All piglets were naturally colonised with C. coli before experimental inoculation, and excretion levels ranged from 10(4) to 10(7)CFU/g faeces. However, no strain showed resistances against the additional antimicrobials used. Excretion of C. coli 5981 was seen for all piglets seven days after inoculation and highest counts were detectable ten days after inoculation with 10(6)CFU/g faeces. Post-mortem, translocation and subsequent invasion of luminal C. coli was observed for gut tissues of the small intestine and for the gut associated lymphatic tissues, such as jejunal mesenteric lymph nodes and tonsils as well as for spleen and gall bladder. In conclusion, this pig colonisation trial offers the opportunity to study C. coli colonisation in weaned piglets using the porcine strain C. coli 5981 without the need for gnotobiotic or specific pathogen-free animals.
Collapse
Affiliation(s)
- Katharina Bratz
- Institute of Food Hygiene, Freie Universität Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|