1
|
Clemente L, Leão C, Moura L, Albuquerque T, Amaro A. Prevalence and Characterization of ESBL/AmpC Producing Escherichia coli from Fresh Meat in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10111333. [PMID: 34827270 PMCID: PMC8615096 DOI: 10.3390/antibiotics10111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 10/25/2022] Open
Abstract
The present study aimed to characterize the extended-spectrum β-lactamases and plasmid-mediated AmpC β-lactamases (ESBL/PMAβ) among Escherichia coli producers isolated from beef, pork, and poultry meat collected at retail, in Portugal. A total of 638 meat samples were collected and inoculated on selective medium for the search of E. coli resistant to 3rd generation cephalosporins. Isolates were characterized by antimicrobial susceptibility testing, molecular assays targeting ESBL/AmpC, plasmid-mediated quinolone resistance (PMQR), and plasmid-mediated colistin resistance (PMCR) encoding genes. The highest frequency of E. coli non-wild type to 3rd generation cephalosporins and fluoroquinolones was observed in broiler meat (30.3% and 93.3%, respectively). Overall, a diversity of acquired resistance mechanisms, were detected: blaESBL [blaCTX-M-1 (n = 19), blaCTX-M-15 (n = 4), blaCTX-M-32 (n = 12), blaCTX-M-55 (n = 8), blaCTX-M-65 (n = 4), blaCTX-M-27 (n = 2), blaCTX-M-9 (n = 1), blaCTX-M-14 (n = 11), blaSHV-12 (n = 27), blaTEM-52 (n = 1)], blaPMAβ [blaCMY-2 (n = 8)], PMQR [qnrB (n = 27), qnrS (n = 21) and aac(6')-Ib-type (n = 4)] and PMCR [mcr-1 (n = 8)]. Our study highlights that consumers may be exposed through the food chain to multidrug-resistant E. coli carrying diverse plasmid-mediated antimicrobial resistance genes, posing a great hazard to food safety and a public health risk.
Collapse
Affiliation(s)
- Lurdes Clemente
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, University of Lisbon, 1300-477 Lisbon, Portugal
- Correspondence:
| | - Célia Leão
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Laura Moura
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
- Faculty of Pharmacy Science, University of Lisbon, FFUL, 1649-019 Lisbon, Portugal
| | - Teresa Albuquerque
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
| |
Collapse
|
2
|
Carvalho I, Cunha R, Martins C, Martínez-Álvarez S, Safia Chenouf N, Pimenta P, Pereira AR, Ramos S, Sadi M, Martins Â, Façanha J, Rabbi F, Capita R, Alonso-Calleja C, de Lurdes Nunes Enes Dapkevicius M, Igrejas G, Torres C, Poeta P. Antimicrobial Resistance Genes and Diversity of Clones among Faecal ESBL-Producing Escherichia coli Isolated from Healthy and Sick Dogs Living in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10081013. [PMID: 34439063 PMCID: PMC8388948 DOI: 10.3390/antibiotics10081013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to analyse the prevalence and genetic characteristics of ESBL and acquired-AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick dogs in Portugal. Three hundred and sixty-one faecal samples from sick and healthy dogs were seeded on MacConkey agar supplemented with cefotaxime (2 µg/mL) for cefotaxime-resistant (CTXR) E. coli recovery. Antimicrobial susceptibility testing for 15 antibiotics was performed and the ESBL-phenotype of the E. coli isolates was screened. Detection of antimicrobial resistance and virulence genes, and molecular typing of the isolates (phylogroups, multilocus-sequence-typing, and specific-ST131) were performed by PCR (and sequencing when required). CTXRE. coli isolates were obtained in 51/361 faecal samples analysed (14.1%), originating from 36/234 sick dogs and 15/127 healthy dogs. Forty-seven ESBL-producing E. coli isolates were recovered from 32 sick (13.7%) and 15 healthy animals (11.8%). Different variants of blaCTX-M genes were detected among 45/47 ESBL-producers: blaCTX-M-15 (n = 26), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3), blaCTX-M-55 (n = 3), blaCTX-M-14 (n = 2), and blaCTX-M-variant (n = 1); one ESBL-positive isolate co-produced CTX-M-15 and CMY-2 enzymes. Moreover, two additional CTXR ESBL-negative E. coli isolates were CMY-2-producers (qAmpC). Ten different sequence types were identified (ST/phylogenetic-group/β-lactamase): ST131/B2/CTX-M-15, ST617/A/CTX-M-55, ST3078/B1/CTX-M-32, ST542/A/CTX-M-14, ST57/D/CTX-M-1, ST12/B2/CTX-M-15, ST6448/B1/CTX-M-15 + CMY-2, ST5766/A/CTX-M-32, ST115/D/CMY-2 and a new-ST/D/CMY-2. Five variants of CTX-M enzymes (CTX-M-15 and CTX-M-1 predominant) and eight different clonal complexes were detected from canine ESBL-producing E. coli isolates. Although at a lower rate, CMY-2 β-lactamase was also found. Dogs remain frequent carriers of ESBL and/or qAmpC-producing E. coli with a potential zoonotic role.
Collapse
Affiliation(s)
- Isabel Carvalho
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Rita Cunha
- Hospital Veterinário Cascais da Onevet, 2775-352 Parede, Lisbon, Portugal;
| | - Carla Martins
- Clínica Veterinária do Vouga, 3740-253 Sever do Vouga, Portugal;
| | - Sandra Martínez-Álvarez
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Nadia Safia Chenouf
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Exploration and Valuation of the Steppe Ecosystem, University of Djelfa, Djelfa 17000, Algeria
| | - Paulo Pimenta
- Hospital Veterinário de Trás-os-Montes, 5000-056 Vila Real, Portugal;
| | - Ana Raquel Pereira
- Centro Veterinário de Macedo de Cavaleiros, 5340-202 Bragança, Portugal;
| | - Sónia Ramos
- VetRedondo, Consultório Veterinário de Monte Redondo Unipessoal Lda, Monte Redondo, 2425-618 Leiria, Portugal;
| | - Madjid Sadi
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
- Laboratory of Biotechnology Related to Animals Reproduction, Université Saad Dahlab de Blida, Blida 09000, Algeria
| | - Ângela Martins
- Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Jorge Façanha
- Centro Veterinário Jorge Façanha, 5140-060 Carrazeda de Ansiães, Portugal;
| | - Fazle Rabbi
- Australian Computer Society, Docklands, Melbourne, VIC 3008, Australia;
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, 24071 León, Spain; (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, 24071 León, Spain
| | - Maria de Lurdes Nunes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, 26006 Logroño, Spain; (S.M.-Á.); (N.S.C.); (M.S.); (C.T.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Laboratory Associated for Green Chemistry (LAQV-REQUIMTE), New University of Lisbon, 2829-516 Monte da Caparica, Portugal
- Correspondence: ; Tel.: +351-25935-0466; Fax: +351-25935-0629
| |
Collapse
|
3
|
Hackmann C, Gastmeier P, Schwarz S, Lübke-Becker A, Bischoff P, Leistner R. Pet husbandry as a risk factor for colonization or infection with MDR organisms: a systematic meta-analysis. J Antimicrob Chemother 2021; 76:1392-1405. [PMID: 33864082 DOI: 10.1093/jac/dkab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/08/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MDR organisms (MDROs) pose a relevant risk for patients in modern healthcare. Although ownership of pet animals is common and owners and pets commonly live in close contact, it is still unclear whether pet ownership may be considered as a risk factor for MDRO acquisition prior to hospitalization. METHODS We performed three separate meta-analyses in accordance with the PRISMA guidelines, assessing contact to pets as a risk factor for acquisition of MRSA, VRE and MDR Gram-negatives [namely third-generation cephalosporin-resistant Enterobacterales (3GCRE) and carbapenem-resistant Enterobacterales (CRE)]. RESULTS We calculated an increased risk of MRSA carriage for dog owners [risk ratio (RR) 2.28, 95% CI 1.47-3.56]. Meta-analysis did not show a significantly higher risk for 3GCRE colonization among owners of different pet species compared with non-pet owners (RR 1.18, 95% CI 0.83-1.68 for pet owners in general, RR 0.88, 95% CI 0.56-1.40 for dog owners, RR 1.16, 95% CI 0.58-2.34 for cat owners, RR 1.34, 95% CI 0.43-4.18 for rodent owners, RR 0.91, 95% CI 0.38-2.18 for bird owners, and RR 2.34, 95% CI 0.33-16.63 for lizard/frog owners). For VRE, there were insufficient data to perform a meta-analysis. CONCLUSIONS Our analyses suggest contact to pet animals is a risk factor for MRSA, but not for 3GCRE/CRE acquisition. Evaluation of the underlying literature suggested a possible role of pet animals as: (i) vectors for the transmission of MDROs between livestock and humans; as well as (ii) a reservoir for MDROs. Pets, therefore, may promote transmission and reinfection of humans.
Collapse
Affiliation(s)
- Carolin Hackmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Unitversität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Petra Gastmeier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Unitversität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Peter Bischoff
- Charité - Universitätsmedizin Berlin, corporate member of Freie Unitversität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203, Berlin, Germany
| | - Rasmus Leistner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Unitversität Berlin and Humboldt-Universität zu Berlin, Institute of Hygiene and Environmental Medicine, Hindenburgdamm 27, 12203, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Unitversität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
4
|
Salgado-Caxito M, Benavides JA, Adell AD, Paes AC, Moreno-Switt AI. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing- Escherichia coli in dogs and cats - A scoping review and meta-analysis. One Health 2021; 12:100236. [PMID: 33889706 PMCID: PMC8050393 DOI: 10.1016/j.onehlt.2021.100236] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a major threat to human and animal health. Part of the AMR dimension is the circulation of extended-spectrum β-lactamases producing-Escherichia coli (ESBL-E. coli), which is now commonly reported among companion animals. However, the global perspective of the prevalence and population structure of ESBL-E. coli circulating in dogs and cats has not been estimated limiting our understanding of their role in the dissemination of ESBL-E. coli. The aim of this study was to compare the prevalence of ESBL-E. coli between dogs and cats and across countries through meta-analysis. We also performed a scoping review to summarize the current knowledge on ESBL genes and E. coli clones circulating among companion animals. A total of 128 studies published in PubMed, Web of Science, and Scopus up to April 2020 were selected and contained information on prevalence and/or molecular characterization of ESBL genes and ESBL-E. coli clones. Our review shows an increase in the number of publications between 2000 and 2019, concentrated mainly in Europe. Prevalence varied across continents, ranging from 0.63% (Oceania) to 16.56% (Africa) in dogs and from 0% (Oceania) to 16.82% (Asia) in cats. Although there were twice as many studies reporting prevalence on dogs (n = 61) than on cats (n = 32), and only 9 studies focused exclusively on cats, our meta-analysis showed no difference in the global prevalence of ESBL-E. coli between dogs (6.87% [95% CI: 4.46-10.45%]) and cats (5.04% [95% CI: 2.42-10.22%]). A considerable diversity of ESBL genes (n = 60) and sequence types (ST) (n = 171) were recovered from companion animals. ESBL-E. coli encoded by CTX-M-15 (67.5%, 77/114) and SHV-12 (21.9%, 25/114), along with resistant strains of ST38 (22.7%, 15/66) and ST131 (50%, 33/66) were widespread and detected in all continents. While presence of ESBL-E. coli is widespread, the drivers influencing the observed ESBL-E. coli prevalence and the clinical relevance in veterinary medicine and public health along with economic impact of ESBL-E. coli infections among companion animals need to be further investigated.
Collapse
Affiliation(s)
- Marília Salgado-Caxito
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Julio A. Benavides
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Aiko D. Adell
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Antonio Carlos Paes
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Andrea I. Moreno-Switt
- Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Vega-Manriquez XD, Ubiarco-López A, Verdugo-Rodríguez A, Hernández-Chiñas U, Navarro-Ocaña A, Ahumada-Cota RE, Ramírez-Badillo D, Hernández-Díaz de León N, Eslava CA. Pet dogs potential transmitters of pathogenic Escherichia coli with resistance to antimicrobials. Arch Microbiol 2020; 202:1173-1179. [PMID: 32076735 DOI: 10.1007/s00203-020-01828-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Escherichia coli strains are part of the normal biota of humans and animals; however, several clinical reports have implicated E. coli as the etiological agent of diarrhea in humans and companion animals. Thus, the aim of the present study was to know if companion dogs in the city of San Luis Potosi are colonized with virulent potentially harmful E. coli strains. Rectal swabs from 30 dogs, 13 with and 17 without diarrhea were analyzed. Phylogenetic and virulence genes analysis was performed to the E. coli isolates. Additionally, the Kirby-Bauer test was used to analyze the sensitivity to 32 different antimicrobials from 14 families. Eighty-five isolates were identified as E. coli and detected in 97% of healthy and diarrheic dog samples. E. coli isolates from healthy dogs carried several virulence genes, in contrast with those from diarrheic animals that presented only eaeA. In healthy dogs, phylogenetic analysis showed that 57% and 43% of E. coli isolates belonged to commensal (A and B1) and virulent (B2 and D) groups respectively. Meanwhile, diarrheic dogs showed that 69% of the isolates were identified as virulent B2 and D phylogroups. Moreover, E. coli resistant to β-lactams, aminoglycosides, tetracycline, quinolones, and folate inhibitors were detected in both groups of dogs. The presence of E. coli with eaeA virulence gene in diarrheic dogs, suggest that these strains are associated with the animal´s condition. Finally, major attention must be drawn to the careful handling of dogs because of their capability to harbor and disseminate virulent E. coli strains.
Collapse
Affiliation(s)
- X D Vega-Manriquez
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Potosí, Mexico
| | - A Ubiarco-López
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public health Department/Research Division, Faculty of Medicine UNAM; Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children's Hospital of Mexico Federico Gómez/Faculty of Medicine UNAM, Dr. Márquez 162, Col. De los Doctores, CP 06720, Mexico City, Mexico
| | - A Verdugo-Rodríguez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - U Hernández-Chiñas
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public health Department/Research Division, Faculty of Medicine UNAM; Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children's Hospital of Mexico Federico Gómez/Faculty of Medicine UNAM, Dr. Márquez 162, Col. De los Doctores, CP 06720, Mexico City, Mexico
| | - A Navarro-Ocaña
- Laboratorio de Bacteriología, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - R E Ahumada-Cota
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public health Department/Research Division, Faculty of Medicine UNAM; Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children's Hospital of Mexico Federico Gómez/Faculty of Medicine UNAM, Dr. Márquez 162, Col. De los Doctores, CP 06720, Mexico City, Mexico.,Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Mexico City, Mexico
| | - D Ramírez-Badillo
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Potosí, Mexico
| | | | - C A Eslava
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public health Department/Research Division, Faculty of Medicine UNAM; Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children's Hospital of Mexico Federico Gómez/Faculty of Medicine UNAM, Dr. Márquez 162, Col. De los Doctores, CP 06720, Mexico City, Mexico.
| |
Collapse
|
6
|
Oliveira C, Amador P, Prudêncio C, Tomaz CT, Tavares-Ratado P, Fernandes R. ESBL and AmpC β-Lactamases in Clinical Strains of Escherichia coli from Serra da Estrela, Portugal. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E272. [PMID: 31212867 PMCID: PMC6632026 DOI: 10.3390/medicina55060272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/14/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Background and Objectives: Given the considerable spatial, temporal, and ecological factors, heterogeneity, which affects emergency response, persistence, and dissemination of genetic determinants that confer microorganisms their resistance to antibiotics, several authors claim that antibiotics' resistance must be perceived as an ecological problem. The aim of this study was to determine the prevalence of broad-spectrum bla genes, not only Extended-spectrum β-lactamases (ESBL) but also AmpC-types, in clinical strains of Escherichia coli isolated from Portugal (in the highest region of the country, Serra da Estrela) to disclose susceptibility profiles among different genotypes, and to compare the distribution of bla genes expressing broad-spectrum enzymes. Materials and Methods: Clinical strains of Escherichia coli presenting resistance to third generation (3G) cephalosporins and susceptibility to inhibition by clavulanic acid were studied by means of phenotypic and molecular profiling techniques for encoding β-lactamases genes. Results: Strains were mainly isolated from hospital populations (97%). Molecular analysis enabled the detection of 49 bla genes, in which 55% (27/49) were identified as blaOXA-1-like, 33% (16/49) as blaCTX-M-group-1, 10% (5/49) as blaTEM, and 2% (1/49) were identified as genes blaCIT (AmpC). Among all blaOXA-1-like detected, about 59% of strains expressed at least another bla gene. Co-production of β-lactamases was observed in 40% of strains, with the co-production of CTX-M group 1 and OXA-1-like occurring as the most frequent. Conclusions: This is the first study using microorganisms isolated from native people from the highest Portuguese mountain regions, showing an unprecedent high prevalence of genes blaOXA-1-like in this country.
Collapse
Affiliation(s)
- Cátia Oliveira
- School of Health, Polytechnic of Porto, 4200 Porto, Portugal.
- Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
- Sousa Martins Hospital, ULS Guarda, 6300 Guarda, Portugal.
| | - Paula Amador
- CERNAS-Research Centre for Natural Resources, Environment and Society, College of Agriculture, Polytechnic of Coimbra, 3045 Coimbra, Portugal.
| | - Cristina Prudêncio
- School of Health, Polytechnic of Porto, 4200 Porto, Portugal.
- i3S-Instituto de Inovação e Investigação em Saúde, University of Porto, 4200 Porto, Portugal.
| | - Cândida T Tomaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201 Covilhã, Portugal.
| | - Paulo Tavares-Ratado
- Sousa Martins Hospital, ULS Guarda, 6300 Guarda, Portugal.
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201 Covilhã, Portugal.
| | - Rúben Fernandes
- School of Health, Polytechnic of Porto, 4200 Porto, Portugal.
- i3S-Instituto de Inovação e Investigação em Saúde, University of Porto, 4200 Porto, Portugal.
| |
Collapse
|
7
|
ESBL-producing Escherichia coli
and Its Rapid Rise among Healthy People. Food Saf (Tokyo) 2017; 5:122-150. [PMID: 32231938 DOI: 10.14252/foodsafetyfscj.2017011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since around the 2000s, Escherichia coli (E. coli) resistant to both oxyimino-cephalosporins and fluoroquinolones has remarkably increased worldwide in clinical settings. The kind of E. coli is also identified in patients suffering from community-onset infectious diseases such as urinary tract infections. Moreover, recoveries of multi-drug resistant E. coli from the feces of healthy people have been increasingly documented in recent years, although the actual state remains uncertain. These E. coli isolates usually produce extended-spectrum β-lactamase (ESBL), as well as acquisition of amino acid substitutions in the quinolone-resistance determining regions (QRDRs) of GyrA and/or ParC, together with plasmid-mediated quinolone resistance determinants such as Qnr, AAC(6')-Ib-cr, and QepA. The actual state of ESBL-producing E. coli in hospitalized patients has been carefully investigated in many countries, while that in healthy people still remains uncertain, although high fecal carriage rates of ESBL producers in healthy people have been reported especially in Asian and South American countries. The issues regarding the ESBL producers have become very complicated and chaotic due to rapid increase of both ESBL variants and plasmids mediating ESBL genes, together with the emergence of various "epidemic strains" or "international clones" of E. coli and Klebsiella pneumoniae harboring transferable-plasmids carrying multiple antimicrobial resistance genes. Thus, the current state of ESBL producers outside hospital settings was overviewed together with the relation among those recovered from livestock, foods, pets, environments and wildlife from the viewpoint of molecular epidemiology. This mini review may contribute to better understanding about ESBL producers among people who are not familiar with the antimicrobial resistance (AMR) threatening rising globally.
Collapse
|
8
|
Shimizu T, Harada K, Tsuyuki Y, Kimura Y, Miyamoto T, Hatoya S, Hikasa Y. In vitro efficacy of 16 antimicrobial drugs against a large collection of β-lactamase-producing isolates of extraintestinal pathogenic Escherichia coli from dogs and cats. J Med Microbiol 2017; 66:1085-1091. [PMID: 28749329 DOI: 10.1099/jmm.0.000535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The aim of this study was to assess the in vitro efficacy of candidate antimicrobials against extended-spectrum β-lactamase (ESBL)-producing isolates of extraintestinal pathogenic Escherichia coli (ExPEC) from companion animals. METHODOLOGY A total of 90 ESBL-producing ExPEC isolates from dogs and cats were tested for susceptibility to 16 antimicrobials with the agar dilution method. We also identified the ESBLs and AmpC β-lactamases of these isolates with PCR and DNA sequencing.Results/Key findings. All isolates were susceptible to meropenem, tebipenem and amikacin (AMK), and various proportions were susceptible to latamoxef (LMX, 97.8 %), fosfomycin (FOM, 97.8 %), faropenem (FPM, 96.7 %), nitrofurantoin (NFT, 96.7 %), flomoxef (FMX, 93.3 %), piperacillin/tazobactam (PTZ, 92.2 %), cefmetazole (CMZ, 91.1 %), chloramphenicol (80.0 %), trimethoprim/sulfamethoxazole (64.4 %), amoxicillin/clavulanic acid (63.3 %), ceftibuten (60.0 %), tetracycline (52.2 %) and enrofloxacin (10.0 %). A genetic analysis showed that 83 of the 90 (92.2 %) isolates were positive for CTX-M-type genes: CTX-M-14 (n=26), CTX-M-27 (n=20), CTX-M-55 (n=17), CTX-M-15 (n=12), CTX-M-2 (n=5), CTX-M-24 (n=2), CTX-M-104 (n=2) and CTX-M-3 (n=1). Eight isolates also expressed AmpC β-lactamase phenotypes. CONCLUSION This study demonstrates that the susceptibility rates to PTZ, CMZ, LMX, AMK, FOM, FPM, NFT and FMX were similar to those to carbapenems (>90 %), implying that these drugs are available alternatives to carbapenems for the treatment of companion animals infected with ExPEC-producing CTX-M-type ESBLs. Further in vivo studies of the effective use of these antimicrobials are required.
Collapse
Affiliation(s)
- Takae Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan.,Joint Department of Veterinary Medicine, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8553, Japan
| | - Kazuki Harada
- Joint Department of Veterinary Medicine, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8553, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan
| | - Yuzo Tsuyuki
- Sanritsu Zelkova Veterinary Laboratory, 2-5-8 Kuji, Takatsuku, Kawasaki, Kanagawa 213-0032, Japan
| | - Yui Kimura
- Miyamoto Animal Hospital, 2265-8 Kurokawa, Yamaguchi-shi, Yamaguchi 753-0851, Japan
| | - Tadashi Miyamoto
- Miyamoto Animal Hospital, 2265-8 Kurokawa, Yamaguchi-shi, Yamaguchi 753-0851, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Yoshiaki Hikasa
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8511, Japan.,Joint Department of Veterinary Medicine, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8553, Japan
| |
Collapse
|
9
|
Balakrishnan S, Antony PX, Mukhopadhyay HK, Pillai RM, Thanislass J, Padmanaban V, Srinivas MV. Genetic characterization of fluoroquinolone-resistant Escherichia coli associated with bovine mastitis in India. Vet World 2016; 9:705-9. [PMID: 27536030 PMCID: PMC4983120 DOI: 10.14202/vetworld.2016.705-709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022] Open
Abstract
AIM The present study was undertaken to characterize the mutation in gyrA (DNA gyrase) and parC (topoisomerase IV) genes responsible for fluoroquinolone resistance in Escherichia coli isolates associated with the bovine mastitis. MATERIALS AND METHODS A total of 92 milk samples from bovine mastitis cases were sampled in and around Puducherry (Southern India). Among these samples, 30 isolates were bacteriologically characterized as E. coli. Minimum inhibitory concentrations (MIC) of fluoroquinolones of these 30 E. coli isolates were evaluated by resazurin microtiter assay. Then, the quinolone resistance determining region (QRDR) (gyrA and parC genes) of these E. coli isolates was genetically analyzed for determining the chromosomal mutation causing fluoroquinolone resistance. RESULTS E. coli isolates showed a resistance rate of 63.33%, 23.33% and 30.03% to nalidixic acid, ciprofloxacin and enrofloxacin, respectively. Mutations were found at 83(rd) and 87(th) amino acid position of gyrA gene, and at 80(th) and 108(th) amino acid position of parC gene in our study isolates. Among these five isolates, one had a single mutation at 83 amino acid position of gyrA with reduced susceptibility (0.5 µg/ml) to ciprofloxacin. Then, in remaining four isolates, three isolates showed triple mutation (at gyrA: S83⟶L and D87⟶N; at parC: S80⟶I) and the fifth isolate showed an additional mutation at codon 108 of parC (A108⟶T) with the increased ciprofloxacin MIC of 16-128 µg/ml. The most common mutation noticed were at S83⟶L and D87⟶N of gyrA and S80⟶I of ParC. CONCLUSION The study confirms the presence of mutation/s responsible for fluoroquinolone resistance in QRDR of gyrA and parC genes of E. coli isolates of animal origin, and there is increased rate of fluoroquinolone resistance with high-level of MIC. The mutations observed in this study were similar to that of human isolates.
Collapse
Affiliation(s)
- Sangeetha Balakrishnan
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| | - Prabhakar Xavier Antony
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| | - Hirak Kumar Mukhopadhyay
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| | - Raghavan Madhusoodanan Pillai
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| | - Jacob Thanislass
- Department of Veterinary Biochemistry, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| | - Vijayalakshmi Padmanaban
- Department of Veterinary Medicine, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| | - Mouttou Vivek Srinivas
- Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Puducherry - 605 009, India
| |
Collapse
|