1
|
Gazi U, Beyhan YE, Tosun O, Karasartova D, Cobanoglu U, Taylan-Ozkan A. Evaluation of Th1/Th2/Th17 Balance in Pulmonary Cystic Echinococcosis Patients. Acta Parasitol 2024:10.1007/s11686-024-00907-x. [PMID: 39190279 DOI: 10.1007/s11686-024-00907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Cystic echinococcosis (CE) is a neglected tropical disease prevalent worldwide, particularly in rural areas. Previous studies evaluated immune responses in patients with hepatic CE, however none had assessed Th1, Th2 and Th17 levels simultaneously in pulmonary CE patients. This study aimed to fill this gap in literature by using flow cytometry analysis. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples collected from healthy control (HC) volunteers and patients with active pulmonary CE cysts. The PBMCs were analysed to evaluate Th1, Th2, and Th17 cell levels within the CD3 + CD4 + T-cell population, using antibodies against interferon (IFN)-γ, interleukin (IL)-4, and IL-17, respectively. RESULTS Our analysis revealed elevated Th2 levels in CE patients, while Th1 and Th17 cell counts showed no significant difference between HC volunteers and patients with pulmonary CE. CONCLUSION The results indicate an imbalanced Th1/Th2/Th17 cell regulation in the pathogenesis of pulmonary CE. Future studies are recommended to compare immune responses between pulmonary and hepatic CE to confirm these findings and evaluate any potential difference in the immunopathology associated with the two clinical forms of CE.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus.
| | - Yunus Emre Beyhan
- Department of Parasitology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Ozgur Tosun
- Department of Biostatistics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Djursun Karasartova
- Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Ufuk Cobanoglu
- Department of Thoracic Surgery, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
2
|
Nenni M, Çelebier M, Maçin S, Örsten S, Yabanoğlu-Çiftçi S, Baysal İ. Untargeted metabolomics to discriminate liver and lung hydatid cysts: Importance of metabolites involved in the immune response. Vet Parasitol 2024; 328:110180. [PMID: 38626652 DOI: 10.1016/j.vetpar.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
The Echinococcus granulosus sensu lato species complex is responsible for the neglected zoonotic disease known as cystic echinococcosis (CE). Humans and livestock are infected via fecal-oral transmission. CE remains prevalent in Western China, Central Asia, South America, Eastern Africa, and the Mediterranean. Approximately one million individuals worldwide are affected, influencing veterinary and public health, as well as social and economic matters. The infection causes slow-growing cysts, predominantly in the liver and lungs, but can also develop in other organs. The exact progression of these cysts is uncertain. This study aimed to understand the survival mechanisms of liver and lung CE cysts from cattle by determining their metabolite profiles through metabolomics and multivariate statistical analyses. Non-targeted metabolomic approaches were conducted using quadrupole-time-of-flight liquid chromatography/mass spectrometry (LC-QTOF-MS) to distinguish between liver and lung CE cysts. Data processing to extract the peaks on complex chromatograms was performed using XCMS. PCA and OPLS-DA plots obtained through multiple statistical analyses showed interactions of metabolites within and between groups. Metabolites such as glutathione, prostaglandin, folic acid, and cortisol that cause different immunological reactions have been identified both in liver and lung hydatid cysts, but in different ratios. Considering the differences in the metabolomic profiles of the liver and lung cysts determined in the present study will contribute research to enlighten the nature of the cyst and develop specific therapeutic strategies.
Collapse
Affiliation(s)
- Merve Nenni
- Cukurova University, Faculty of Pharmacy, Department of Analytical Chemistry, Adana, Turkey; Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey
| | - Mustafa Çelebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Salih Maçin
- Selçuk University, Faculty of Medicine, Department of Medical Microbiology, Konya, Turkey
| | - Serra Örsten
- Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey; Hacettepe University, Vocational School of Health Services, Ankara, Turkey
| | | | - İpek Baysal
- Hacettepe University, Graduate School of Health Sciences, Department of One Health, Ankara, Turkey; Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| |
Collapse
|
3
|
Lin R, Wang X, Ni C, Fu C, Yang C, Dong D, Wu X, Chen X, Wang L, Hou J. Echinococcus granulosus cyst fluid inhibits KDM6B-mediated demethylation of trimethylated histone H3 lysine 27 and interleukin-1β production in macrophages. Parasit Vectors 2023; 16:422. [PMID: 37974225 PMCID: PMC10652454 DOI: 10.1186/s13071-023-06041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Echinococcus granulosus can manipulate its host's immune response to ensure its own survival. However, the effect of histone modifications on the regulation of the NOD-like receptor protein 3 (NLRP3) inflammasome and downstream interleukin-1β (IL-1β) production in response to the parasite is not fully understood. METHODS We evaluated IL-1β secretion through enzyme-linked immunosorbent assay and assessed reactive oxygen species levels using the dichlorodihydrofluorescein diacetate probe. Western blotting and quantitative real-time polymerase chain reaction were performed to examine the expression of NLRP3 and IL-1β in mouse peritoneal macrophages and Tohoku Hospital Pediatrics-1 cells, a human macrophage cell line. The presence of trimethylated histone H3 lysine 27 (H3K27me3) modification on NLRP3 and IL-1β promoters was studied by chromatin immunoprecipitation. RESULTS Treatment with E. granulosus cyst fluid (EgCF) considerably reduced IL-1β secretion in mouse and human macrophages, although reactive oxygen species production increased. EgCF also suppressed the expression of NLRP3 and IL-1β. Mechanistically, EgCF prompted the enrichment of repressive H3K27me3 modification on the promoters of both NLRP3 and IL-1β in macrophages. Notably, the presence of EgCF led to a significant reduction in the expression of the H3K27me3 demethylase KDM6B. CONCLUSIONS Our study revealed that EgCF inhibits KDM6B expression and H3K27me3 demethylation, resulting in the transcriptional inhibition of NLRP3 and IL-1β. These results provide new insights into the immune evasion mechanisms of E. granulosus.
Collapse
Affiliation(s)
- Ruolin Lin
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaopeng Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Caiya Ni
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chunxue Fu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chun Yang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | | | - Xiangwei Wu
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xueling Chen
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Jun Hou
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
4
|
Dousti M, Sadjjadi SM, Solgi R, Vafafar A, Sharifi Y, Radfar A, Hatam GR. Comparison of Isoenzyme Pattern of Echinococcus granulosus sensu stricto (G1-G3) and E. canadensis (G6/G7) Protoscoleces. IRANIAN BIOMEDICAL JOURNAL 2023; 27:136-45. [PMID: 37073115 PMCID: PMC10314765 DOI: 10.52547/ibj.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Background Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.
Collapse
Affiliation(s)
- Majid Dousti
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahmat Solgi
- Department of Medical Microbiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Vafafar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Dousti M, Sadjjadi SM, Solgi R, Vafafar A, Sharifi Y, Radfar A, Hatam GR. Comparison of Isoenzyme Pattern of Echinococcus granulosus sensu stricto (G1-G3) and E. canadensis (G6/G7) Protoscoleces. IRANIAN BIOMEDICAL JOURNAL 2023; 27:136-45. [PMID: 37073115 PMCID: PMC10314765 DOI: 10.61186/ibj.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/13/2023] [Indexed: 12/17/2023]
Abstract
Background Different genotypes of Echinococcus granulosus sensu lato (s.l.) infect humans and ungulate animals, causing cystic echinococcosis. Simultaneous isoenzyme, as well as molecular characterizations of this parasite, has not yet been investigated in Iran. The present study aimed to evaluate the isoenzyme pattern of the E. granulosus sensu stricto (s.s.) and E. canadensis genotypes in Iran. Methods A total of 32 (8 humans and 24 animals) cystic echinococcosis cysts were isolated from Shiraz, Tehran, Ilam, and Birjand from May 2018 to December 2020. The DNAs were extracted and their genotypes were determined by molecular methods. Enzymes were extracted from the cysts and subjected to polyacrylamide gel electrophoresis. The activities of glucose-6-phosphate sehydrogenase (G6PD), malate dehydrogenase (MDH), malic enzyme (ME), nucleoside hydrolyse 1 (NH1), and isocitrate dehydrogenase (ICD) were examined in the cyst samples using isoenzyme method and compared it with the genotyping findings. Results DNA sequence analysis of the samples showed that the specimens contained 75% E. granulosus s.s. (G1) and 25% E. canadensis (G6) genotypes. The isoenzyme pattern of ICD in both genotypes produced a six-band pattern with different relative factors. The G6PD also produced two bands with different relative migrations in both genotypes. The MDH and NH1 systems revealed a two-band pattern, while only one band was generated in the ME enzyme in the E. granulosus s.s. genotype. In the E. canadensis, the MDH and NH1 enzymes showed one band, and the ME enzyme represented a two-band pattern. Conclusion Our findings suggest that E. granulosus s.s. and E. canadensis genotypes have entirely different isoenzyme patterns for NH1, G6PD, MDH, and ME.
Collapse
Affiliation(s)
- Majid Dousti
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahmat Solgi
- Department of Medical Microbiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Arghavan Vafafar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yosef Sharifi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Ohiolei JA, Yan HB, Odeniran PO, Li L, Shumuye NA, Qurishi SA, Isaac C, Fu BQ, Jia WZ. Echinococcus granulosus sensu lato in animal intermediate hosts: what is with the organ location? Vet Parasitol 2022; 304:109695. [DOI: 10.1016/j.vetpar.2022.109695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
|