1
|
Schroën K, Shen X, Hasyyati FI, Deshpande S, van der Gucht J. From theoretical aspects to practical food Pickering emulsions: Formation, stabilization, and complexities linked to the use of colloidal food particles. Adv Colloid Interface Sci 2024; 334:103321. [PMID: 39486347 DOI: 10.1016/j.cis.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
We noticed that in literature, the term Pickering emulsion (PE) is used as soon as ingredients contain particles, and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-stabilized emulsions leads to the conclusion that the desorption energy of particles is generally high making particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or systems with very low interfacial tension. Particles used in food and biobased applications are soft, can deform when adsorbed, and most probably have molecules extending into both phases thus increasing desorption energy. Besides, surface-active components will be present either in the ingredients or generated by the emulsification process used, which will reduce the energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we describe the relative relevance of these aspects, and how to distinguish them in practice. Practical food emulsions may derive part of their stability from the presence of particles, but most likely have mixed interfaces, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by connecting the particles or creating network that spans the product, albeit this goes beyond classical Pickering stabilization. Through the architecture of PEs, special functionalities can be created, such as reduction of lipid oxidation, and controlled release features.
Collapse
Affiliation(s)
- Karin Schroën
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands..
| | - Xuefeng Shen
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Fathinah Islami Hasyyati
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Food Process Engineering, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Siddharth Deshpande
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Jasper van der Gucht
- Wageningen University, Department of Agrotechnology & Food Sciences, Laboratory of Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
2
|
Naveenkumar PM, Roemling LJ, Sultan U, Vogel N. Fabrication of Spherical Colloidal Supraparticles via Membrane Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22245-22255. [PMID: 39383325 DOI: 10.1021/acs.langmuir.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.
Collapse
Affiliation(s)
- Parinamipura M Naveenkumar
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Umair Sultan
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Chen B, Li D, Tong B, Wang L, Lin H, Xu H, Hu S. Oral alginate microspheres for the efficient site-specific delivery of epidermal growth factor attenuated murine ulcerative colitis via repairing the mucosal barrier. Int J Pharm 2024; 661:124394. [PMID: 38944169 DOI: 10.1016/j.ijpharm.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Ulcerative colitis (UC) is a chronic bowel inflammatory disease affecting the colorectum. Epidermal growth factor (EGF) has been demonstrated to be effective to counteract UC. However, there exists the gastrointestinal challenges such as stomach acid, enzyme and bile salts for oral delivery of EGF. Herein, calcium alginate microsphere was prepared by the microfluidic technique to encapsulate EGF. The morphology of EGF-loaded microsphere (MS-EGF) was spherical and its average particle size was 80 ± 23 μm. The encapsulation efficiency of EGF was reaching to 93.8 % ± 1.6 %. In vitro release experiments showed that MS-EGF presented the good pH-sensitive properties, that was, it could effectively resist the gastric acid and small intestinal fluids, and undergone the rapid dissolution in the artificial colon fluid. In vitro cellular experiments demonstrated that the bioactivity of EGF was well preserved by microsphere. Moreover, in vivo murine colitis model showed that MS-EGF presented the obvious colitis alleviation. Furthermore, the colonic morphology of colitis mice was effectively recovered and the tight junction between the gut epithelium was obviously repaired. In conclusion, calcium alginate microsphere might be a promising vehicle of EGF for UC treatment.
Collapse
Affiliation(s)
- Ben Chen
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Dingwei Li
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Bingjie Tong
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Lifen Wang
- Research Center for Drug Safety Evaluation, Hainan Medical University, Haikou City, Hainan Province, China
| | - Haoran Lin
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Helin Xu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Key Laboratory of Novel Nuclide Technologies on Precision Diagnosis and Treatment & Clinical Transformation of Wenzhou City, China.
| | - Sunkuan Hu
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China; Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
4
|
Yandrapalli N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics 2024; 16:707. [PMID: 38931830 PMCID: PMC11206808 DOI: 10.3390/pharmaceutics16060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the intersection of microfluidic technology and complex emulsion development as a promising solution to the challenges of formulations in multi-drug therapy (MDT) and polypharmacy. The convergence of microfluidic technology and complex emulsion fabrication could herald a transformative era in multi-drug delivery systems, directly confronting the prevalent challenges of polypharmacy. Microfluidics, with its unparalleled precision in droplet formation, empowers the encapsulation of multiple drugs within singular emulsion particles. The ability to engineer emulsions with tailored properties-such as size, composition, and release kinetics-enables the creation of highly efficient drug delivery vehicles. Thus, this innovative approach not only simplifies medication regimens by significantly reducing the number of necessary doses but also minimizes the pill burden and associated treatment termination-issues associated with polypharmacy. It is important to bring forth the opportunities and challenges of this synergy between microfluidic-driven complex emulsions and multi-drug therapy poses. Together, they not only offer a sophisticated method for addressing the intricacies of delivering multiple drugs but also align with broader healthcare objectives of enhancing treatment outcomes, patient safety, and quality of life, underscoring the importance of dosage form innovations in tackling the multifaceted challenges of modern pharmacotherapy.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
5
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
6
|
Ma Y, Morozova SM, Kumacheva E. From Nature-Sourced Polysaccharide Particles to Advanced Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312707. [PMID: 38391153 DOI: 10.1002/adma.202312707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Polysaccharides constitute over 90% of the carbohydrate mass in nature, which makes them a promising feedstock for manufacturing sustainable materials. Polysaccharide particles (PSPs) are used as effective scavengers, carriers of chemical and biological cargos, and building blocks for the fabrication of macroscopic materials. The biocompatibility and degradability of PSPs are advantageous for their uses as biomaterials with more environmental friendliness. This review highlights the progresses in PSP applications as advanced functional materials, by describing PSP extraction, preparation, and surface functionalization with a variety of functional groups, polymers, nanoparticles, and biologically active species. This review also outlines the fabrication of PSP-derived macroscopic materials, as well as their applications in soft robotics, sensing, scavenging, water harvesting, drug delivery, and bioengineering. The paper is concluded with an outlook providing perspectives in the development and applications of PSP-derived materials.
Collapse
Affiliation(s)
- Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Sofia M Morozova
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Center of Fluid Physics and Soft Matter, N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, Moscow, 105005, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
7
|
Azhdari S, Post Y, Trömer M, Coban D, Quintieri G, Gröschel AH. Janus nanoplates, -bowls, and -cups: controlling size and curvature via terpolymer/homopolymer blending in 3D confinement. NANOSCALE 2023; 15:14896-14905. [PMID: 37650578 DOI: 10.1039/d3nr02902f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The synthesis and properties of Janus nanoparticles with spherical, cylindrical, and disk-like shapes are nowadays rather well understood. Other topologies such as nanorings and bowl-shaped Janus nanoparticles are believed to show distinctly different solution behavior and interaction with interfaces, but limitations in their synthesis currently prevents a proper investigation of these properties. Especially the combination of shape- and surface-anisotropy of bowl-shaped Janus nanoparticles could result in enhanced selectivity in uptake of cargo and enhanced directional diffusion. We here produce bowl-shaped Janus nanoparticles without noticeable side products through evaporation-induced confinement assembly (EICA) of triblock terpolymers blended with high molecular weight homopolymer. The triblock terpolymer phase separates from the homopolymer into spherical domes, where the terpolymer adopts a hemispherical lamella-lamella morphology (ll). Selective cross-linking, removal of the homopolymer, and disassembly of the microparticles releases the bowl-shaped Janus nanoparticles. The amount of blended homopolymer determines the size of the spherical dome, allowing to control particle curvature into flat Janus nanoplates, hemispherical Janus nanobowls, and deep Janus nanocups. The use of Shirasu Porous Glass (SPG) membranes with pore sizes in the range of dpore = 0.2-2.0 μm further provides control of particle diameter. Size and shape were analyzed with electron microscopy and the Janus character through selective surface decoration. The diffusion behavior of bowl-shaped Janus nanoparticles was investigated depending on particle curvature and anisotropy using angle-dependent dynamic light scattering.
Collapse
Affiliation(s)
- Suna Azhdari
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Yorick Post
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Manuel Trömer
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Deniz Coban
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Giada Quintieri
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
| | - André H Gröschel
- Institute for Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, Corrensstraße 28-30, 48149 Münster, Germany.
- Polymer materials for energy storage (PES), Bavarian Centre for Battery Technology (BayBatt) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstr. 30, 95448 Bayreuth, Germany
| |
Collapse
|
8
|
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers (Basel) 2023; 15:3615. [PMID: 37688241 PMCID: PMC10490215 DOI: 10.3390/polym15173615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Bissera Pilicheva
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
9
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
10
|
Encapsulation of resveratrol via spray-drying of oil-in-water emulsions produced by ultrasound or membrane emulsification. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
He X, Xue Y, Dong J, Li X. Multiple Pickering emulsions fabricated by a single block copolymer amphiphile in one-step. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Ali A, Syed UT, Bak TS, Quist-Jensen CA. Membrane Emulsification-A Novel Solution for Treatment and Reuse of Produced Water from Oil Field. MEMBRANES 2022; 12:971. [PMID: 36295730 PMCID: PMC9607147 DOI: 10.3390/membranes12100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Produced water (PW) is, by volume, the largest waste product of the oil- and gas-exploration industry and contains pollutants such as hydrocarbons and heavy metals. To meet the stringent environmental regulations, PW must be treated before discharging into the environment. The current study proposes a novel treatment method where PW is used to prepare oil-in-water emulsion with potential applications within the oil-exploration industry. The emulsions are prepared by applying hollow fiber membrane emulsification (ME) on PW, which inherently contains oil, as to-be-dispersed phase. The results demonstrate that the average droplet size of the emulsions is a function of pressure applied on to-be-dispersed phase and could be customized from 0.24 to 0.65 µm by varying the pressure from 0.25 to 1 bar, respectively. Stability of the emulsions was verified under high pressure and a temperature and storage period of more than 24 h. The calculations showed that an ME unit with <100 kg weight and <1 m3 volume is appropriate to transform the daily average volume of PW from the Danish part of the North Sea into the emulsions. The study provides a novel route, which also complies well with the requirements (low-weight and small spatial footprints) of the offshore oil rigs, to treat and reuse PW within the oil production process and, therefore, eliminates its environmental footprint.
Collapse
Affiliation(s)
- Aamer Ali
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Usman Taqui Syed
- LAQV/Requimte, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Thomas Skovfoged Bak
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Cejna Anna Quist-Jensen
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
13
|
Feng J, Valkova Z, Lin EE, Nourafkan E, Wang T, Tcholakova S, Slavchov R, Smoukov SK. Minimum surfactant concentration required for inducing self-shaping of oil droplets and competitive adsorption effects. SOFT MATTER 2022; 18:6729-6738. [PMID: 36040113 DOI: 10.1039/d1sm01326b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surfactant choice is key in starting the phenomena of artificial morphogenesis, the bottom-up growth of geometric particles from cooled emulsion droplets, as well as the bottom-up self-assembly of rechargeable microswimmer robots from similar droplets. The choice of surfactant is crucial for the formation of a plastic phase at the oil-water interface, for the kinetics, and for the onset temperature of these processes. But further details are needed to control these processes for bottom-up manufacturing and understand their molecular mechanisms. Still unknown are the minimum concentration of the surfactant necessary to induce the processes, or competing effects in a mixture of surfactants when only one is capable of inducing shapes. Here we systematically study the effect of surfactant nature and concentration on the shape-inducing behaviour of hexadecane-in-water emulsions with both cationic (CTAB) and non-ionic (Tween, Brij) surfactants over up to five orders of magnitude of concentration. The minimum effective concentration is found approximately equal to the critical micelle concentration (CMC), or the solubility limit below the Krafft point of the surfactant. However, the emulsions show low stability at the vicinity of CMC. In a mixed surfactant experiment (Tween 60 and Tween 20), where only one (Tween 60) can induce shapes we elucidate the role of competition at the interface during mixed surfactant adsorption by varying the composition. We find that a lower bound of ∼75% surface coverage of the shape-inducing surfactant with C14 or longer chain length is necessary for self-shaping to occur. The resulting technique produces a clear visual readout of otherwise difficult to investigate molecular events. These basic requirements (minimum concentration and % surface coverage to induce oil self-shaping) and the related experimental techniques are expected to guide academic and industrial scientists to formulations with complex surfactant mixtures and behaviour.
Collapse
Affiliation(s)
- Jiale Feng
- Active and Intelligent Materials Lab, Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 OFS, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Zhulieta Valkova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Ave., 1164 Sofia, Bulgaria.
| | - E Emily Lin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Ehsan Nourafkan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Tiesheng Wang
- Active and Intelligent Materials Lab, Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 OFS, UK
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Ave., 1164 Sofia, Bulgaria.
| | - Radomir Slavchov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| | - Stoyan K Smoukov
- Active and Intelligent Materials Lab, Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 OFS, UK
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Ave., 1164 Sofia, Bulgaria.
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
14
|
Zhang M, Zhou Y, Fu D, Meng L, Yuan S, Zhu Y, Wang H. A novel sustained release and scale inhibition functional microsphere. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Staub MC, Kim S, Yu S, Li CY. Porous Crystalsomes via Emulsion Crystallization and Polymer Phase Separation. ACS Macro Lett 2022; 11:1022-1027. [PMID: 35901196 DOI: 10.1021/acsmacrolett.2c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystalsomes are crystalline capsules that are formed by controlling polymer crystallization to break translational symmetry. While recent studies showed that these crystalline capsules exhibit interesting mechanical properties, thermal behavior, and excellent performance in blood circulation, the closed capsule is undesired for drug delivery applications. We report the formation and characterization of porous crystalsomes where porosity is rendered on the crystalline shells. A miniemulsion is formed using two amphiphilic block copolymers (BCP). The competition between controlled crystallization and phase separation of the BCPs at the emulsion surface leads to multiphase crystalsomes. Subsequently removing one BCP produces porous crystalline capsules.
Collapse
Affiliation(s)
- Mark C Staub
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Seyong Kim
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Shichen Yu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Ultrafiltration for Homogenization of Wheat Germ Oil:Water System: Droplet Size Distribution and Stability of Emulsion. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Klojdová I, Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods 2022; 11:foods11111558. [PMID: 35681307 PMCID: PMC9180460 DOI: 10.3390/foods11111558] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Emulsions stabilized by adsorbed particles—Pickering particles (PPs) instead of surfactants and emulsifiers are called Pickering emulsions. Here, we review the possible uses of Pickering multiple emulsions (PMEs) in the food industry. Food-grade PMEs are very complex systems with high potential for application in food technology. They can be prepared by traditional two-step emulsification processes but also using complex techniques, e.g., microfluidic devices. Compared to those stabilized with an emulsifier, PMEs provide more benefits such as lower susceptibility to coalescence, possible encapsulation of functional compounds in PMEs or even PPs with controlled release, etc. Additionally, the PPs can be made from food-grade by-products. Naturally, w/o/w emulsions in the Pickering form can also provide benefits such as fat reduction by partial replacement of fat phase with internal water phase and encapsulation of sensitive compounds in the internal water phase. A possible advanced type of PMEs may be stabilized by Janus particles, which can change their physicochemical properties and control properties of the whole emulsion systems. These emulsions have big potential as biosensors. In this paper, recent advances in the application of PPs in food emulsions are highlighted with emphasis on the potential application in food-grade PMEs.
Collapse
|
18
|
Camelo-Silva C, Verruck S, Ambrosi A, Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Preparation of monodispersed emulsions by premix membrane emulsification without repetitive permeation: Influence of membrane permeation rate (flux) and emulsion viscosity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
21
|
Abstract
Nanogels have high tunability and stability while being able to sense and respond to external stimuli by showing changes in the gel volume, water content, colloidal stability, mechanical strength, and other physical/chemical properties. In this article, advances in the preparation of nanogels will be reviewed. The application potential of nanogels in drug delivery will also be highlighted. It is the objective of this article to present a snapshot of the recent knowledge of nanogel preparation and application for future research in drug delivery.
Collapse
Affiliation(s)
- Cuixia Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, China
| | | | - Wing-Fu Lai
- School of Education, University of Bristol, Bristol, UK.,Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
22
|
Schroen K, Berton-Carabin C, Renard D, Marquis M, Boire A, Cochereau R, Amine C, Marze S. Droplet Microfluidics for Food and Nutrition Applications. MICROMACHINES 2021; 12:863. [PMID: 34442486 PMCID: PMC8400250 DOI: 10.3390/mi12080863] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet-droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics-analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences.
Collapse
Affiliation(s)
- Karin Schroen
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
| | - Claire Berton-Carabin
- Food Process and Engineering Group, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (K.S.); (C.B.-C.)
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Denis Renard
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | | | - Adeline Boire
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Rémy Cochereau
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Chloé Amine
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| | - Sébastien Marze
- INRAE, BIA Biopolymères Interactions Assemblages, F-44316 Nantes, France; (D.R.); (A.B.); (R.C.); (C.A.)
| |
Collapse
|
23
|
Cholakova D, Glushkova D, Tcholakova S, Denkov N. Cold-Burst Method for Nanoparticle Formation with Natural Triglyceride Oils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7875-7889. [PMID: 33586441 DOI: 10.1021/acs.langmuir.0c02967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The preparation of nanoemulsions of triglyceride oils in water usually requires high mechanical energy and sophisticated equipment. Recently, we showed that α-to-β (viz., gel-to-crystal) phase transition, observed with most lipid substances (triglycerides, diglycerides, phospholipids, alkanes, etc.), may cause spontaneous disintegration of microparticles of these lipids, dispersed in aqueous solutions of appropriate surfactants, into nanometer particles/drops using a simple cooling/heating cycle of the lipid dispersion (Cholakova et al. ACS Nano 2020, 14, 8594). In the current study, we show that this "cold-burst process" is observed also with natural oils of high practical interest, including coconut oil, palm kernel oil, and cocoa butter. Mean drop diameters of ca. 50-100 nm were achieved with some of the studied oils. From the results of dedicated model experiments, we conclude that intensive nanofragmentation is observed when the following requirements are met: (1) The three-phase contact angle at the solid lipid-water-air interface is below ca. 30 degrees. (2) The equilibrium surface tension of the surfactant solution is below ca. 30 mN/m, and the dynamic surface tension decreases rapidly. (3) The surfactant solution contains nonspherical surfactant micelles, e.g., ellipsoidal micelles or bigger supramolecular aggregates. (4) The three-phase contact angle measured at the contact line (frozen oil-surfactant solution-melted oil) is also relatively low. The mechanism(s) of the particle bursting process is revealed, and on this basis, the role of all of these factors is clarified and discussed. We explain all main effects observed experimentally and define guiding principles for optimization of the cold-burst process in various, practically relevant lipid-surfactant systems.
Collapse
Affiliation(s)
- Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Desislava Glushkova
- Department of Chemical and Pharmaceutical Engineering Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| |
Collapse
|
24
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
The Importance of Interfacial Tension in Emulsification: Connecting Scaling Relations Used in Large Scale Preparation with Microfluidic Measurement Methods. CHEMENGINEERING 2020. [DOI: 10.3390/chemengineering4040063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper starts with short descriptions of emulsion preparation methods used at large and smaller scales. We give scaling relations as they are generally used, and focus on the central role that interfacial tension plays in these relations. The actual values of the interfacial tension are far from certain given the dynamic behavior of surface-active components, and the lack of measurement methods that can be applied to conditions as they occur during large-scale preparation. Microfluidic techniques are expected to be very instrumental in closing this gap. Reduction of interfacial tension resulting from emulsifier adsorption at the oil-water interface is a complex process that consists of various steps. We discuss them here, and present methods used to probe them. Specifically, methods based on microfluidic tools are of great interest to study short droplet formation times, and also coalescence behavior of droplets. We present the newest insights in this field, which are expected to bring interfacial tension observations to a level that is of direct relevance for the large-scale preparation of emulsions, and that of other multi-phase products.
Collapse
|
26
|
Encapsulation of resveratrol using Maillard conjugates and membrane emulsification. Food Res Int 2020; 137:109359. [PMID: 33233062 DOI: 10.1016/j.foodres.2020.109359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Resveratrol is a stilbene phenolic associated with health-promoting properties such as antioxidant, anti-inflammatory and chemoprevention. Due to its chemical instability and low water solubility, microencapsulation represents a good alternative to provide better results when employing resveratrol as a nutraceutical ingredient. The main purpose of our work was to use low shear membrane emulsification to produce resveratrol-loaded emulsions of low polydispersity and integrate this process to spray drying to produce a powdered product. Resveratrol was dispersed with palm oil in a continuous phase obtained via Maillard reaction. We evaluated the influence of process conditions and phases composition on emulsions properties and performed the characterization of the spray-dried powder. Emulsions droplet size and span decreased as shear stress was increased. Higher dispersed phase fluxes provided increased droplet size polydispersity. Process conditions were set on 60.0 Pa shear stress and 70 L m-2h-1 of dispersed phase flux, obtaining emulsions with mean diameter around 30 μm and span of 0.76. Despite this relatively high droplet size of the infeed emulsions, the spray drying process resulted in particles with high encapsulation efficiency (97.97 ± 0.01%), and water content (~3.6%) and diameter (~10.2 μm) similar to particles obtained from fine emulsions in previously reported works.
Collapse
|
27
|
Dhakal SP, He J. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Res Int 2020; 137:109326. [DOI: 10.1016/j.foodres.2020.109326] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 01/29/2023]
|
28
|
Kowalewska K, Sipa K, Leniart A, Skrzypek S, Poltorak L. Electrochemistry at the liquid–liquid interface rediscovers interfacial polycondensation of nylon-6,6. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Ortiz de Solorzano I, Mendoza G, Arruebo M, Sebastian V. Customized hybrid and NIR-light triggered thermoresponsive drug delivery microparticles synthetized by photopolymerization in a one-step flow focusing continuous microreactor. Colloids Surf B Biointerfaces 2020; 190:110904. [DOI: 10.1016/j.colsurfb.2020.110904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
|
30
|
Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. ACTA ACUST UNITED AC 2020; 4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely explored and applied in many areas, especially in the field of tissue engineering. The interface of biomaterials and cells has been deeply investigated. However, it has been demonstrated that conventional 2D biomaterials fail to maintain the 3D structures and phenotypes of cells, which is the result of their limited ability to mimic the latter's complex extracellular matrix. To overcome this challenge, cell cultivation dependent on 3D biomaterials has emerged as an alternative strategy to make the recovery of 3D structures and functions of cells possible. Thus, with the thriving development of 3D cell culture in tissue engineering, a holistic review of the construction and application of 3D biomaterials is desired. Here, recent developments in 3D biomaterials for tissue engineering are reviewed. An overview of various approaches to construct 3D biomaterials, such as electro-jetting/-spinning, micro-molding, microfluidics, and 3D bio-printing, is first presented. Their typical applications in constructing cell sheets, vascular structures, cell spheroids, and macroscopic cellular constructs are described as well. Following these two sections, the current status and challenges are analyzed, as well as the future outlook of 3D biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
31
|
Formation of wax walled microcapsules via double emulsion using cross membrane emulsification at elevated temperatures. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Vorselen D, Wang Y, de Jesus MM, Shah PK, Footer MJ, Huse M, Cai W, Theriot JA. Microparticle traction force microscopy reveals subcellular force exertion patterns in immune cell-target interactions. Nat Commun 2020; 11:20. [PMID: 31911639 PMCID: PMC6946705 DOI: 10.1038/s41467-019-13804-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/18/2019] [Indexed: 01/11/2023] Open
Abstract
Force exertion is an integral part of cellular behavior. Traction force microscopy (TFM) has been instrumental for studying such forces, providing spatial force measurements at subcellular resolution. However, the applications of classical TFM are restricted by the typical planar geometry. Here, we develop a particle-based force sensing strategy for studying cellular interactions. We establish a straightforward batch approach for synthesizing uniform, deformable and tuneable hydrogel particles, which can also be easily derivatized. The 3D shape of such particles can be resolved with superresolution (<50 nm) accuracy using conventional confocal microscopy. We introduce a reference-free computational method allowing inference of traction forces with high sensitivity directly from the particle shape. We illustrate the potential of this approach by revealing subcellular force patterns throughout phagocytic engulfment and force dynamics in the cytotoxic T-cell immunological synapse. This strategy can readily be adapted for studying cellular forces in a wide range of applications.
Collapse
Affiliation(s)
- Daan Vorselen
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA
| | - Yifan Wang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Miguel M de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pavak K Shah
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Matthew J Footer
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Wei Cai
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
33
|
Akamatsu K, Kurita R, Sato D, Nakao SI. Aqueous Two-Phase System Formation in Small Droplets by Shirasu Porous Glass Membrane Emulsification Followed by Water Extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9825-9830. [PMID: 31293166 DOI: 10.1021/acs.langmuir.9b01320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
By utilizing water transport phenomena between two different water-in-oil (W/O) emulsion droplets through continuous oil phase, we developed a novel method of aqueous two-phase system (ATPS) formation in small droplets prepared by Shirasu porous glass (SPG) membrane emulsification technique. When we mixed W/O emulsion droplets containing poly(ethylene glycol) (PEG) and dextran (DEX) at concentrations below the threshold of the phase separation, with droplets containing other solutes at high concentrations, water extraction from the droplets containing PEG and DEX to those containing the other solutes occurred, owing to the osmotic pressure difference. This effect increased the concentrations of PEG and DEX in the droplets above the phase separation threshold. We demonstrated the feasibility of the preparation method by varying the pore sizes of the SPG membranes, the solutes, and their concentrations. Only when the concentration of the solute was high enough to extract sufficient amounts of water did the homogeneous disperse phase consisting of PEG and DEX in droplets turn into a PEG-rich phase and DEX-rich phase, showing ATPS. This result was irrespective of the solute itself and pore size of the SPG membrane. In particular, we successfully demonstrated monodisperse ATPS droplets with diameters of approximately 10 μm under a certain condition.
Collapse
|
34
|
Santos J, Calero N, García-Capitán J, Muñoz J. Preparation and characterization of emulgels loaded with sweet fennel oil. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1623688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jenifer Santos
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| | - Nuria Calero
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| | - Julia García-Capitán
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| | - José Muñoz
- Reología Aplicada. Tecnología de Coloides. Departamento de Ingeniería Química. Facultad de Química, Universidad de Sevilla c/P. García González, Sevilla, Spain
| |
Collapse
|
35
|
Huynh Mai C, Thanh Diep T, Le TTT, Nguyen V. Advances in colloidal dispersions: A review. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1591970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cang Huynh Mai
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Tung Thanh Diep
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Thuy T. T. Le
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
36
|
Mugabi J, Naohiro K, Hiroki Y, Miki M, Igura N, Shimoda M. Preparation of Small Droplet Size Monodispersed Emulsions at High Production Rate by Continuous Intramembrane Premix Emulsification Method. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jophous Mugabi
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Karatani Naohiro
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Yachigo Hiroki
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Masuo Miki
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Noriyuki Igura
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| | - Mitsuya Shimoda
- Laboratory of Food Process Engineering, Graduate School of Bioresource and Bioenvironmental Science, Faculty of Agriculture, Kyushu University
| |
Collapse
|
37
|
Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci 2018; 260:65-84. [PMID: 30177214 DOI: 10.1016/j.cis.2018.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Blood transfusions, which usually consist in the administration of isolated red blood cells (RBCs), are crucial in traumatic injuries, pre-surgical conditions and anemias. Although RBCs transfusion from donors is a safe procedure, donor RBCs can only be stored for a maximum of 42 days under refrigerated conditions and, therefore, stockpiles of RBCs for use in acute disasters do not exist. With a worldwide shortage of donor blood that is expected to increase over time, the creation of oxygen-carriers with long storage life and compatibility without typing and cross-matching, persists as one of the foremost important challenges in biomedicine. However, research has so far failed to produce FDA approved RBCs substitutes (RBCSs) for human usage. As such, due to unacceptable toxicities, the first generation of oxygen-carriers has been withdrawn from the market. Being hemoglobin (Hb) the main component of RBCs, a lot of effort is being devoted in assembling semi-synthetic RBCS utilizing Hb as the oxygen-carrier component, the so-called Hb-based oxygen carriers (HBOCs). However, a native RBC also contains a multi-enzyme system to prevent the conversion of Hb into non-functional methemoglobin (metHb). Thus, the challenge for the fabrication of next-generation HBOCs relies in creating a system that takes advantage of the excellent oxygen-carrying capabilities of Hb, while preserving the redox environment of native RBCs that prevents or reverts the conversion of Hb into metHb. In this review, we feature the most recent advances in the assembly of the new generation of HBOCs with emphasis in two main approaches: the chemical modification of Hb either by cross-linking strategies or by conjugation to other polymers, and the Hb encapsulation strategies, usually in the form of lipidic or polymeric capsules. The applications of the aforementioned HBOCs as blood substitutes or for oxygen-delivery in tissue engineering are highlighted, followed by a discussion of successes, challenges and future trends in this field.
Collapse
|
38
|
Akamatsu K, Ide Y, Inabe T, Nakao SI. Preparation of Monodisperse Calcium Alginate Micro-/Nanospheres via Shirasu Porous Glass Membrane Emulsification Followed by Classification Using Microfiltration Membranes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuki Akamatsu
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Yusuke Ide
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Takuya Inabe
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| | - Shin-ichi Nakao
- Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
- Research Institute for Science and Technology, Kogakuin University, 2665-1 Nakano-machi, Hachioji-shi, Tokyo 192-0015, Japan
| |
Collapse
|
39
|
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 2018; 73:38-51. [PMID: 29653217 DOI: 10.1016/j.actbio.2018.04.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. STATEMENT OF SIGNIFICANCE Nanoparticles are increasingly important in the field of biomedicine. Particles made of polymers are in the spotlight, due to their biodegradability, biocompatibility, versatility. In this review, we aim to discuss the range of formulation techniques, manipulations, and applications of poly(lactic-co-glycolic acid) (PLGA) particles, to enable a researcher to effectively select or design the optimal particles for their application. We describe the various techniques of PLGA particle synthesis and their impact on possible applications. We focus on recent developments in the field of PLGA particles, and new synthesis techniques that have emerged over the past years. Overall, we show how the chemistry of PLGA particles can be adapted to solve pressing biological needs.
Collapse
|
40
|
Investigation of Nanoporous Superalloy Membranes for the Production of Nanoemulsions. METALS 2018. [DOI: 10.3390/met8050361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703493. [PMID: 29468837 DOI: 10.1002/smll.201703493] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/09/2018] [Indexed: 05/20/2023]
Abstract
Template synthesis represents an important class of nanofabrication methods. Herein, recent advances in nanomaterial preparation by extrusion through nanoporous membranes that preserve the template membrane without sacrificing it, which is termed as "non-sacrificing template synthesis," are reviewed. First, the types of nanoporous membranes used in nanoporous membrane extrusion applications are introduced. Next, four common nanoporous membrane extrusion strategies: vesicle extrusion, membrane emulsification, precipitation extrusion, and biological membrane extrusion, are examined. These methods have been utilized to prepare a wide range of nanomaterials, including liposomes, emulsions, nanoparticles, nanofibers, and nanotubes. The principle and historical context of each specific technology are discussed, presenting prominent examples and evaluating their positive and negative features. Finally, the current challenges and future opportunities of nanoporous membrane extrusion methods are discussed.
Collapse
Affiliation(s)
- Peng Guo
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jing Huang
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan road, Shanghai, 200240, China
| | - Charles R Martin
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
42
|
Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MR, Garton NJ, Stapley AG, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci 2017; 249:100-133. [PMID: 28688779 DOI: 10.1016/j.cis.2017.05.014] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
Against a backdrop of global antibiotic resistance and increasing awareness of the importance of the human microbiota, there has been resurgent interest in the potential use of bacteriophages for therapeutic purposes, known as phage therapy. A number of phage therapy phase I and II clinical trials have concluded, and shown phages don't present significant adverse safety concerns. These clinical trials used simple phage suspensions without any formulation and phage stability was of secondary concern. Phages have a limited stability in solution, and undergo a significant drop in phage titre during processing and storage which is unacceptable if phages are to become regulated pharmaceuticals, where stable dosage and well defined pharmacokinetics and pharmacodynamics are de rigueur. Animal studies have shown that the efficacy of phage therapy outcomes depend on the phage concentration (i.e. the dose) delivered at the site of infection, and their ability to target and kill bacteria, arresting bacterial growth and clearing the infection. In addition, in vitro and animal studies have shown the importance of using phage cocktails rather than single phage preparations to achieve better therapy outcomes. The in vivo reduction of phage concentration due to interactions with host antibodies or other clearance mechanisms may necessitate repeated dosing of phages, or sustained release approaches. Modelling of phage-bacterium population dynamics reinforces these points. Surprisingly little attention has been devoted to the effect of formulation on phage therapy outcomes, given the need for phage cocktails, where each phage within a cocktail may require significantly different formulation to retain a high enough infective dose. This review firstly looks at the clinical needs and challenges (informed through a review of key animal studies evaluating phage therapy) associated with treatment of acute and chronic infections and the drivers for phage encapsulation. An important driver for formulation and encapsulation is shelf life and storage of phage to ensure reproducible dosages. Other drivers include formulation of phage for encapsulation in micro- and nanoparticles for effective delivery, encapsulation in stimuli responsive systems for triggered controlled or sustained release at the targeted site of infection. Encapsulation of phage (e.g. in liposomes) may also be used to increase the circulation time of phage for treating systemic infections, for prophylactic treatment or to treat intracellular infections. We then proceed to document approaches used in the published literature on the formulation and stabilisation of phage for storage and encapsulation of bacteriophage in micro- and nanostructured materials using freeze drying (lyophilization), spray drying, in emulsions e.g. ointments, polymeric microparticles, nanoparticles and liposomes. As phage therapy moves forward towards Phase III clinical trials, the review concludes by looking at promising new approaches for micro- and nanoencapsulation of phages and how these may address gaps in the field.
Collapse
|
43
|
Valkova Z, Cholakova D, Tcholakova S, Denkov N, Smoukov SK. Mechanisms and Control of Self-Emulsification upon Freezing and Melting of Dispersed Alkane Drops. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12155-12170. [PMID: 28988487 DOI: 10.1021/acs.langmuir.7b02048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Emulsification requires drop breakage and creation of a large interfacial area between immiscible liquid phases. Usually, high-shear or high-pressure emulsification devices that generate heat and increase the emulsion temperature are used to obtain emulsions with micrometer and submicrometer droplets. Recently, we reported a new, efficient procedure of self-emulsification (Tcholakova et al. Nat. Commun. 2017, 8, 15012), which consists of one to several cycles of freezing and melting of predispersed alkane drops in a coarse oil-in-water emulsion. Within these freeze-thaw cycles of the dispersed drops, the latter burst spontaneously into hundreds and thousands of smaller droplets without using any mechanical agitation. Here, we clarify the main factors and mechanisms, which drive this self-emulsification process, by exploring systematically the effects of the oil and surfactant types, the cooling rate, and the initial drop size. We show that the typical size of the droplets, generated by this method, is controlled by the size of the structural domains formed in the cooling-freezing stage of the procedure. Depending on the leading mechanism, these could be the diameter of the fibers formed upon drop self-shaping or the size of the crystal domains formed at the moment of drop-freezing. Generally, surfactant tails that are 0-2 carbon atoms longer than the oil molecules are most appropriate to observe efficient self-emulsification. The specific requirements for the realization of different mechanisms are clarified and discussed. The relative efficiencies of the three different mechanisms, as a function of the droplet size and cooling procedure, are compared in controlled experiments to provide guidance for understanding and further optimization and scale-up of this self-emulsification process.
Collapse
Affiliation(s)
- Zhulieta Valkova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | - Stoyan K Smoukov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University , 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
- Active and Intelligent Materials Laboratory, School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, U.K
- Active and Intelligent Materials Laboratory, Department of Materials Science & Metallurgy, University of Cambridge , 27 Charles Babbage Road, Cambridge CB3 OFS, U.K
| |
Collapse
|
44
|
Zhu C, Xu J, Hou Z, Liu S, Li T. Scale Effect on the Interface Reaction between PDMS-E Emulsion Droplets and Gelatin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9926-9933. [PMID: 28872325 DOI: 10.1021/acs.langmuir.7b02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, the scale effect on the interface reaction between PDMS-E emulsion droplets and gelatin was studied systematically. The monodisperse α-[3-(2,3-epoxy-propoxy)propyl]-ω-butyl-polydimethylsiloxane (PDMS-E) emulsion droplets on different scales were prepared using a Shirasu porous glass (SPG) membrane with a 0.5 μm pore size. The zeta potential results showed that the surface charge density of PDMS-E droplets decreased with the droplet scale, and the variation went through three stages, which corresponded to the diameter ranges of 100-450, 450-680, and 670-800 nm, respectively. The results of Raman spectra indicated that the distribution concentration of head groups in surfactants decreased but the polar epoxy groups tend to be exposed on the interface with the increase in the droplet scale. This was conducive to the nucleophilic attack of amino groups in gelatin on the epoxy group. Thus, the conversion of amino groups was related to the scale of the PDMS-E droplet. This study might provide a proper way to control the rate of interfacial reaction between immiscible macromolecule monomers.
Collapse
Affiliation(s)
- Cong Zhu
- Key Laboratory of Fine Chemicals of Shandong Province, Qilu University of Technology , Jinan 250353, P. R. China
| | - Jing Xu
- Key Laboratory of Fine Chemicals of Shandong Province, Qilu University of Technology , Jinan 250353, P. R. China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University , Jinan 250100, P. R. China
| | - Suqing Liu
- Shandong Province Leather Industrial Research Institute, Jinan 250353, P. R. China
| | - Tianduo Li
- Key Laboratory of Fine Chemicals of Shandong Province, Qilu University of Technology , Jinan 250353, P. R. China
| |
Collapse
|
45
|
Jahanzad F, Sajjadi S. Two-stage stabilizer addition protocol as a means to reduce the size and improve the uniformity of polymer beads in suspension polymerization. J Appl Polym Sci 2017. [DOI: 10.1002/app.45671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fatemeh Jahanzad
- Division of Chemical and Petroleum Engineering; School of Engineering, London South Bank University, 103 Borough Road; London SE10AA United Kingdom
| | - Shahriar Sajjadi
- Faculty of Natural and Mathematical Sciences; King's College London, Strand; London WC2R2LS United Kingdom
| |
Collapse
|
46
|
The garlic ( A. sativum L. ) extracts food grade W 1 /O/W 2 emulsions prepared by homogenization and stirred cell membrane emulsification. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Aryanti N, Williams RA. Analysis of rotating membrane emulsification performance for oil droplet production based on the Taylor vortices approach. PARTICULATE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1080/02726351.2017.1326995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nita Aryanti
- Chemical Engineering Department, Diponegoro University, Semarang, Indonesia
| | | |
Collapse
|
48
|
Zernov AL, Bonartsev AP, Yakovlev SG, Myshkina VL, Makhina TK, Parshina ES, Kharitonova EP, Bonartseva GA, Shaitan KV. Low molecular weight poly(3-hydroxybutyrate) microparticles synthesized by piezoelectric spray drying for the sustained release of paclitaxel. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s1995078017020136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Tcholakova S, Valkova Z, Cholakova D, Vinarov Z, Lesov I, Denkov N, Smoukov SK. Efficient self-emulsification via cooling-heating cycles. Nat Commun 2017; 8:15012. [PMID: 28447603 PMCID: PMC5457670 DOI: 10.1038/ncomms15012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/21/2017] [Indexed: 01/31/2023] Open
Abstract
In self-emulsification higher-energy micrometre and sub-micrometre oil droplets are spontaneously produced from larger ones and only a few such methods are known. They usually involve a one-time reduction in oil solubility in the continuous medium via changing temperature or solvents or a phase inversion in which the preferred curvature of the interfacial surfactant layer changes its sign. Here we harness narrow-range temperature cycling to cause repeated breakup of droplets to higher-energy states. We describe three drop breakup mechanisms that lead the drops to burst spontaneously into thousands of smaller droplets. One of these mechanisms includes the remarkable phenomenon of lipid crystal dewetting from its own melt. The method works with various oil-surfactant combinations and has several important advantages. It enables low surfactant emulsion formulations with temperature-sensitive compounds, is scalable to industrial emulsification and applicable to fabricating particulate drug carriers with desired size and shape.
Collapse
Affiliation(s)
- Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Zhulieta Valkova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Diana Cholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Zahari Vinarov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Ivan Lesov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Nikolai Denkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Stoyan K. Smoukov
- Active and Intelligent Materials Lab, Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| |
Collapse
|
50
|
Güell C, Ferrando M, Trentin A, Schroën K. Apparent Interfacial Tension Effects in Protein Stabilized Emulsions Prepared with Microstructured Systems. MEMBRANES 2017; 7:membranes7020019. [PMID: 28346335 PMCID: PMC5489853 DOI: 10.3390/membranes7020019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023]
Abstract
Proteins are mostly used to stabilize food emulsions; however, production of protein containing emulsions is notoriously difficult to capture in scaling relations due to the complex behavior of proteins in interfaces, in combination with the dynamic nature of the emulsification process. Here, we investigate premix membrane emulsification and use the Ohnesorge number to derive a scaling relation for emulsions prepared with whey protein, bovine serum albumin (BSA), and a standard emulsifier Tween 20, at various concentrations (0.1%, 0.5%, 1.25% and 2%). In the Ohnesorge number, viscous, inertia, and interfacial tension forces are captured, and most of the parameters can be measured with great accuracy, with the exception of the interfacial tension. We used microfluidic Y-junctions to estimate the apparent interfacial tension at throughputs comparable to those in premix emulsification, and found a unifying relation. We next used this relation to plot the Ohnesorge number versus P-ratio defined as the applied pressure over the Laplace pressure of the premix droplet. The measured values all showed a decreasing Ohnesorge number at increasing P-ratio; the differences between regular surfactants and proteins being systematic. The surfactants were more efficient in droplet size reduction, and it is expected that the differences were caused by the complex behavior of proteins in the interface (visco-elastic film formation). The differences between BSA and whey protein were relatively small, and their behavior coincided with that of low Tween concentration (0.1%), which deviated from the behavior at higher concentrations.
Collapse
Affiliation(s)
- Carme Güell
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain.
| | - Montserrat Ferrando
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain.
| | - Alexandre Trentin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avda. Països Catalans 26, Tarragona 43007, Spain.
| | - Karin Schroën
- Food Process Engineering Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|