1
|
Hall SB, Zuo YY. The biophysical function of pulmonary surfactant. Biophys J 2024; 123:1519-1530. [PMID: 38664968 PMCID: PMC11213971 DOI: 10.1016/j.bpj.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The type II pneumocytes of the lungs secrete a mixture of lipids and proteins that together acts as a surfactant. The material forms a thin film on the surface of the liquid layer that lines the alveolar air sacks. When compressed by the decreasing alveolar surface area during exhalation, the films reduce surface tension to exceptionally low levels. Pulmonary surfactant is essential for preserving the integrity of the barrier between alveolar air and capillary blood during normal breathing. This review focuses on the major biophysical processes by which endogenous pulmonary surfactant achieves its function and the mechanisms involved in those processes. Vesicles of pulmonary surfactant adsorb rapidly from the alveolar liquid to form the interfacial film. Interfacial insertion, which requires the hydrophobic surfactant protein SP-B, proceeds by a process analogous to the fusion of two vesicles. When compressed, the adsorbed film desorbs slowly. Constituents remain at the surface at high interfacial concentrations that reduce surface tensions well below equilibrium levels. We review the models proposed to explain how pulmonary surfactant achieves both the rapid adsorption and slow desorption characteristic of a functional film.
Collapse
Affiliation(s)
- Stephen B Hall
- Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon.
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| |
Collapse
|
2
|
Bergendal E, Rutland MW. Unveiling Texture and Topography of Fatty Acid Langmuir Films: Domain Stability and Isotherm Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10468-10476. [PMID: 38713000 PMCID: PMC11112731 DOI: 10.1021/acs.langmuir.3c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
3D texturing by self-assembly at the air-water interface has recently been proposed. The hypothesis of this work is that, if this is true, such domain formation should be inferable directly from pressure-area isotherms and be thermodynamically stable. Monolayers of branched fatty acid mixtures with straight chain analogues and their stability are thus studied using a combination of pressure-area isotherms, thermodynamic analysis, in situ Brewster angle microscopy, and atomic force microscopy of both LB-deposited and drop-cast films on silicon wafers. Isotherms reflecting the behavior of monodisperse 3D domains are shown to be independent of compression rate and display long-term stability. Gibbs analysis further confirms the thermodynamic rather than kinetic origin of such novel species by revealing that deviations from ideal mixing can be explained only a priori by differences in the topography of the water surface, thus also indirectly confirming the self-assembly deformation of the water interface. The intrinsic self-assembly curvature and miscibility of the two fatty acids is confirmed by drop-casting, which also provides a rapid, tunable thin-film preparation approach. Finally, the longevity of the nanostructured films is extraordinary, the long-range order of the deposited films increases with equilibration time at the water interface, and the integrity of the nanopatterns remains intact on the scale of years.
Collapse
Affiliation(s)
- Erik Bergendal
- Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-100 44, Sweden
| | - Mark W. Rutland
- Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, Stockholm SE-100 44, Sweden
- RISE
Research Institutes of Sweden, Chemistry, Materials and Surfaces, Box 5607, Stockholm SE-114 86, Sweden
- School
of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Laboratoire
de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Ecully Cedex 69134, France
| |
Collapse
|
3
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Singh SK, Bu W, Sun P, Paige MF. Mixing in Langmuir Monolayers: Perfluorotetradecanoic Acid and a Gemini Surfactant without a Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16503-16512. [PMID: 37931181 DOI: 10.1021/acs.langmuir.3c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A recently reported anionic gemini surfactant, a member of the so-called "gemini without a linker" family, has recently been reported to form closely packed crystalline monolayers at the air-water interface. In this work, the impact on monolayer properties of the compound, C18-0-C18, that result from its mixing with a benchmark perfluorinated surfactant, perfluorotetradecanoic acid (PF), is explored. The films exhibit nonideal mixing, as determined by surface pressure-area (π-A) isotherms and surface potential measurements, and phase-separation between the two components was observed by the direct visualization of the monolayers, and grazing-incident X-ray diffraction at the air-water interface. The pure and mixed films follow similar trends in the order of C18-0-C18 < PF < χPF = 0.50 mixed films for both their extent of hysteresis and their stability at the air-water interface. Further, crystallographic data for the mixed film emerge as a simple combination of distinct diffraction patterns characteristic of both the individual components, consistent with the other findings reported here and thus clarify the intermolecular behavior of the binary mixture at the surface.
Collapse
Affiliation(s)
- Srikant Kumar Singh
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Pan Sun
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew F Paige
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
5
|
|
6
|
|
7
|
Das A, Noack S, Schlaad H, Reiter G, Reiter R. Exploring Pathways to Equilibrate Langmuir Polymer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8184-8192. [PMID: 32569470 DOI: 10.1021/acs.langmuir.0c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Focusing on the phase-coexistence region in Langmuir films of poly(l-lactide), we investigated changes in nonequilibrated morphologies and the corresponding features of the isotherms induced by different experimental pathways of lateral compression and expansion. In this coexistence region, the surface pressure Π was larger than the expected equilibrium value and was found to increase upon compression, i.e., exhibited a nonhorizontal plateau. As shown earlier by using microscopic techniques [Langmuir 2019, 35, 6129-6136], in this plateau region, well-ordered mesoscopic clusters coexisted with a surrounding matrix phase. We succeeded in reducing Π either by slowing down the rate of compression or through increasing the waiting time after stopping the movement of the barriers, which allowed for relaxations in the coexistence region. Intriguingly, the most significant pressure reduction was observed when recompressing a film that had already been compressed and expanded, if the recompression was started from an area value smaller than the one anticipated for the onset of the coexistence region. This observation suggests a "self-seeding" behavior, i.e., pre-existing nuclei allowed to circumvent the nucleation step. The decrease in Π was accompanied by a transformation of the initially formed metastable mesoscopic clusters into a thermodynamically favored filamentary morphology. Our results demonstrate that it is practically impossible to obtain fully equilibrated coexisting phases in a Langmuir polymer film, neither under conditions of extremely slow continuous compression nor for long waiting times at a constant area in the coexistence region which allow for reorganization.
Collapse
Affiliation(s)
- Abhijna Das
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Sebastian Noack
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht Str. 24-25, Potsdam 14476, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht Str. 24-25, Potsdam 14476, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Renate Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| |
Collapse
|
8
|
Xu L, Yang Y, Zuo YY. Atomic Force Microscopy Imaging of Adsorbed Pulmonary Surfactant Films. Biophys J 2020; 119:756-766. [PMID: 32702292 DOI: 10.1016/j.bpj.2020.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary surfactant (PS) is a lipid-protein complex that adsorbs to the air-water surface of the lung as a thin film. Previous studies have suggested that the adsorbed PS film is composed of an interfacial monolayer, plus a functionally attached vesicular complex, called the surface-associated surfactant reservoir. However, direct visualization of the lateral structure and morphology of adsorbed PS films using atomic force microscopy (AFM) has been proven to be technically challenging. To date, all AFM studies of the PS film have relied on the model of Langmuir monolayers. Here, we showed the first, to our knowledge, AFM imaging of adsorbed PS films under physiologically relevant conditions using a novel, to our knowledge, experimental methodology called constrained drop surfactometry. In conjunction with a series of methodological innovations, including subphase replacement, in situ Langmuir-Blodgett transfer, and real-time surface tension control using closed-loop axisymmetric drop shape analysis, constrained drop surfactometry allowed the study of lateral structure and topography of animal-derived natural PS films at physiologically relevant low surface tensions. Our data suggested that a nucleation-growth model is responsible for the adsorption-induced squeeze-out of the PS film, which likely results in an interfacial monolayer enriched in dipalmitoylphosphatidylcholine with the attached multilayered surface-associated surfactant reservoir. These findings were further supported by frequency-dependent measurements of surface dilational rheology. Our study provides novel, to our knowledge, biophysical insights into the understanding of the mechanisms by which the PS film attains low surface tensions and stabilizes the alveolar surface.
Collapse
Affiliation(s)
- Lu Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Yi Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii; Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii.
| |
Collapse
|
9
|
Zhang P, Pham T, Zheng X, Liu C, Plata PL, Král P, Bu W, Lin B, Liu Y. Spontaneous collapse of palmitic acid films on an alkaline buffer containing calcium ions. Colloids Surf B Biointerfaces 2020; 193:111100. [PMID: 32408262 DOI: 10.1016/j.colsurfb.2020.111100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Understanding the interaction of ions with fatty acids is important to identify their roles in various bioprocesses and to build novel biomimetic systems. In this study, the molecular organization of palmitic acid (PA) films on alkaline buffer solutions (pH 7.4) with and without divalent Ca2+ was measured at a constant surface area using Langmuir troughs coupled with microscopy and X-ray interfacial techniques. Without Ca2+, PA molecules remained a monolayer organization; however, with Ca2+, formation of the inverted bilayers of PA-Ca2+ superstructures caused a spontaneous 2D to 3D transformation under no compression due to the strong interaction between PA and the divalent cation. Self-assembly of this highly-organized inverted bilayer superstructure involved a two-step process of nucleation and nuclei growth. During nucleation, densely packed PA and Ca2+ monolayer firstly corrugated and some of PA and Ca2+ molecules ejected out from the monolayer; the ejected molecules then reorganized and formed the inverted bilayer nuclei. Nucleation was followed by nuclei growth, during which PA and Ca2+ in the monolayer kept integrating into the inverted bilayer structure through molecule migration and PA rotation around Ca2+.
Collapse
Affiliation(s)
- Pin Zhang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Tiep Pham
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Xin Zheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Chang Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Paola Leon Plata
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States
| | - Petr Král
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States; Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States; Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, United States; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States
| | - Wei Bu
- NSF's ChemMatCARS, University of Chicago, IL 60637, United States
| | - Binhua Lin
- NSF's ChemMatCARS, University of Chicago, IL 60637, United States
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, United States; Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, United States; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, United States.
| |
Collapse
|
10
|
Shrestha M, Luo M, Li Y, Xiang B, Xiong W, Grassian VH. Let there be light: stability of palmitic acid monolayers at the air/salt water interface in the presence and absence of simulated solar light and a photosensitizer. Chem Sci 2018; 9:5716-5723. [PMID: 30079180 PMCID: PMC6050592 DOI: 10.1039/c8sc01957f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 01/13/2023] Open
Abstract
Long-chain fatty acid monolayers are known surfactants present at air/water interfaces. However, little is known about the stability of these long-chain fatty acid monolayers in the presence of solar radiation. Here we have investigated, for the first time, the stability of palmitic acid monolayers on salt water interfaces in the presence and absence of simulated solar light with and without a photosensitizer in the underlying salt subphase. Using surface sensitive probes to measure changes in the properties of these monolayers upon irradiation, we found that the monolayers become less stable in the presence of light and a photosensitizer, in this case humic acid, in the salt solution. The presence of the photosensitizer is essential in significantly reducing the stability of the monolayer upon irradiation. The mechanism for this loss of stability is due to interfacial photochemistry involving electronically excited humic acid and molecular oxygen reacting with palmitic acid at the interface to form more oxygenated and less surface-active species. These oxygenated species can then more readily partition into the underlying solution.
Collapse
Affiliation(s)
- Mona Shrestha
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
| | - Man Luo
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
| | - Yingmin Li
- Materials Science and Engineering Program , University of California , La Jolla , San Diego , CA 92093 , USA
| | - Bo Xiang
- Materials Science and Engineering Program , University of California , La Jolla , San Diego , CA 92093 , USA
| | - Wei Xiong
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
- Materials Science and Engineering Program , University of California , La Jolla , San Diego , CA 92093 , USA
| | - Vicki H Grassian
- Department of Chemistry & Biochemistry , University of California , La Jolla , San Diego , CA 92093 , USA .
- Scripps Institution of Oceanography , University of California , La Jolla , San Diego , CA 92093 , USA
- Department of Nanoengineering , University of California , La Jolla , San Diego , CA 92093 , USA
| |
Collapse
|
11
|
Wellen Rudd BA, Vidalis AS, Allen HC. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems. Phys Chem Chem Phys 2018; 20:16320-16332. [DOI: 10.1039/c8cp01188e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Calcium ions bind to palmitic acid monolayers at the air–aqueous interface resulting in changes of both thermodynamic and non-equilibrium stability.
Collapse
Affiliation(s)
| | - Andrew S. Vidalis
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Heather C. Allen
- Department of Chemistry & Biochemistry
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
12
|
Das K, Kundu S. Subphase pH induced monolayer to multilayer collapse of fatty acid Salt Langmuir monolayer at lower surface pressure. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Basak UK, Datta A. Dynamics driven by lipophilic force in Langmuir monolayers: In-plane and out-of-plane growth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042405. [PMID: 25974506 DOI: 10.1103/physreve.91.042405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 06/04/2023]
Abstract
While monolayer area fraction versus time (A(n)-t) curves obtained from surface pressure-area (π-A) isotherms for desorption-dominated (DD) processes in Langmuir monolayers of fatty acids represent continuous loss, those from Brewster angle microscopy (BAM) also show a two-dimensional (2D) coalescence. For nucleation-dominated (ND) processes both techniques suggest competing processes, with BAM showing 2D coalescence alongside multilayer formation. π enhances both DD and ND processes with a lower cutoff for ND processes, while temperature has a lower cutoff for DD but negligible effect on ND processes. Hydrocarbon chain length has the strongest effect, causing a crossover from DD to ND dynamics. Imaging ellipsometry of horizontally transferred films onto Si(100) shows Stranski-Krastanov-like growth for ND process in an arachidic acid monolayer resulting in successive stages of monolayer, trilayer, and multilayer islands, ridges from lateral island coalescence, and shallow wavelike structures from ridge coalescence on the film surface. These studies show that lipophilic attraction between hydrocarbon chains is the driving force at all stages of long-term monolayer dynamics.
Collapse
Affiliation(s)
- Uttam Kumar Basak
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
| | - Alokmay Datta
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
| |
Collapse
|
14
|
Chen D, Santore MM. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-rich domain formation in binary phospholipid vesicle membranes: two-dimensional nucleation and growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9484-9493. [PMID: 25084141 DOI: 10.1021/la502089t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of study have probed phase transitions in model phospholipid bilayers and vesicles, especially in the context of the equilibrium phase diagram. Critical to the response of vesicles to environmental triggers, to the ultimate domain morphology, and to the approach to equilibrium (or not), we present here a study of domain formation in vesicles, focusing on a mechanism by which the cooling rate, tension, and composition affect the first appearance (nucleation) and subsequent growth of solid membrane domains. Employing a popular mixed membrane model based on DOPC and DPPC (1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, respectively), we examined phase separation in giant two-component vesicles that were cooled from the one-phase fluid (Lα) region of the phase diagram into a region of fluid (Lα)-solid coexistence. At moderate and low membrane tensions, cooling produced solid DPPC-rich domains appearing as compact patches or irregular hexagons and likely with a Pβ' (ripple) arrangement. (The compact solid domains in this study differed distinctly from striped domains in vesicles of the same composition, in terms of molecular organization and conditions of first appearance during cooling.) The amounts of these solid domains were shown to adhere to the lever arm rule for a tie line on the phase diagram, with a solid composition near 95 mol % DPPC. The nucleation of the compact solid domains occurred in a short period, followed by rapid addition of ordered molecules to the nucleated domains, excluding tracer dye. The two-dimensional nucleation density of these compact solid domains (in the range of 10(-2)-10(-1) μm(-2)) was found to increase with the cooling rate (equivalent to the quench depth) with a greater than linear dependence. The 2-D nucleation density was also seen to decrease with membrane tension, presumably because membrane tension increases the line tension around a domain that opposes nucleation. A sigmoidal dependence of the nucleation density on the DPPC concentration was also found. With cooling rates in excess of ∼1 °C/min, solid domains persisted down to room temperature, likely passing from a preferred equilibrium to a local equilibrium with continued cooling. As a result of the persistence of the originally nucleated domains and the conservation of DPPC in the membrane, we observed an increasingly greater number of smaller domains with increased cooling rates. The domains in these vesicles were compact or hexagonal-shaped in contrast to flower-shaped dendritic domains in the same membrane system in a supported membrane configuration.
Collapse
Affiliation(s)
- Dong Chen
- Department of Physics and ‡Department of Polymer Science and Engineering, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
15
|
Giner-Casares JJ, Brezesinski G, Möhwald H. Langmuir monolayers as unique physical models. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2013.07.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Self-organization of non-amphiphilic molecules. Studies of thin films of long-chain homologous dialkylthioethers at the water/air interface. J Colloid Interface Sci 2013; 395:176-84. [PMID: 23380401 DOI: 10.1016/j.jcis.2012.12.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 11/21/2022]
Abstract
In contrast to classical surfactants, the knowledge about the self-organization of alkanes and their hydrophobic derivatives is still limited. In this paper, we present the results of the studies of self-assembly of long-chain dialkylthioethers at the air/water interface. The substitution of one methylene group by the thioether divalent sulfur introduces significant dipole moment to the alkane chain without affecting the hydrophobicity, which profoundly influences the self-assembly of these molecules. Depending on the location of the thioether group in the hydrophobic chain, the investigated molecules can form Langmuir monolayers, which are stabilized by the thioether-water H-bonds formation, or random multilayers. The structures of the monolayers were investigated with the application of Grazing Incidence X-ray Diffraction. To elucidate important structural differences between thioether and alkane monolalyers of the same hydrocarbon chain length, we applied the methods of quantum chemistry (ETS-NOCV calculations). It turned out that the introduction of one sulfur atom affects the distribution of electron density not only in the proximity of this atom but generally along the chain. The combination of experimental and calculation methods provides to the better understanding of the fundamental question of the self-organization of long-chain alkanes and their non-amphiphilic derivatives at interfaces.
Collapse
|
17
|
Kwan JJ, Borden MA. Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 2012; 183-184:82-99. [PMID: 22959721 DOI: 10.1016/j.cis.2012.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
Microbubbles are micrometer-size gaseous particles suspended in water, and they are often stabilized by a lipid monolayer shell. Natural microbubbles are found in freshwater and saltwater systems, and engineered microbubbles have a variety of applications in food sciences, biotechnology and medicine. Lipid-coated microbubbles are found to have remarkable stability and mechanical behavior owing to the resistance of the lipid monolayer encapsulation to collapse. The purpose of this review is to tie in recent observations of lipid-coated microbubble dissolution and gas exchange with current literature on the physics of lipid monolayer collapse in the context of lung surfactant. Based on this analysis, we conclude that microbubble shells collapse through the nucleation of microscopic folds, which then catalyze the formation and aggregation of new folds, leading to macroscopic folding events. This process results in a cyclic behavior of crumple-to-smooth transitions, which can be modulated through lipid composition. Eventually, the microbubbles stabilize at 1-2 μm diameter, regardless of initial size or lipid composition, and various mechanisms for this stabilization are postulated. Our ultimate goal is to inspire the reader to consider lipid monolayer collapse as the main long-term stabilizing mechanism for lipid-coated microbubbles, and to stimulate the use of microbubbles as a platform for studying monolayer collapse phenomena.
Collapse
|
18
|
Three-dimensional aggregation of fullerene C60 at the air–water interface. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Electrochemical nucleation: comparison test of classical and atomistic nucleation models. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
|
21
|
Costa AP, Xu X, Burgess DJ. Langmuir balance investigation of superoxide dismutase interactions with mixed-lipid monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10050-10056. [PMID: 22671579 DOI: 10.1021/la301614t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Higher than theoretical encapsulation efficiencies in liposomes of the cytoplasmic protein, superoxide dismutase (SOD), were previously observed. The high encapsulation of SOD led to the consideration of lipid-protein interactions and the embedding of SOD in the lipid bilayer. Difficulty in other methods such as dynamic scanning calorimetry due to cholesterol obscuring the measurements brought about the interest for a modified Langmuir monolayer relaxation study. A novel method was devised to distinguish between different lipid compositions that formed either a favorable or an unfavorable environment for SOD. Normalized monolayer relaxations with SOD were compared between mixed-lipid compositions containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and cholesterol (Chol). Lipid-monolayer relaxation with and without SOD in the subphase was plotted over 30 min to determine if the protein was altering the lipid-monolayer relaxation. The monolayer relaxation with SOD was normalized to the monolayer relaxation without SOD over the 30 min period. The results indicated that lipid length and mole percent of cholesterol were important parameters that must be adjusted in order to support a favorable environment for SOD interaction with the lipid. It was determined that hydrophobic interactions were dominant over electrostatic forces; thus, SOD was embedding into the lipid monolayer. Additionally, this study was correlated to a previous liposome study and proved that lipid-protein interactions were the reason for the higher encapsulation efficiencies. The significance of this method is that it (1) provides a connection between lipid-protein interactions observed in monolayers and bilayers and (2) establishes a simple and effective manner to test lipid compositions for lipid-protein interaction that will aid in optimization of liposome encapsulation efficiency.
Collapse
Affiliation(s)
- Antonio P Costa
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | |
Collapse
|
22
|
Griffith EC, Adams EM, Allen HC, Vaida V. Hydrophobic Collapse of a Stearic Acid Film by Adsorbed l-Phenylalanine at the Air–Water Interface. J Phys Chem B 2012; 116:7849-57. [DOI: 10.1021/jp303913e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elizabeth C. Griffith
- Department of Chemistry and
Biochemistry and CIRES, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Ellen M. Adams
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Heather C. Allen
- Department of Chemistry and
Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Veronica Vaida
- Department of Chemistry and
Biochemistry and CIRES, University of Colorado at Boulder, UCB 215, Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Roldán-Carmona C, Giner-Casares JJ, Pérez-Morales M, Martín-Romero MT, Camacho L. Revisiting the Brewster Angle Microscopy: the relevance of the polar headgroup. Adv Colloid Interface Sci 2012; 173:12-22. [PMID: 22397863 DOI: 10.1016/j.cis.2012.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 11/29/2022]
Abstract
The Brewster Angle Microscopy (BAM) is a powerful microscopy technique allowing the in situ visualization of the morphology of Langmuir monolayers at the air/water interface. The use of the BAM for attaining structural insights in the molecular arrangement of the Langmuir monolayers is widespread. In this review, we examine the reflection of a Langmuir monolayer under a rather different perspective than classical: the influence of the polar headgroup of the amphiphiles in the BAM images is taken into account. The relevance of the polar headgroup as the main cause of the BAM features has been the focus of a reduced number of BAM studies. An emerging experimental and theoretical framework from recent bibliography is discussed. Different theoretical scenarios are considered, concerning the size and absorption of radiation of the polar headgroup. Two qualitative examples showing physical phenomena regarding the reflectivity changes in a BAM experiments are discussed. The anisotropy in the BAM images as inner textures is of special interest. Quantitative structural information of the molecular arrangement of the monolayer is obtained by simulating the textures of the domains observed. The quantitative assessment of the detailed molecular arrangement of the polar headgroup by BAM is highly valuable, as this information can hardly be obtained from other experimental techniques. The procedure for extracting quantitative structural data from the experimental BAM pictures is revised in detail from the recent bibliography for further application of this model to different Langmuir monolayers.
Collapse
Affiliation(s)
- Cristina Roldán-Carmona
- Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Córdoba E-14014, Spain
| | | | | | | | | |
Collapse
|
24
|
Broniatowski M, Flasiński M, Wydro P. Lupane-type pentacyclic triterpenes in Langmuir monolayers: a synchrotron radiation scattering study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5201-5210. [PMID: 22360277 DOI: 10.1021/la300024f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lupane-type pentacyclic triterpenes (lupeol, betulin, and betulinic acid) are natural products isolated from various plant sources. The terpenes exhibit a vast spectrum of biological activity and are applied in therapies for different diseases, among which the anticancer, anti-HIV, antihypercholesteremic, and antiinflammatory are the most promising. These chemicals possess amphiphilic structure and were proved to interact strongly with biomembranes, which can be the key stage in their mechanism of action. In our studies, we applied Langmuir monolayers as versatile models of biomembranes. It turned out that the three investigated terpenes are capable of stable monolayer formation; however, these monolayers differ profoundly regarding their physicochemical characteristics. In our research, we applied the Langmuir technique (surface pressure-mean molecular area (π-A) isotherm registration) coupled with Brewster angle microscopy (BAM), but the main focus was on the synchrotron radiation scattering method, grazing incidence X-ray diffraction (GIXD), which provides information on the amphiphilic molecule ordering in the angström scale. It was proved that all the investigated terpenes form crystalline phases in their monolayers. In the case of lupeol, only the closely packed upright phase was observed, whereas for betulin and betulinic acid, the phase situation was more complex. Betulinic acid molecules can be organized in an upright phase, which is crystalline, and in a tilted phase, which is amorphous. The betulin film is a conglomerate of an upright crystalline monolayer phase, tilted amorphous monolayer phase, and a crystalline tilted bilayer. In our paper, we discuss the factors leading to the formation of the observed phases and the implications of our results to the therapeutic applications of the native lupane-type triterpenes.
Collapse
|
25
|
Ou-Yang W, Weis M, Manaka T, Iwamoto M. Study of relaxation process of dipalmitoyl phosphatidylcholine monolayers at air-water interface: effect of electrostatic energy. J Chem Phys 2011; 134:154709. [PMID: 21513410 DOI: 10.1063/1.3581890] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The instability of organic monolayer composed of polar molecules at the air-water interface has been a spotlight in interface science for many decades. However, the effect of electrostatic energy contribution to the free energy in the system is still not understood. Herein, we investigate the mechanical and electrical properties by studying the isobaric relaxation process of a dipalmitoyl phosphatidylcholine monolayer on water subphase with various concentrations of divalent ions to reveal the effect of electrostatic energy on thermodynamics and kinetics of the collapse mechanism. Our results demonstrate that electrical energy among the dipolar molecules plays an important role in the stability of monolayer and enhances the formation of micelles into subphase under high pressure. In addition, to confirm the electrostatic energy contribution, the well-known thermal effect on the stability of the film is compared. Hence, the general description of the monolayer free energy with contribution of electrostatic energy is suggested to describe the phase transition.
Collapse
Affiliation(s)
- Wei Ou-Yang
- Department of Physical Electronics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Zhang H, Wang YE, Fan Q, Zuo YY. On the low surface tension of lung surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8351-8. [PMID: 21650180 PMCID: PMC4849879 DOI: 10.1021/la201482n] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Respiratory Medicine, Peking University First Hospital, Beijing, China 100034
| | - Yi E. Wang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Qihui Fan
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Corresponding Author. ; Tel: 808-956-9650; Fax: 808-956-2373
| |
Collapse
|
27
|
Ou-Yang W, Weis M, Lee K, Manaka T, Iwamoto M. Dipolar electrostatic energy effect on relaxation process of monolayers at air-water interface: Analysis of thermodynamics and kinetics. J Chem Phys 2009; 131:244709. [DOI: 10.1063/1.3273790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
González-Delgado AM, Pérez-Morales M, Giner-Casares JJ, Muñoz E, Martín-Romero MT, Camacho L. Reversible Collapse of Insoluble Monolayers: New Insights on the Influence of the Anisotropic Line Tension of the Domain. J Phys Chem B 2009; 113:13249-56. [DOI: 10.1021/jp9055158] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio M. González-Delgado
- Departamento de Química Física y Termodinámica Aplicada, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, Córdoba, Spain E-14071
| | - Marta Pérez-Morales
- Departamento de Química Física y Termodinámica Aplicada, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, Córdoba, Spain E-14071
| | - Juan J. Giner-Casares
- Departamento de Química Física y Termodinámica Aplicada, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, Córdoba, Spain E-14071
| | - Eulogia Muñoz
- Departamento de Química Física y Termodinámica Aplicada, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, Córdoba, Spain E-14071
| | - María T. Martín-Romero
- Departamento de Química Física y Termodinámica Aplicada, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, Córdoba, Spain E-14071
| | - Luis Camacho
- Departamento de Química Física y Termodinámica Aplicada, Universidad de Córdoba, Campus de Rabanales, Ed. Marie Curie, Córdoba, Spain E-14071
| |
Collapse
|
29
|
Seok S, Kim TJ, Hwang SY, Kim YD, Vaknin D, Kim D. Imaging of collapsed fatty acid films at air-water interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9262-9269. [PMID: 19627076 DOI: 10.1021/la900096a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In situ imaging ellipsometry is employed to monitor the morphology of collapsed films of fatty acid Langmuir monolayers on pure water and on CaCl2 solution. The ellipsometry images reveal the existence of multilayer domains in the collapsed region, and analysis of the images yields the thicknesses of these domains. The multilayer films formed on water are mainly trilayers, while those on CaCl2 solution are mainly bilayers. The structure of the collapsed films also changes sensitively depending on the history of compression of the molecular layer.
Collapse
Affiliation(s)
- Sangjun Seok
- Department of Physics and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
30
|
SP-A permeabilizes lipopolysaccharide membranes by forming protein aggregates that extract lipids from the membrane. Biophys J 2008; 95:3287-94. [PMID: 18599636 DOI: 10.1529/biophysj.108.137323] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Surfactant protein A (SP-A) is known to cause bacterial permeabilization. The aim of this work was to gain insight into the mechanism by which SP-A induces permeabilization of rough lipopolysaccharide (Re-LPS) membranes. In the presence of calcium, large interconnected aggregates of fluorescently labeled TR-SP-A were observed on the surface of Re-LPS films by epifluorescence microscopy. Using Re-LPS monolayer relaxation experiments at constant surface pressure, we demonstrated that SP-A induced Re-LPS molecular loss by promoting the formation of three-dimensional lipid-protein aggregates in Re-LPS membranes. This resulted in decreased van der Waals interactions between Re-LPS acyl chains, as determined by differential scanning calorimetry, which rendered the membrane leaky. We also showed that the coexistence of gel and fluid lipid phases within the Re-LPS membrane conferred susceptibility to SP-A-mediated permeabilization. Taken together, our results seem to indicate that the calcium-dependent permeabilization of Re-LPS membranes by SP-A is related to the extraction of LPS molecules from the membrane due to the formation of calcium-mediated protein aggregates that contain LPS.
Collapse
|
31
|
Broniatowski M, Vila-Romeu N, Dynarowicz-Łatka P. Two-Dimensional Miscibility Studies of Alamethicin and Selected Film-Forming Molecules. J Phys Chem B 2008; 112:7762-70. [DOI: 10.1021/jp800234k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marcin Broniatowski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, and Faculty of Sciences, Department of Physical Chemistry, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| | - Nuria Vila-Romeu
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, and Faculty of Sciences, Department of Physical Chemistry, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| | - Patrycja Dynarowicz-Łatka
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland, and Faculty of Sciences, Department of Physical Chemistry, University of Vigo, Campus Ourense, As Lagoas s/n, 32004 Ourense, Spain
| |
Collapse
|
32
|
Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-A. Biophys J 2008; 95:2779-91. [PMID: 18539636 DOI: 10.1529/biophysj.108.130732] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary surfactant (PS) dysfunction because of the leakage of serum proteins into the alveolar space could be an operative pathogenesis in acute respiratory distress syndrome. Albumin-inhibited PS is a commonly used in vitro model for studying surfactant abnormality in acute respiratory distress syndrome. However, the mechanism by which PS is inhibited by albumin remains controversial. This study investigated the film organization of albumin-inhibited bovine lipid extract surfactant (BLES) with and without surfactant protein A (SP-A), using atomic force microscopy. The BLES and albumin (1:4 w/w) were cospread at an air-water interface from aqueous media. Cospreading minimized the adsorption barrier for phospholipid vesicles imposed by preadsorbed albumin molecules, i.e., inhibition because of competitive adsorption. Atomic force microscopy revealed distinct variations in film organization, persisting up to 40 mN/m, compared with pure BLES monolayers. Fluorescence confocal microscopy confirmed that albumin remained within the liquid-expanded phase of the monolayer at surface pressures higher than the equilibrium surface pressure of albumin. The remaining albumin mixed with the BLES monolayer so as to increase film compressibility. Such an inhibitory effect could not be relieved by repeated compression-expansion cycles or by adding surfactant protein A. These experimental data indicate a new mechanism of surfactant inhibition by serum proteins, complementing the traditional competitive adsorption mechanism.
Collapse
|
33
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|