1
|
Du J, You Y, Reis RL, Kundu SC, Li J. Manipulating supramolecular gels with surfactants: Interfacial and non-interfacial mechanisms. Adv Colloid Interface Sci 2023; 318:102950. [PMID: 37352741 DOI: 10.1016/j.cis.2023.102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Gel is a class of self-supporting soft materials with applications in many fields. Fast, controllable gelation, micro/nano structure and suitable rheological properties are essential considerations for the design of gels for specific applications. Many methods can be used to control these parameters, among which the additive approach is convenient as it is a simple physical mixing process with significant advantages, such as avoidance of pH change and external energy fields (ultrasound, UV light and others). Although surfactants are widely used to control the formation of many materials, particularly nanomaterials, their effects on gelation are less known. This review summarizes the studies that utilized different surfactants to control the formation, structure, and properties of molecular and silk fibroin gels. The mechanisms of surfactants, which are interfacial and non-interfacial effects, are classified and discussed. Knowledge and technical gaps are identified, and perspectives for further research are outlined. This review is expected to inspire increasing research interest in using surfactants for designing/fabricating gels with desirable formation kinetics, structure, properties and functionalities.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Yue You
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
2
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Ikram R, Mohamed Jan B, Abdul Qadir M, Sidek A, Stylianakis MM, Kenanakis G. Recent Advances in Chitin and Chitosan/Graphene-Based Bio-Nanocomposites for Energetic Applications. Polymers (Basel) 2021; 13:3266. [PMID: 34641082 PMCID: PMC8512808 DOI: 10.3390/polym13193266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Herein, we report recent developments in order to explore chitin and chitosan derivatives for energy-related applications. This review summarizes an introduction to common polysaccharides such as cellulose, chitin or chitosan, and their connection with carbon nanomaterials (CNMs), such as bio-nanocomposites. Furthermore, we present their structural analysis followed by the fabrication of graphene-based nanocomposites. In addition, we demonstrate the role of these chitin- and chitosan-derived nanocomposites for energetic applications, including biosensors, batteries, fuel cells, supercapacitors and solar cell systems. Finally, current limitations and future application perspectives are entailed as well. This study establishes the impact of chitin- and chitosan-generated nanomaterials for potential, unexplored industrial applications.
Collapse
Affiliation(s)
- Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Akhmal Sidek
- Petroleum Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece;
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Greece;
| |
Collapse
|
4
|
Rangel Euzcateguy G, Parajua‐Sejil C, Marchal P, Chapron D, Averlant‐Petit M, Stefan L, Pickaert G, Durand A. Rheological investigation of supramolecular physical gels in water/dimethylsulfoxide mixtures by lysine derivatives. POLYM INT 2021. [DOI: 10.1002/pi.6179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | - David Chapron
- Université de Lorraine, CentraleSupélec, LMOPS Metz France
| | | | - Loïc Stefan
- Université de Lorraine, CNRS, LCPM Nancy France
| | | | | |
Collapse
|
5
|
Bariya D, Anand V, Mishra S. Recent advances in the bile acid based conjugates/derivatives towards their gelation applications. Steroids 2021; 165:108769. [PMID: 33207227 DOI: 10.1016/j.steroids.2020.108769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/05/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Bile acids have contributed immensely to hydrogel research due to their peculiar physicochemical properties and biocompatibility. The wide accessibility of bile acids and their straightforward derivatization methods make them attractive building blocks for the design of novel hydrogels systems to deliver biomolecules, drugs, and vaccines. This review conceptualizes recent developments in bile acid-based hydrogels and their applications. These bile-based hydrogels have the ability to absorb carbon dioxide efficiently and may potentially work as alternative materials for carbon dioxide capture and storage. The hydrogels hold great potential in medicine and biology applications as drug carriers and models for fundamental self-assembly in pathological conditions. Herein, we have summarized the efforts that have been made for the development of molecular hydrogels in terms of biocompatibility, therapeutic applications, and challenges associated with existing molecular hydrogels.
Collapse
Affiliation(s)
- Dipakkumar Bariya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat 382426, India
| | - Vivek Anand
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat 382426, India
| | - Satyendra Mishra
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gujarat 382426, India.
| |
Collapse
|
6
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Delbecq F, Adenier G, Ogue Y, Kawai T. Gelation properties of various long chain amidoamines: Prediction of solvent gelation via machine learning using Hansen solubility parameters. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Zhang R, Ding Q, Zhang S, Li Y, Niu Q, Yang L, Ye J, Hu L. The effects of ultrasonication on the microstructure, gelling and tribological properties of 12-HSA soft-nanocomposite with LaF3 nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
|
10
|
Delbecq F, Delfosse P, Laboureix G, Paré C, Kawai T. Study of a gelated Deep Eutectic solvent metal salt solution as template for the production of size-controlled small noble metal nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Le Guenic S, Chaveriat L, Lequart V, Joly N, Martin P. Renewable Surfactants for Biochemical Applications and Nanotechnology. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12216] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah Le Guenic
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Ludovic Chaveriat
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Vincent Lequart
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Nicolas Joly
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| | - Patrick Martin
- Université d'Artois, UniLasalle, EA7519 - Unité Transformations & Agroressources, F-62408; Béthune
| |
Collapse
|
12
|
Hori K, Sano M, Suzuki M, Hanabusa K. Preparation of porous polymer materials using water-in-oil gel emulsions as templates. POLYM INT 2018. [DOI: 10.1002/pi.5579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Koichi Hori
- Faculty of Textile Science and Technology; Shinshu University; Ueda Japan
| | - Mayu Sano
- Faculty of Textile Science and Technology; Shinshu University; Ueda Japan
| | - Masahiro Suzuki
- Interdisciplinary Graduate School of Science and Technology; Shinshu University; Ueda Japan
| | - Kenji Hanabusa
- Interdisciplinary Graduate School of Science and Technology; Shinshu University; Ueda Japan
- Institute for Fiber Engineering, ICCER; Shinshu University; Ueda Japan
| |
Collapse
|
13
|
Suga S, Suzuki M, Hanabusa K. Development of New D,L-Methionine-based Gelators. J Oleo Sci 2018; 67:539-549. [PMID: 29710040 DOI: 10.5650/jos.ess17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
D,L-Methionine was chosen as a starting material for the preparation of a new gelator N-10-undecenoyl-D,L-methionylaminooctadecane (DL-Met-R18). Three oligo (dimethylsiloxane)-containing gelators, DL-Met-R18/Si3, DL-Met-R18/Si7-8, and DL-Met-R18/Si14-15, were also prepared from DL-Met-R18 by hydrosilylation reactions. Their gelation abilities were evaluated on the basis of the minimum gel concentration using nine solvents. Compound DL-Met-R18 was able to gelate liquid paraffin and silicone oil, but it crystallized in most solvents. However, DL-Met-R18/Si7-8 resulted to be the best gelator, gelling eight solvents at low concentrations. The results of gelation tests demonstrated that the ability to form stable gels decreases in the following order: DL-Met-R18/Si7-8 ≈ DL-Met-R18/Si14-15 > DL-Met-R18/Si3 >> DL-Met-R18. The aspects and thermal stabilities of the gels were investigated using three-component mixtures of solvents composed of hexadecyl 2-ethylhexanoate, liquid paraffin, and decamethylcyclopentasiloxane (66 combinations). DL-Met-R18/Si3, DL-Met-R18/Si7-8, and DL-Met-R18/Si14-15 could form gels with all these mixed solvent combinations; particularly, DL-Met-R18/Si7-8 gave rise to transparent or translucent gels. FT-IR spectra suggested that the formation of hydrogen bonds between the NH and C=O groups of the amides is one of driving forces involved in the gelation process. Aggregates comprising three-dimensional networks were studied by transmission electron microscopy. Moreover, the viscoelastic behavior of the gels was investigated by rheology measurements.
Collapse
Affiliation(s)
- Shunichi Suga
- Faculty of Textile Science & Technology, Shinshu University
| | - Masahiro Suzuki
- Interdisciplinary Graduate School of Science & Technology, Shinshu University
| | - Kenji Hanabusa
- Interdisciplinary Graduate School of Science & Technology, Shinshu University.,Division of Frontier Fibers, Institute for Fiber Engineering, ICCER, Shinshu University
| |
Collapse
|
14
|
Synthesis and studies on gelation ability of phenol based maleate amphiphile and its application in nutraceutical release. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Llusar M, Escuder B, López-Castro JDD, Trasobares S, Monrós G. Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template. Gels 2017; 3:gels3020023. [PMID: 30920520 PMCID: PMC6318699 DOI: 10.3390/gels3020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
A novel and simple transcription strategy has been designed for the template-synthesis of CePO₄·xH₂O nanofibers having an improved nanofibrous morphology using a pH-sensitive nanofibrous hydrogel (glycine-alanine lipodipeptide) as structure-directing scaffold. The phosphorylated hydrogel was employed as a template to direct the mineralization of high aspect ratio nanofibrous cerium phosphate, which in-situ formed by diffusion of aqueous CeCl₃ and subsequent drying (60 °C) and annealing treatments (250, 600 and 900 °C). Dried xerogels and annealed CePO₄ powders were characterized by conventional thermal and thermogravimetric analysis (DTA/TG), and Wide-Angle X-ray powder diffraction (WAXD) and X-ray powder diffraction (XRD) techniques. A molecular packing model for the formation of the fibrous xerogel template was proposed, in accordance with results from Fourier-Transformed Infrarred (FTIR) and WAXD measurements. The morphology, crystalline structure and composition of CePO₄ nanofibers were characterized by electron microscopy techniques (Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy/High-Resolution Transmission Electron Microscopy (TEM/HRTEM), and Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field (STEM-HAADF)) with associated X-ray energy-dispersive detector (EDS) and Scanning Transmission Electron Microscopy-Electron Energy Loss (STEM-EELS) spectroscopies. Noteworthy, this templating approach successfully led to the formation of CePO₄·H₂O nanofibrous bundles of rather co-aligned and elongated nanofibers (10⁻20 nm thick and up to ca. 1 μm long). The formed nanofibers consisted of hexagonal (P6₂22) CePO₄ nanocrystals (at 60 and 250 °C), with a better-grown and more homogeneous fibrous morphology with respect to a reference CePO₄ prepared under similar (non-templated) conditions, and transformed into nanofibrous monoclinic monazite (P21/n) around 600 °C. The nanofibrous morphology was highly preserved after annealing at 900 °C under N₂, although collapsed under air conditions. The nanofibrous CePO₄ (as-prepared hexagonal and 900 °C-annealed monoclinic) exhibited an enhanced UV photo-luminescent emission with respect to non-fibrous homologues.
Collapse
Affiliation(s)
- Mario Llusar
- Departamento de Química Inorgánica y Orgánica, ESTCE, Universitat Jaume I, Av. de Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Beatriu Escuder
- Departamento de Química Inorgánica y Orgánica, ESTCE, Universitat Jaume I, Av. de Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| | - Juan De Dios López-Castro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, c/República Saharahui s/n, Aptdo. 40, Puerto Real, 11510 Cádiz, Spain.
| | - Susana Trasobares
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, c/República Saharahui s/n, Aptdo. 40, Puerto Real, 11510 Cádiz, Spain.
| | - Guillermo Monrós
- Departamento de Química Inorgánica y Orgánica, ESTCE, Universitat Jaume I, Av. de Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
| |
Collapse
|
16
|
Fitremann J, Lonetti B, Fratini E, Fabing I, Payré B, Boulé C, Loubinoux I, Vaysse L, Oriol L. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays. J Colloid Interface Sci 2017. [PMID: 28622565 DOI: 10.1016/j.jcis.2017.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing.
Collapse
Affiliation(s)
- Juliette Fitremann
- CNRS - Université de Toulouse III Paul Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP, UMR 5623), Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Barbara Lonetti
- CNRS - Université de Toulouse III Paul Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP, UMR 5623), Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| | - Isabelle Fabing
- CNRS UMR 5068, LSPCMIB, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Bruno Payré
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, Université de Toulouse III Paul Sabatier, Bâtiment A5, R.D.C., 133 Route de Narbonne, 31400 Toulouse, France
| | - Christelle Boulé
- Université Claude Bernard UCBL Lyon1, Service de Prestations CTµ EZUS, Bâtiment Darwin B, 5 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France
| | - Isabelle Loubinoux
- TONIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laurence Vaysse
- TONIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Luis Oriol
- Instituto de Ciencia de Materiales de Aragon (ICMA),Universidad de Zaragoza-CSIC, Dpto. Quimica Organica, Facultad de Ciencias, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
17
|
Rouse CK, Martin AD, Easton CJ, Thordarson P. A Peptide Amphiphile Organogelator of Polar Organic Solvents. Sci Rep 2017; 7:43668. [PMID: 28255169 PMCID: PMC5334642 DOI: 10.1038/srep43668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022] Open
Abstract
A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents.
Collapse
Affiliation(s)
- Charlotte K. Rouse
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Adam D. Martin
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J. Easton
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Lyu F, Yu S, Li M, Wang Z, Nan B, Wu S, Cao L, Sun Z, Yang M, Wang W, Shang C, Lu Z. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chem Commun (Camb) 2017; 53:2138-2141. [DOI: 10.1039/c6cc09702b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In situreduction of Cu2+and hydrogel-directed self-assembly into a hollow Cu/Cu2O nanocomposites with homogeneous C, N doping.
Collapse
|
19
|
Bhattacharya S, Samanta SK. Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chem Rev 2016; 116:11967-12028. [DOI: 10.1021/acs.chemrev.6b00221] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
- Director’s
Research Unit, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman K. Samanta
- Director’s
Research Unit, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
20
|
Jamart-Grégoire B, Son S, Allix F, Felix V, Barth D, Jannot Y, Pickaert G, Degiovanni A. Monolithic organic aerogels derived from single amino-acid based supramolecular gels: physical and thermal properties. RSC Adv 2016. [DOI: 10.1039/c6ra20803g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Supercritical CO2 drying of a low molecular weight organogel lead to the first aerogel in a monolithic form bearing superinsulation properties.
Collapse
Affiliation(s)
| | - Sébastien Son
- Laboratoire de Chimie Physique Macromoléculaire
- Lorraine University
- CNRS
- 54001 Nancy
- France
| | - Florent Allix
- Laboratoire de Chimie Physique Macromoléculaire
- Lorraine University
- CNRS
- 54001 Nancy
- France
| | - Vincent Felix
- Laboratoire d'Energétique et de Mécanique Théorique et Appliquée
- Lorraine University
- CNRS
- 54504 Vandoeuvre-lès-Nancy
- France
| | - Danielle Barth
- Laboratoire Réactions et Génie des Procédés
- Lorraine University
- CNRS
- 54001 Nancy
- France
| | - Yves Jannot
- Laboratoire d'Energétique et de Mécanique Théorique et Appliquée
- Lorraine University
- CNRS
- 54504 Vandoeuvre-lès-Nancy
- France
| | - Guillaume Pickaert
- Laboratoire de Chimie Physique Macromoléculaire
- Lorraine University
- CNRS
- 54001 Nancy
- France
| | - Alain Degiovanni
- Laboratoire d'Energétique et de Mécanique Théorique et Appliquée
- Lorraine University
- CNRS
- 54504 Vandoeuvre-lès-Nancy
- France
| |
Collapse
|
21
|
Ramos J, Arufe S, O'Flaherty R, Rooney D, Moreira R, Velasco-Torrijos T. Selective aliphatic/aromatic organogelation controlled by the side chain of serine amphiphiles. RSC Adv 2016. [DOI: 10.1039/c6ra21391j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural modifications in the side chain of N-Fmoc-l-serine amphiphiles induce the selective gelation of either aliphatic or aromatic hydrocarbon solvents.
Collapse
Affiliation(s)
- Jessica Ramos
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Santiago Arufe
- Department of Chemical Engineering
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| | | | - Denise Rooney
- Department of Chemistry
- Maynooth University
- Maynooth
- Ireland
| | - Ramon Moreira
- Department of Chemical Engineering
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| | | |
Collapse
|
22
|
Maity M, Sajisha VS, Maitra U. Hydrogelation of bile acid–peptide conjugates and in situ synthesis of silver and gold nanoparticles in the hydrogel matrix. RSC Adv 2015. [DOI: 10.1039/c5ra17917c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A number of bile acid–peptide conjugates were synthesized and their hydrogelation properties were studied. These gels were used as scaffolds to in situ make Ag and Au nanoparticle–gel hybrids.
Collapse
Affiliation(s)
- Mitasree Maity
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | | - Uday Maitra
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|