1
|
Majhi S, Bhattacharyya S, Gopmandal PP. Effect of the Surface Charge-Dependent Boundary Slip on the Electrophoresis of a Hydrophobic Polarizable Rigid Colloid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38324781 DOI: 10.1021/acs.langmuir.3c03436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The electrophoresis of a hydrophobic charged rigid colloid is studied by considering the lateral movement of the adsorbed surface charge. The slip velocity condition at the hydrophobic surface is modified to take into account the impact of the frictional and electric forces created by the adsorbed laterally mobile surface charge. Though the dependency of the surface charge on the slip velocity in the context of electrophoresis has been addressed before, the effect of the laterally mobile adsorbed surface charge on the electrophoresis of hydrophobic colloids has not been studied. The dielectric colloid is considered to polarize and create an induced immobile surface charge when subjected to an imposed electric field. The impact of the mobile surface charge along with the immobile induced surface charge on electrophoresis of a hydrophobic colloid is elucidated by numerically solving the governing electrokinetic equations in their full form. We have also developed a simplified model under a weak applied field consideration, which can be further reduced to a closed-form analytic expression for the mobility under the Debye-Hückel approximation. This analytic model for mobility is in excellent agreement with the exact numerical solution for an entire range of the Debye length when the ζ-potential is in the order of the thermal potential. One of the notable features of this closed-form mobility expression is that it accounts for the mobile adsorbed surface charge on the hydrodynamic slip condition and the dielectric polarization of the particle. We find that the mobility of the surface charge decreases the electrophoretic mobility of the hydrophobic dielectric colloid. However, the mobile surface charge enhances the mobility of a conducting hydrophobic colloid.
Collapse
Affiliation(s)
- Subrata Majhi
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somnath Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India
| |
Collapse
|
2
|
Ohshima H. Transient electrophoresis of a spherical colloidal particle with a slip surface. Electrophoresis 2023; 44:1795-1801. [PMID: 36537613 DOI: 10.1002/elps.202200242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
We derive the general expression for the transient electrophoretic mobility of a spherical colloidal particle with a slip surface in an electrolyte solution. From the general mobility expression, we derive an analytic mobility expression, which is applicable for low particle zeta potentials and arbitrary Debye length. This expression corresponds to the time-dependent transient Henry function.
Collapse
Affiliation(s)
- Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
3
|
Bhaskar B, Bhattacharyya S. Numerical study supplemented with simplified model on electrophoresis of a hydrophobic colloid incorporating finite ion size effects and ion-solvent interactions. Electrophoresis 2023; 44:403-416. [PMID: 36377510 DOI: 10.1002/elps.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
We consider a modified electrokinetic model to study the electrophoresis of a hydrophobic particle by considering the finite sized ions. The mathematical model adopted in this study incorporates the ion steric repulsion, ion-solvent interactions as well as Maxwell stress on the electrolyte. The dielectric permittivity and viscosity of the electrolyte is considered to vary with the local ionic volume fraction. Based on this modified model for the electrokinetics we have analyzed the electrophoresis in a single as well as mixture of electrolytes of monovalent and non- z : z $z:z$ electrolytes. The dependence of viscosity on local ionic volume fraction modifies the hydrodynamic drag as well as diffusivity of ions, which are ignored in existing studies on electrophoresis. A simplified model for electrophoresis of a hydrophobic particle incorporating the ion steric repulsion and ion-solvent interactions is developed based on the first-order perturbation on applied electric field. This simplified model is established to be efficient for a Debye layer thinner than the particle size and a smaller range of slip length. This model can be implemented for any number of ionic species as well as non- z : z $z:z$ electrolytes. It is established that the ion steric interactions and dielectric decrement creates a counterion saturation in the Debye layer leading to an enhanced mobility compared to the standard model. However, experimental data for non-dilute cases often under predicts the theoretically determined mobility. The present modified model fills this lacuna and demonstrate that the consideration of finite ion size modifies the medium viscosity and hence, ionic mobility, which in combination lowers the mobility value.
Collapse
Affiliation(s)
- Babu Bhaskar
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Somnath Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Mahapatra P, Ohshima H, Gopmandal PP. Effect of hydrodynamic slip on the electrophoresis of hydrophobic spherical particles in a solution of general electrolytes. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Sarkar S, Ohshima H, Gopmandal PP. Gel Electrophoresis of a Hydrophobic Liquid Droplet with an Equipotential Slip Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8943-8953. [PMID: 35830337 DOI: 10.1021/acs.langmuir.2c01112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A theoretical study has been carried out on the electrophoresis of charged dielectric liquid droplets with an equipotential and hydrodynamically slipping surface moving in a quenched polymeric charged hydrogel medium. The liquid inside the droplet is electrically neutral. The Brinkman-Debye-Bueche model is employed to study the gel electrophoresis of such a hydrophobic and equipotential liquid droplet considering the long-range hydrodynamic interaction between a migrating droplet and the gel skeleton. Within the weak field and Debye-Hückel electrostatic framework, we derive an original closed-form expression for electrophoretic mobility, which further recovers the existing mobility expressions derived under several limiting conditions. The derived expressions for electrophoretic mobility explicitly involve exponential integrals, which are not so convenient for practical applications. Thus, the exact forms of the electrophoretic mobility under various electrohydrodynamic conditions are further approximated to make them free from exponential integrals. The approximate forms are found to be in excellent agreement with the exact results with maximum relative errors of about 1.5%.
Collapse
Affiliation(s)
- Sankar Sarkar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata - 700108, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur - 713209, India
| |
Collapse
|
6
|
Hassanpour Tamrin S, Sanati Nezhad A, Sen A. Label-Free Isolation of Exosomes Using Microfluidic Technologies. ACS NANO 2021; 15:17047-17079. [PMID: 34723478 DOI: 10.1021/acsnano.1c03469] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exosomes are cell-derived structures packaged with lipids, proteins, and nucleic acids. They exist in diverse bodily fluids and are involved in physiological and pathological processes. Although their potential for clinical application as diagnostic and therapeutic tools has been revealed, a huge bottleneck impeding the development of applications in the rapidly burgeoning field of exosome research is an inability to efficiently isolate pure exosomes from other unwanted components present in bodily fluids. To date, several approaches have been proposed and investigated for exosome separation, with the leading candidate being microfluidic technology due to its relative simplicity, cost-effectiveness, precise and fast processing at the microscale, and amenability to automation. Notably, avoiding the need for exosome labeling represents a significant advance in terms of process simplicity, time, and cost as well as protecting the biological activities of exosomes. Despite the exciting progress in microfluidic strategies for exosome isolation and the countless benefits of label-free approaches for clinical applications, current microfluidic platforms for isolation of exosomes are still facing a series of problems and challenges that prevent their use for clinical sample processing. This review focuses on the recent microfluidic platforms developed for label-free isolation of exosomes including those based on sieving, deterministic lateral displacement, field flow, and pinched flow fractionation as well as viscoelastic, acoustic, inertial, electrical, and centrifugal forces. Further, we discuss advantages and disadvantages of these strategies with highlights of current challenges and outlook of label-free microfluidics toward the clinical utility of exosomes.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Amir Sanati Nezhad
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, CCIT 125, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
7
|
Gopmandal PP, Bhattacharyya S, Ohshima H. A simplified model for gel electrophoresis of a hydrophobic rigid colloid. SOFT MATTER 2021; 17:5700-5710. [PMID: 34008689 DOI: 10.1039/d1sm00462j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrophoresis of a charged dielectric hydrophobic colloid embedded in a charged hydrogel medium is addressed. A slip velocity condition at the particle surface is considered. The characteristic of the gel electrophoresis is different compared with the free-solution electrophoresis due to the presence of immobile charges of the gel medium, which induces a strong background electroosmotic flow and modifies the Debye layer of the colloid. The gel electrophoresis of the dielectric hydrophobic charged colloid is made based on first-order perturbation analysis. A closed form solution involving simple exponential integrals for the mobility is derived, which reduces to several existing mobility expressions under limiting conditions such as for the gel electrophoresis of hydrophilic particles and a hydrophobic colloid in free-solution electrophoresis. We find that the mobility reversal is achieved by varying the Debye length or gel permeability. For the present first-order perturbation analysis, unlike free-solution electrophoresis, the particle dielectric permittivity is found to influence the mobility. One of the intriguing features of the present study is the derivation of the simplified mobility expression, which can be easily computed for a given set of parameter values.
Collapse
Affiliation(s)
- Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
| | - S Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - H Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
8
|
|
9
|
Ohshima H. Electroosmotic velocity in an array of parallel cylindrical fibers with a slip surface. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04821-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kundu D, Bhattacharyya S, Gopmandal PP, Ohshima H. Settling of a charged hydrophobic rigid colloid in aqueous media under generalized gravitational field. Electrophoresis 2020; 42:1010-1020. [PMID: 33159354 DOI: 10.1002/elps.202000240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 11/07/2022]
Abstract
The hindrance created by the induced electric filed on the sedimentation of a charged colloid in an aqueous media is studied through numerical modeling. The colloid is considered to be hydrophobic, sedimenting under gravity or a centrifugal force (generalized gravity). The deformation of the charge cloud around the colloid induces an electric field, which generates electrical dipole force on the colloid. The sedimentation velocity is governed by the balance of an electric force, hydrodynamic drag, and gravitational force. Governing equations based on the first principle of electrokinetics is solved numerically through a control volume approach. The dependence of the sedimentation velocity on the electrical properties and slip length of the colloid is investigated. The sedimentation velocity of the charged colloid is slower than the corresponding uncharged particle and this deviation magnifies as the charge density as well as particle slip length is increased. An enhanced g-factor creates a size dependency of the charged colloids. The induced sedimentation field is obtained to analyze the electrokinetics. Surface hydrophobicity enhances the sedimentation velocity, which in turn manifests the induced sedimentation field. However, the sedimentation velocity of a charged hydrophobic colloid is lower than the corresponding uncharged hydrophobic particle and this deviation manifests as slip length is increased.
Collapse
Affiliation(s)
- Dipankar Kundu
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Somnath Bhattacharyya
- Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Partha P Gopmandal
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba, 278-8510, Japan
| |
Collapse
|
11
|
Ohshima H. Electrokinetics of spherical colloidal particles with a slip surface in a concentrated suspension. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04755-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Primary electroviscous effect in a dilute suspension of charged spherical colloidal particles with a slip surface. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04741-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Dynamic electrophoretic mobility of a spherical colloidal particle with a hydrodynamically slipping surface in an oscillating electric field. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04635-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
|