1
|
Colijn I, Postma E, Fix R, van der Kooij HM, Schroën K. Particle dispersion governs nano to bulk dynamics for tailored nanocomposite design. J Colloid Interface Sci 2024; 658:354-361. [PMID: 38113544 DOI: 10.1016/j.jcis.2023.12.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Nanoparticle addition can expand bioplastic use, as the resultant nanocomposite features e.g., improved mechanical properties. HYPOTHESIS It is generally hypothesised that the nanoparticle-polymer interaction strength is pivotal to reduce polymer dynamics within the interphasial region and beyond. EXPERIMENTS Translating nanoscale phenomena to bulk properties is challenging, as traditional techniques that probe interphasial dynamics are limited to well-dispersed systems. Laser speckle imaging (LSI) enabled us to probe interphasial nanoscale dynamics of samples containing aggregated nanoparticles. We relate these LSI-derived relaxation times to bulk rheological properties at a micro scale. FINDINGS Nanocomposites with well-dispersed PDMS-coated titanium dioxide nanoparticles of ∼100 nm showed higher viscosities than nanocomposites containing aggregated PVP- and PAA-coated nanoparticles of 200-2000 nm. Within the interphasial region, nanoparticle addition increased relaxation times by a factor 101-102, reaching ultraslow relaxations of ∼103 s. While the viscosity increased upon nanoparticle loading, interphasial relaxation times plateaued at 5 wt% for nanocomposites containing well-dispersed nanoparticles and 10 wt% for nanocomposites containing aggregated nanoparticles. Likely, interphasial regions between nanoparticles interact, which is more prominent in systems with well-dispersed nanoparticles and at higher loadings. Our results highlight that, contrary to general belief, nanoparticle dispersion seems of greater importance for mechanical reinforcement than the interaction between polymer and particle.
Collapse
Affiliation(s)
- Ivanna Colijn
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Erik Postma
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wageningen University and Research, Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Raoul Fix
- Wageningen University and Research, Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Hanne M van der Kooij
- Wageningen University and Research, Physical Chemistry and Soft Matter, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Karin Schroën
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
2
|
Colijn I, van der Kooij HM, Schroën K. From fundamental insights to rational (bio)polymer nanocomposite design - Connecting the nanometer to meter scale. Adv Colloid Interface Sci 2024; 324:103076. [PMID: 38301315 DOI: 10.1016/j.cis.2023.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/03/2024]
Abstract
Nanoparticle addition has the potential to make bioplastic use mainstream, as the resultant nanocomposite shows improved mechanical, barrier, and thermal properties. It is well established that the architecture and dynamics of the nanoparticle-polymer interphasial region, ∼ 1.5-9 nm from the nanoparticle surface, are crucial for nanocomposite characteristics. Yet, how these molecular phenomena translate to the bulk is still largely unknown. A multi-disciplinary and multi-scale vision is required to capture the full picture and improve materials far beyond what is currently possible. In this review, a first step in bridging the apparent gap between fundamental insights toward observed material properties is made. At the molecular scale, the polymer chain density and dynamics at the nanoparticle surface are governed by a complex interplay between enthalpy and entropy. The resultant interphasial properties can only be propagated to the macroscopic scale effectively when the nanoparticles are well-distributed. This makes the dispersion state a key parameter for which thermodynamic and kinetic insights can be used to prevent nanoparticle aggregation. These insights are linked to material properties relevant to packaging. The outlook section elaborates on the remaining challenges and the steps required to further understand and better design nanocomposite systems.
Collapse
Affiliation(s)
- Ivanna Colijn
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Hanne M van der Kooij
- Wageningen University and Research, Physical Chemistry and Soft Matter Group, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| | - Karin Schroën
- Wageningen University and Research, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
3
|
Saito T, Kubo M, Tsukada T, Shoji E, Kikugawa G, Surblys D, Kubo M. Molecular dynamics simulations for interfacial structure and affinity between carboxylic acid-modified Al2O3 and polymer melts. J Chem Phys 2023; 159:164708. [PMID: 37888762 DOI: 10.1063/5.0169721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Controlling the dispersion state of nanoparticles in a polymer matrix is necessary to produce polymer nanocomposites. The surface modification of nanoparticles is used to enable their dispersion in polymers. Moreover, molecular dynamics (MD) simulations are useful for revealing the interfacial properties between nanoparticles and polymers to aid in the design of materials. In this study, the effect of surface coverage, modifier length, and polymer species on the interfacial structure and affinity between surface-modified Al2O3 and polymer melts were investigated using all-atom MD simulations. Hexanoic, decanoic, and tetradecanoic acids were used as surface modifiers, and polypropylene (PP), polystyrene (PS), and poly (methyl methacrylate) (PMMA) were used as polymers. The work of adhesion Wadh and the work of immersion Wimm were selected as quantitative measures of affinity. Wadh was calculated using the phantom-wall approach, and Wimm was calculated by simply subtracting the surface tension of polymers γL from Wadh. The results showed that Wadh and Wimm were improved by surface modification with low coverage, owing to a good penetration of the polymer. The effect of modifier length on Wadh and Wimm was small. Whereas Wadh increased in the following order: PP < PS < PMMA, Wimm increased as follows: PMMA < PS < PP. Finally, the trend of Wadh and Wimm was organized using the Flory-Huggins interaction parameter χ between the modifier and the polymer. This study demonstrates that the interfacial affinity can be improved by tuning the surface coverage and modifier species depending on the polymer matrix.
Collapse
Affiliation(s)
- Takamasa Saito
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Masaki Kubo
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Takao Tsukada
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Eita Shoji
- Department of Mechanical Systems Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Gota Kikugawa
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Donatas Surblys
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Momoji Kubo
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
4
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
5
|
Chitin Nanocrystal Hydrophobicity Adjustment by Fatty Acid Esterification for Improved Polylactic Acid Nanocomposites. Polymers (Basel) 2022; 14:polym14132619. [PMID: 35808665 PMCID: PMC9268914 DOI: 10.3390/polym14132619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Bioplastics may solve environmental issues related to the current linear plastic economy, but they need improvement to be viable alternatives. To achieve this, we aimed to add chitin nanocrystals (ChNC) to polylactic acid (PLA), which is known to alter material properties while maintaining a fully bio-based character. However, ChNC are not particularly compatible with PLA, and surface modification with fatty acids was used to improve this. We used fatty acids that are different in carbon chain length (C4–C18) and degree of saturation (C18:2). We successfully used Steglich esterification and confirmed covalent attachment of fatty acids to the ChNC with FTIR and solid-state 13C NMR. The morphology of the ChNC remained intact after surface modification, as observed by TEM. ChNC modified with C4 and C8 showed higher degrees of substitution compared to fatty acids with a longer aliphatic tail, while particles modified with the longest fatty acid showed the highest hydrophobicity. The addition of ChNC to the PLA matrix resulted in brown color formation that was reduced when using modified particles, leading to higher transparency, most probably as a result of better dispersibility of modified ChNC, as observed by SEM. In general, addition of ChNC provided high UV-protection to the base polymer material, which is an additional feature that can be created through the addition of ChNC, which is not at the expense of the barrier properties, or the mechanical strength.
Collapse
|
6
|
Józó M, Várdai R, Hegyesi N, Móczó J, Pukánszky B. Poly-ε-Caprolactone/Halloysite Nanotube Composites for Resorbable Scaffolds: Effect of Processing Technology on Homogeneity and Electrospinning. Polymers (Basel) 2021; 13:polym13213772. [PMID: 34771328 PMCID: PMC8587687 DOI: 10.3390/polym13213772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Polycaprolactone (PCL)/halloysite composites were prepared to compare the effect of homogenization technology on the structure and properties of the composites. Halloysite content changed from 0 to 10 vol% in six steps and homogeneity was characterized by various direct and indirect methods. The results showed that the extent of aggregation depends on technology and on halloysite content; the size and number of aggregates increase with increasing halloysite content. Melt mixing results in more homogeneous composites than the simple compression of the component powders or homogenization in solution and film casting. Homogeneity and the extent of aggregation determines all properties, including functionality. The mechanical properties of the polymer deteriorate with increasing aggregation; even stiffness depends on homogeneity. Strength and deformability decreases drastically as the number and size of aggregates increase. Not only dispersed structure, but also the physical state and crystalline structure of the polymer influence homogeneity and properties. The presence of the filler affects the preparation of electrospun fiber scaffolds as well. A part of the filler is excluded from the fibers while another part forms aggregates that complicates fiber spinning and deteriorates properties. The results indicate that spinning is easier and the quality of the fibers is better if a material homogenized previously by melt mixing is used for the production of the fibers.
Collapse
Affiliation(s)
- Muriel Józó
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Róbert Várdai
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Nóra Hegyesi
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - János Móczó
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
| | - Béla Pukánszky
- Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary; (M.J.); (R.V.); (N.H.); (J.M.)
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, ELKH Eötvös Loránd Research Network, P.O. Box 286, H-1519 Budapest, Hungary
- Correspondence: ; Tel.: +36-(14)-632015
| |
Collapse
|