1
|
Ferreira DCM, Rodrigues CS, Coimbra JSDR, de Oliveira EB. Delivery and controlled release abilities of chitosan/carboxymethylcellulose micropolyelectrolyte complexes (PECs) toward niacinamide (vitamin B3). Int J Biol Macromol 2024; 283:137848. [PMID: 39566762 DOI: 10.1016/j.ijbiomac.2024.137848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
The administration of bioactive compounds presents challenges due to the numerous physiological barriers in the gastrointestinal tract. To deal with one of these challenges, chitosan (CHS)/carboxymethylcellulose (CMC) micropolyelectrolyte complexes (micro-PECs) were developed without the use of crosslinking agents to carry niacinamide, a model hydrophilic bioactive agent. A Box-Behnken design was used to study the effects of processing time (X1 = 60, 120 or 180 min), pH (X2 = 3, 4 or 5) and niacinamide concentration (X3 = 0.02, 0.04 and 0.06, g·L-1) on the encapsulation efficiency (Y1) and loading capacity (Y2) of niacinamide by CMC/CHS micro-PECs. The encapsulation efficiency (Y1) varied from 0.86 % to 80.78 %, whereas the loading capacity (Y2) varied between 0.03 % and 3.89 %. The digestibility of CMC/CHS micro-PECs containing niacinamide was evaluated in vitro via a static gastrointestinal model. Empirical models (Zero Order, First Order, Higuchi and Korsemeyer-Peppas) were fitted to the niacinamide release kinetics data. The zero-order model exhibited the best fit across all points (gastric and enteric digestion), with low zero-order constants (K0) ~ 0.002-0.003, indicating a regular and subdued release rate in all cases. These results highlight the applicability of CMC/CHS micro-PECs as an efficient, novel oral delivery system, surpassing conventional approaches by offering a sustained release and high encapsulation efficiency, without needing any additional chemical crosslinking agent for their obtention.
Collapse
Affiliation(s)
- Danielle Cristine Mota Ferreira
- Equipe de Estudo de Materiais Alimentares (E(2)MA), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil.
| | - Carolina Serra Rodrigues
- Equipe de Estudo de Materiais Alimentares (E(2)MA), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil
| | - Jane Sélia Dos Reis Coimbra
- Laboratório de Operações Unitárias (LOP), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil
| | - Eduardo Basílio de Oliveira
- Equipe de Estudo de Materiais Alimentares (E(2)MA), Departamento de Tecnologia de Alimentos (DTA), Universidade de Viçosa (UFV), CEP 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Liu Y, Wang D, Lai Y, Zou J, Yang P, Wu Z, He W. Deep Eutectic Solvents for Essential-Oil Delivery and Bacterial-Infected Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23766-23779. [PMID: 39480745 DOI: 10.1021/acs.langmuir.4c02736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Essential oils (EOs) are volatile secondary metabolites of natural plants with multitudinous pharmacological activities. However, limited by their properties, such as low solubility, high volatility, photothermal instability, irritation, release, etc., EOs encounter significant challenges in pharmaceutical applications. Deep eutectic solvents (DESs) have been developed for the transdermal delivery of biomolecules and lipid-soluble drugs. Herein, a series of DES carriers were synthesized to improve the undesirable properties of EOs. We first optimized the DESs according to solubilization and aqueous dispersity using Chimonanthus nitens Oliv. EO (COEO) as a model EO. Then, the EO-DES formulations were diluted to prepare optimal aqueous EO-DES nanoformulations (AqEDs). Mechanically, hydrogen bonding allowed the DES to dissolve the complex components in EOs; meanwhile, the interaction forces, such as π-π stacking and hydrogen bonding, drove the EO-DES to assemble into nanostructures in aqueous conditions, forming AqEDs. Lastly, a case study demonstrated that clove EO-AqEDscould effectively promote methicillin-resistant Staphylococcus aureus-infected wound healing in vivo, along with biocompatibility. This AqED strategy provides a generalized platform for solubilizing EOs and improving their transdermal/topical delivery.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Di Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Jiahui Zou
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan KA, Ghramh HA, Han X. Impact of plant monoterpenes on insect pest management and insect-associated microbes. Heliyon 2024; 10:e39120. [PMID: 39498017 PMCID: PMC11532279 DOI: 10.1016/j.heliyon.2024.e39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
The fight against insect pests primarily relies on the utilization of synthetic insecticides. However, improper application of these chemicals can lead to detrimental effects on both the environment and human health, as well as foster the development of insect resistance. Consequently, novel strategies must be implemented to address the challenges stemming from the prolonged use of synthetic insecticides in agricultural and public health environments. Certain strategies involve the combination of crop protectants, which not only enhance insecticidal effectiveness but also reduce application rates. Plant-based natural products emerge as promising alternatives for insect management. Monoterpenes, which are abundant plant compounds produced through the activation of various enzymes, have attracted significant attention for their effectiveness in insect control. Notably, they are prolific in fragrance-producing plants. This review explores the plant defense, insecticidal, and antimicrobial characteristics of monoterpenes against insect pests, shedding light on their potential modes of action and possibilities for commercialization. Emphasizing their role as targeted and environmentally safer, the review highlights the practical viability of monoterpenes within integrated pest management programs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Dilbar Hussain
- Department of Entomology, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A. Ghramh
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| |
Collapse
|
4
|
Chaudhary MN, Li X, Yang S, Wang D, Luo L, Zeng L, Luo W. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Gels 2024; 10:670. [PMID: 39451323 PMCID: PMC11507381 DOI: 10.3390/gels10100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Enhancing the sensory appeal of jasmine instant tea, particularly its aroma, poses a significant challenge due to the loss of volatile organic compounds during conventional processing. This study introduces a novel approach to address this issue through the application of microencapsulation techniques, aimed at preserving these key aromatic elements. Our investigation focused on the encapsulating agents gelatin, acacia gum, carboxymethylcellulose (CMC), and maltodextrin, chosen for their compatibility with the volatile organic compounds of tea. A statistical analysis was conducted on the analytical results through comprehensive analytical techniques like Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), and Variable Importance in Projection (VIP) analysis for microcapsule characterization. The statistical analysis revealed gelatin to be a particularly effective encapsulating medium, preserving an aroma profile more akin to fresh tea. The statistical analysis confirmed the reliability of these findings, highlighting the potential of microencapsulation in refining the quality of jasmine instant tea products. The results of this research suggest that microencapsulation could be instrumental in improving the sensory quality and shelf life of instant tea products, offering new opportunities for product enhancement in the beverage industry.
Collapse
Affiliation(s)
- Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Xiaolin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Siyue Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China;
| | - Liyong Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| | - Wei Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Food Science, Southwest University, Chongqing 400715, China; (M.N.C.); (X.L.); (S.Y.); (L.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Dashtian K, Kamalabadi M, Ghoorchian A, Ganjali MR, Rahimi-Nasrabadi M. Integrated supercritical fluid extraction of essential oils. J Chromatogr A 2024; 1733:465240. [PMID: 39154494 DOI: 10.1016/j.chroma.2024.465240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Supercritical fluid extraction (SFE) stands out as an incredibly efficient, environmentally conscious, and fast method for obtaining essential oils (EOs) from plants. These EOs are abundant in aromatic compounds that play a crucial role in various industries such as food, fragrances, cosmetics, perfumery, pharmaceuticals, and healthcare. While there is a wealth of existing literature on using supercritical fluids for extracting plant essential oils, there's still much to explore in terms of combining different techniques to enhance the SFE process. This comprehensive review presents a sophisticated framework that merges SFE with EO extraction methods. This inclusive categorization encompasses a range of methods, including the integration of pressurized liquid processes, ultrasound assistance, steam distillation integration, microfluidic techniques, enzyme integration, adsorbent facilitation, supercritical antisolvent treatments, molecular distillation, microwave assistance, milling process and mechanical pressing integration. Throughout this in-depth exploration, we not only elucidate these combined techniques but also engage in a thoughtful discussion about the challenges they entail and the array of opportunities they offer within the realm of SFE for EOs. By dissecting these complexities, our objective is to tackle the current challenges associated with enhancing SFE for commercial purposes. This endeavor will not only streamline the production of premium-grade essential oils with improved safety measures but also pave the way for novel applications in various fields.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Arash Ghoorchian
- Department of Chemistry, Research Center for Development of Advanced Technologies, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lobel B, Baiocco D, Al-Sharabi M, Routh AF, Zhang Z, Cayre OJ. Current Challenges in Microcapsule Designs and Microencapsulation Processes: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40326-40355. [PMID: 39042830 PMCID: PMC11311140 DOI: 10.1021/acsami.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
Microencapsulation is an advanced methodology for the protection, preservation, and/or delivery of active materials in a wide range of industrial sectors, such as pharmaceuticals, cosmetics, fragrances, paints, coatings, detergents, food products, and agrochemicals. Polymeric materials have been extensively used as microcapsule shells to provide appropriate barrier properties to achieve controlled release of the encapsulated active ingredient. However, significant limitations are associated with such capsules, including undesired leaching and the nonbiodegradable nature of the typically used polymers. In addition, the energy cost of manufacturing microcapsules is an important factor to be considered when designing microcapsule systems and the corresponding production processes. Recent factors linked to UN sustainability goals are modifying how such microencapsulation systems should be designed in pursuit of "ideal" microcapsules that are efficient, safe, cost-effective and environmentally friendly. This review provides an overview of advances in microencapsulation, with emphasis on sustainable microcapsule designs. The key evaluation techniques to assess the biodegradability of microcapsules, in compliance with recently evolving European Union requirements, are also described. Moreover, the most common methodologies for the fabrication of microcapsules are presented within the framework of their energy demand. Recent promising microcapsule designs are also highlighted for their suitability toward meeting current design requirements and stringent regulations, tackling the ongoing challenges, limitations, and opportunities.
Collapse
Affiliation(s)
- Benjamin
T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| | - Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United
Kingdom
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Woodhouse LS2 9JT, United Kingdom
| |
Collapse
|
7
|
Bhutkar S, Millard PE, Preece JA, Zhang Z. Microplastic-Free Microcapsules Using Supramolecular Self-Assembly of Bis-Urea Molecules at an Emulsion Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14798-14810. [PMID: 38990556 PMCID: PMC11270993 DOI: 10.1021/acs.langmuir.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Encapsulation technology is well established for entrapping active ingredients within an outer shell for their protection and controlled release. However, many solutions employed industrially use nondegradable cross-linked synthetic polymers for shell formation. To curb rising microplastic pollution, regulatory policies are forcing industries to substitute the use of such intentionally added microplastics with environmentally friendly alternatives. This work demonstrates a one-pot process to make microplastic-free microcapsules using supramolecular self-assembly of bis-ureas. Molecular bis-urea species generated in-situ spontaneously self-assemble at the interface of an oil-in-water emulsion via hydrogen bonding to form a shell held together by noncovalent bonds. In addition, Laponite nanodiscs were introduced in the formulation to restrict aggregation observed during the self-assembly and to reduce the porosity of the shell, leading to well-dispersed microcapsules (mean Sauter diameter d [3,2] ∼ 5 μm) with high encapsulation efficiency (∼99%). Accelerated release tests revealed an increase in characteristic release time of the active by more than an order of magnitude after encapsulation. The mechanical strength parameters of these capsules were comparable to some of the commercial, nondegradable melamine-formaldehyde microcapsules. With mild operating conditions in an aqueous environment, this technology has real potential to offer an industrially viable method for producing microplastic-free microcapsules.
Collapse
Affiliation(s)
| | | | - Jon A. Preece
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
8
|
Lee M, Choi W, Lee JM, Lee ST, Koh WG, Hong J. Flavor-switchable scaffold for cultured meat with enhanced aromatic properties. Nat Commun 2024; 15:5450. [PMID: 38982039 PMCID: PMC11233498 DOI: 10.1038/s41467-024-49521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Cultured meat is emerging as a new type of food that can provide animal protein in a sustainable way. Many previous studies employed various types of scaffolds to develop cultured meat with similar properties to slaughtered meat. However, important properties such as flavor were not discussed, even though they determine the quality of food. Flavor characteristics vary dramatically depending on the amount and types of amino acids and sugars that produce volatile compounds through the Maillard reaction upon cooking. In this study, a flavor-switchable scaffold is developed to release meaty flavor compounds only upon cooking temperature mimicking the Maillard reaction of slaughtered meat. By introducing a switchable flavor compound (SFC) into a gelatin-based hydrogel, we fabricate a functional scaffold that can enhance the aromatic properties of cultured meat. The temperature-responsive SFC stably remains in the scaffold during the cell culture period and can be released at the cooking temperature. Surprisingly, cultured meat fabricated with this flavor-switchable scaffold exhibits a flavor pattern similar to that of beef. This research suggests a strategy to develop cultured meat with enhanced sensorial characteristics by developing a functional scaffold which can mimic the natural cooking flavors of conventional meat.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seung Tae Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Baiocco D, Al-Sharabi M, Lobel BT, Cayre OJ, Routh AF, Zhang Z. Eco-Friendly Fungal Chitosan-Silica Dual-Shell Microcapsules with Tailored Mechanical and Barrier Properties for Potential Consumer Product Applications. ACS OMEGA 2024; 9:28385-28396. [PMID: 38973847 PMCID: PMC11223154 DOI: 10.1021/acsomega.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Commercial perfume microcapsules are becoming popular across the globe to fulfill consumers' demands. However, most of microcapsules rely on synthetic polymers and/or animal-sourced ingredients to form the shells. Therefore, replacement of the shell materials is imperative to minimize environmental microplastic pollution, as well as to meeting peoples' needs, religious beliefs, and lifestyles. Herein, we report a methodology to fabricate environmentally benign dual-shell (fungal chitosan-SiO2) microcapsules laden with fragrance oil (hexyl salicylate). Anionically stabilized oil droplets were coated with fungal chitosan via interfacial electrostatic interactions at pH 2, which were then covered by an inorganic coating of SiO2 produced via external alkaline mineralization of sodium silicate. Core-shell microcapsules with a spherical morphology were achieved. Under compression, dual-shell chitosan-SiO2 microcapsules yielded a mean nominal rupture stress of 3.0 ± 0.2 MPa, which was significantly higher than that of single-shell microcapsules (1.7 ± 0.2 MPa). After 20 days in neutral pH water, only ∼2.5% of the oil was released from dual-shell microcapsules, while single-shell microcapsules cumulatively released more than 10%. These findings showed that the additional SiO2 coating significantly enhanced both mechanical and barrier properties of microcapsules, which may be appealing for multiple commercial applications, including cosmetics and detergents.
Collapse
Affiliation(s)
- Daniele Baiocco
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Mohammed Al-Sharabi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Benjamin T. Lobel
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Olivier J. Cayre
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Alexander F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Zhibing Zhang
- School
of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
10
|
Prabhu N, Sabour AAA, Rengarajan S, Gajendiran K, Natarajan D. Analysis of the remediation competence of Aspergillus flavus biomass in wastewater of the dyeing industry: An in-vitro study. ENVIRONMENTAL RESEARCH 2024; 252:118705. [PMID: 38548251 DOI: 10.1016/j.envres.2024.118705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
The dyeing industry effluent causes severe environmental pollution and threatens the native flora and fauna. The current study aimed to analyze the physicochemical parameters of dyeing industry wastewater collected in different sites (K1, E2, S3, T4, and V5), as well as the metal tolerance and decolourisation ability of Aspergillus flavus. Furthermore, the optimal biomass quantity and temperatures required for efficient bioremediation were investigated. Approximately five dyeing industry wastewater samples (K1, E2, S3, T4, and V5) were collected from various sampling stations, and the majority of the physical and chemical characteristics were discovered to be above the permissible limits. A. flavus demonstrated outstanding metal resistance to As, Cu, Cr, Zn, Hg, Pb, Ni, and Cd on Potato Dextrose Agar (PDA) plates at concentrations of up to 500 g mL-1. At 4 g L-1 concentrations, A. flavus biomass decolorized up to 11.2-46.5%. Furthermore, 35°C was found to be the optimal temperature for efficient decolourisation of A. flavus biomass. The toxicity of 35°C-treated wastewater on V. mungo and prawn larvae was significantly reduced. These findings indicate that the biomass of A. flavus can be used to decolorize dyeing industry wastewater.
Collapse
Affiliation(s)
- N Prabhu
- Department of Research and Innovations, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602 105, Tamil Nadu, India
| | - Amal Abdullah A Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sumathy Rengarajan
- Department of Biotechnology, Valliammal College for Women, E-9, Anna Nagar East, Chennai, 600102, India
| | - K Gajendiran
- PG and Research Department of Microbiology, M.G.R. College, Hosur, 635 130, Tamil Nadu, India
| | - Devarajan Natarajan
- Natural Drug Research Lab, Department of Biotechnology, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
11
|
Li S, Yan J, Yang J, Chen G, McClements DJ, Ma C, Liu X, Liu F. Modulating peppermint oil flavor release properties of emulsion-filled protein gels: Impact of cross-linking method and matrix composition. Food Res Int 2024; 185:114277. [PMID: 38658069 DOI: 10.1016/j.foodres.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.
Collapse
Affiliation(s)
- Siqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junhao Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Guipan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
12
|
Ghandehari-Alavijeh S, Can Karaca A, Akbari-Alavijeh S, Assadpour E, Farzaneh P, Saidi V, Jafari SM. Application of encapsulated flavors in food products; opportunities and challenges. Food Chem 2024; 436:137743. [PMID: 37852072 DOI: 10.1016/j.foodchem.2023.137743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Flavors are considered among the most important components of food formulations since they can predominantly affect the consumer acceptance and satisfaction. However, most flavors are highly volatile and inherently sensitive to pH, light, thermal processes, and chemical reactions such as oxidation and hydrolysis. Encapsulation is used as an effective strategy for protecting flavors from environmental conditions and extending their shelf life. Moreover, release characteristics of flavors can be modified via application of appropriate carriers and wall materials. This review focuses on the use of encapsulated flavors in various food products. Various factors affecting flavor retention during encapsulation, flavor release mechanisms, profiles and kinetics are discussed. Finally, the challenges associated with the use of encapsulated flavors in food products (in situ) and to model systems (in vitro), their storage stability, product requirements and problems related to the market are presented.
Collapse
Affiliation(s)
- Somayeh Ghandehari-Alavijeh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parisa Farzaneh
- Department of Food Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Vahideh Saidi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
Woźniak-Budych M, Staszak K, Wieszczycka K, Bajek A, Staszak M, Roszkowski S, Giamberini M, Tylkowski B. Microplastic label in microencapsulation field - Consequence of shell material selection. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133000. [PMID: 38029585 DOI: 10.1016/j.jhazmat.2023.133000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023]
Abstract
Plastics make our lives easier in many ways; however, if they are not appropriately disposed of or recycled, they may end up in the environment where they stay for centuries and degrade into smaller and smaller pieces, called microplastics. Each year, approximately 42000 tonnes of microplastics end up in the environment when products containing them are used. According to the European Chemicals Agency (ECHA) one of the significant sources of microplastics are microcapsules formulated in home care and consumer care products. As part of the EU's plastics strategy, ECHA has proposed new regulations to ban intentionally added microplastics starting from 2022. It means that the current cross-linked microcapsules widely applied in consumer goods must be transformed into biodegradable shell capsules. The aim of this review is to provide the readers with a comprehensive and in-depth understanding of recent developments in the art of microencapsulation. Thus, considering the chemical structure of the capsule shell's materials, we discuss whether microcapsules should also be categorized as microplastic and therefore, feared and avoided or whether they should be used despite the persisting concern.
Collapse
Affiliation(s)
- Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Anna Bajek
- Tissue Engineering Department, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Karlowicza str 24, 85-092 Bydgoszcz, Poland
| | - Maciej Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| | - Marta Giamberini
- Department of Chemical Engineering (DEQ), Universitat Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, Marcel·lí Domingo 2, 43007 Tarragona, Spain; Department of Clinical Neuropsychology, Faculty of Health Science, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland.
| |
Collapse
|
14
|
Wu CJ, Zhang WF, Chen X, Fan W, Zhang QD, Mao J, Chai GB, Shi QZ, Kong YJ, Zhang EG, Li YY, Zhang SS, Xie JP. Thermal/Redox-triggered release of pyrazinic functional molecules by coordination polymers with luminescence monitoring ability. J Colloid Interface Sci 2023; 650:1265-1273. [PMID: 37478743 DOI: 10.1016/j.jcis.2023.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023]
Abstract
Storage of volatile active molecules, along with the prolongation of their specific functions, requires the use of regulatable carriers. Pyrazine derivatives are highly volatile compounds with a broad application owing to their flavoring, pharmaceutical, antimicrobial, antiseptic, and insecticidal properties. In this study, pyrazines were stored by coordinating them with cuprous iodide to easily generate a series of luminescent coordination polymer (CP)-based carriers. The CPs could respond to thermal-redox stimuli and manipulate pyrazine release by breaking the labile Cu-N bonds when triggered by the two stimuli. Moreover, the release process could be visualized by decreased luminescence caused by the gradual decomposition of CP structures. The loading efficiencies ranged from 31% to 38%, and the controlled release behaviors accord with the zero-order kinetics. This work is the first to prove that CPs could function as dual stimuli-mediated delivery systems, which hold the potential to control the release and strengthen the usability of functional molecules.
Collapse
Affiliation(s)
- Chao-Jun Wu
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China; College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Wen-Fen Zhang
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Xin Chen
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Qi-Dong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Guo-Bi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Qing-Zhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Yu-Jin Kong
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China
| | - En-Gui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yan-Yang Li
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China
| | - Shu-Sheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China.
| | - Jian-Ping Xie
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, PR China; Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
15
|
Russell S, Bruns N. Encapsulation of Fragrances in Micro- and Nano-Capsules, Polymeric Micelles, and Polymersomes. Macromol Rapid Commun 2023; 44:e2300120. [PMID: 37150605 DOI: 10.1002/marc.202300120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Fragrances are ubiquitously and extensively used in everyday life and several industrial applications, including perfumes, textiles, laundry formulations, hygiene household products, and food products. However, the intrinsic volatility of these small organic molecules leaves them particularly susceptible to fast depletion from a product or from the surface they have been applied to. Encapsulation is a very effective method to limit the loss of fragrance during their use and to sustain their release. This review gives an overview of the different materials and techniques used for the encapsulation of fragrances, scents, and aromas, as well as the methods used to characterize the resulting encapsulation systems, with a particular focus on cyclodextrins, polymer microcapsules, inorganic microcapsules, block copolymer micelles, and polymersomes for fragrance encapsulation, sustained release, and controlled release.
Collapse
Affiliation(s)
- Sam Russell
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, G1 1XL, Glasgow, United Kingdom
| | - Nico Bruns
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, G1 1XL, Glasgow, United Kingdom
| |
Collapse
|
16
|
Zemmour C, Zakharova S, Benny O. Generating porous metal surfaces as a mean to incorporate thymol-loaded nanoparticles. DISCOVER NANO 2023; 18:89. [PMID: 37382727 DOI: 10.1186/s11671-023-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/09/2023] [Indexed: 06/30/2023]
Abstract
Porous metals have gained interest in many fields such as biomedicine, electronics, and energy. Despite the many benefits that these structures may offer, one of the major challenges in utilizing porous metals is to incorporate active compounds, either small molecules or macromolecules, on these surfaces. Coatings that contain active molecules have previously been used for biomedical applications to enable the slow release of drugs, e.g., with drug-eluting cardiovascular stents. However, direct deposition of organic materials on metals by coatings is very difficult due to the challenge of obtaining uniform coatings, as well as issues related to layer adherence and mechanical stability. Our study describes an optimization of a production process of different porous metals, aluminum, gold, and titanium, using wet-etching. Pertinent physicochemical measurements were carried out to characterize the porous surfaces. Following the production of porous metal surface, a new methodology for incorporating active materials onto the metals by using mechanical entrapment of polymeric nanoparticles in metal pores was developed. To demonstrate our concept of active material incorporation, we produced an odor-releasing metal object with embedded particles loaded with thymol, an odoriferous molecule. Polymer particles were placed inside nanopores in a 3D-printed titanium ring. Chemical analysis, followed by smell tests, indicated that the smell intensity lasts significantly longer in the porous material containing the nanoparticles, compared with the free thymol.
Collapse
Affiliation(s)
- Chalom Zemmour
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Sofya Zakharova
- Bezalel Academy of Arts and Design Jerusalem, Jerusalem, Israel
| | - Ofra Benny
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
17
|
Berraaouan D, Essifi K, Addi M, Hano C, Fauconnier ML, Tahani A. Hybrid Microcapsules for Encapsulation and Controlled Release of Rosemary Essential Oil. Polymers (Basel) 2023; 15:polym15040823. [PMID: 36850108 PMCID: PMC9968220 DOI: 10.3390/polym15040823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The foremost objective of this work is to assess the microcapsules composition (polymer-based and polymer/clay-based) effect, on the release of rosemary essential oil into w/o medium and evaluate their antioxidant activity. Calcium alginate (CA) and calcium alginate/montmorillonite hybrid (CA-MTN) microcapsules were developed following an ionotropic crosslinking gelation and were used as host materials for the encapsulation of rosemary essential oil. The unloaded/loaded CA and hybrid CA-MTN microcapsules were characterized by Fourier transform infra-red (FT-ATR) spectroscopy, thermal analysis (TGA), scanning electron microscopy (SEM) and DPPH assay. The evaluation of the microcapsule's physicochemical properties has shown that the clay filling with montmorillonite improved the microcapsule's properties. The encapsulation efficiency improved significantly in hybrid CA-MTN microcapsules and exhibited higher values ranging from 81 for CA to 83% for hybrid CA-MTN and a loading capacity of 71 for CA and 73% for hybrid CA-MTN, owing to the large adsorption capacity of the sodic clay. Moreover, the hybrid CA-MTN microcapsules showed a time-extended release of rosemary essential oil compared to CA microcapsules. Finally, the DPPH assay displayed a higher reduction of free radicals in hybrid CA-MNT-REO (12.8%) than CA-REO (10%) loaded microcapsules. These results proved that the clay-alginate combination provides microcapsules with enhanced properties compared to the polymer-based microcapsules.
Collapse
Affiliation(s)
- Doha Berraaouan
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Kamal Essifi
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
- Correspondence: (M.A.); (A.T.); Tel.: +212-(0)641612183 (M.A.); +212-(0)667086196 (A.T.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
- Correspondence: (M.A.); (A.T.); Tel.: +212-(0)641612183 (M.A.); +212-(0)667086196 (A.T.)
| |
Collapse
|
18
|
Tai Z, Zheng M, Yang Y, Xie C, Li Z, Xu C. Temperature controlled microcapsule loaded with Perilla essential oil and its application in preservation of peaches. Front Nutr 2023; 10:1087605. [PMID: 36814505 PMCID: PMC9939902 DOI: 10.3389/fnut.2023.1087605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, Perilla frutescens essential oil (PEO) loaded microcapsules (PEOM) were successfully prepared and their thermal stability, temperature-responsive releasing effect, antioxidant activity, antibacterial activity, and preservation of peach were systematically investigated. PEOM showed excellent encapsulation efficiency (91.5%) with a core-shell ratio of 1.4:1 and exhibited high thermal stability, indicating that PEOM could effectively maintain PEO release rate. In vitro assays indicated that the optimal kinetic model for PEO release fitted well with first order with a diffusion mechanism. A high level of antioxidant and antibacterial activity of PEOM was maintained. In addition, owing to its sustained release, PEOM could prolong the shelf life of peaches significantly. Therefore, PEOM has potential application and development prospects in the field of food preservation.
Collapse
Affiliation(s)
- Zhigang Tai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minjie Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
19
|
Fei X, Yang T, Liu S, Zhang B, Zhao H, Liu D, Wu X, Xu D. Effect of silane coupling
agent‐TiO
2
on the sustained release performance of quaternary ammonium salt of chitosan shell fragrance microcapsules. J Appl Polym Sci 2023. [DOI: 10.1002/app.53673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xuening Fei
- School of Science Tianjin Chengjian University Tianjin China
| | - Tingyu Yang
- School of Science Tianjin Chengjian University Tianjin China
| | - Sijia Liu
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Baolian Zhang
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
| | - Hongbin Zhao
- School of Science Tianjin Chengjian University Tianjin China
| | - Dan Liu
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Xinyi Wu
- School of Science Tianjin Chengjian University Tianjin China
| | - Danyang Xu
- School of Science Tianjin Chengjian University Tianjin China
| |
Collapse
|
20
|
Comprehensive evaluation on the encapsulation performances of melamine-formaldehyde microcapsules affected by core oils. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Microencapsulation as a Route for Obtaining Encapsulated Flavors and Fragrances. COSMETICS 2023. [DOI: 10.3390/cosmetics10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Microencapsulation methods for active substances, such as fragrance compounds and aromas, have long been of interest to researchers. Fragrance compositions and aromas are added to cosmetics, household, and food products. This is often because the choice of a particular product is dictated by its fragrance. Fragrance compositions and aromas are, therefore, a very important part of the composition of these items. During production, when a fragrance composition or aroma is introduced into a system, unfavorable conditions often exist. High temperatures and strong mixing have a detrimental effect on some fragrance compounds. The environments of selected products, such as high- or low-pH surfactants, all affect the fragrance, often destructively. The simple storage of fragrances where they are exposed to light, oxygen, or heat also has an adverse effect. The solution to most of these problems may be the encapsulation process, namely surrounding small fragrance droplets with an inert coating that protects them from the external environment, whether during storage, transport or application, until they are in the right conditions to release the fragrance. The aim of this article was to present the possible, available and most commonly used methods for obtaining encapsulated fragrances and aromas, which can then be used in various industries. In addition, the advantages and disadvantages of each method were pointed out, so that the selection of the appropriate technology for the production of encapsulated fragrances and aromas will be simpler.
Collapse
|
22
|
Lamboley S, Vuichoud B, de Saint Laumer JY, Herrmann A. Release of Volatile Cyclopentanone Derivatives from Imidazolidin-4-One Profragrances in a Fabric Softener Application. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010382. [PMID: 36615574 PMCID: PMC9822342 DOI: 10.3390/molecules28010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Imidazolidin-4-ones were investigated as hydrolytically cleavable profragrances to increase the long-lastingness of perfume perception in a fabric softener application. The reaction of different amino acid amides with 2-alkyl- or 2-alkenylcyclopentanones as the model fragrances to be released afforded the corresponding bi- or tricyclic imidazolidin-4-ones as mixtures of diastereoisomers, which were separated by column chromatography. In polar solution, the different stereoisomers equilibrated under thermodynamic conditions to form mixtures with constant isomeric distributions, as shown by NMR spectroscopy. Dynamic headspace analysis on dry cotton demonstrated the controlled fragrance release from the precursors in practical application. Under non-equilibrium conditions (continuous evaporation of the fragrance) and depending on the structure and stereochemistry of the profragrances, the recorded headspace concentrations of the fragrance released from the precursors increased by a factor of 2 up to 100 with respect to the unmodified reference. Prolinamide-based precursors released the highest amount of fragrance and were thus found to be particularly suitable for prolonging the evaporation of cyclopentanone-derived fragrances on a dry cotton surface.
Collapse
|
23
|
Secondary Metabolites of Endophytes Associated with the Zingiberaceae Family and Their Pharmacological Activities. Sci Pharm 2022. [DOI: 10.3390/scipharm91010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Zingiberaceae is commonly known as the ginger family and has been extensively studied in the last decades for its pharmacological purposes. The study of ginger includes microorganisms known as endophytes, which raise interest for the research community because they can produce a wide range of secondary metabolites. This review discusses the secondary metabolites of endophytes from the Zingiberaceae family and their pharmacological activities. We detail the group of secondary metabolites, updated for its absolute structures, source and part origins, and, especially, pharmacological divided properties. Zingiberaceae endophytes have 106 volatile compounds and 52 isolated constituents, including 17 polyketides, five nonribosomal peptides, five aromatic compounds, three alkaloids, and 21 terpene-alkaloids. They have antimicrobial, anticancer, antioxidant, and anti-inflammatory activities. Secondary metabolites from plant endophytes of the Zingiberaceae family have the potential to be therapeutic drugs in the future. Research on endophytic bacteria or fungi has been little performed. Therefore, this study supports a new drug discovery from Zingiberaceae endophytes and compares them for future drug development.
Collapse
|
24
|
Ye X, Cheng Z, Wu M, Hu BX, Mo C, Li Q, Wu J, Wu J, Hao Y, Lu G. Determining the mobility of polystyrene nano-plastic in saturated quartz Sand-Limestone porous media. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Namazzadeh G, Ehsani A, Ghasempour Z. Microencapsulation of red beet extract using
Chitosan‐Persian
Gum Complex Coacervates. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazal Namazzadeh
- Students Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ehsani
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Zahra Ghasempour
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
26
|
Tavares L, Zapata Noreña CP, Barros HL, Smaoui S, Lima PS, Marques de Oliveira M. Rheological and structural trends on encapsulation of bioactive compounds of essential oils: A global systematic review of recent research. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Zhao D, Zhao Q, Xu Z, Shi X. Preparation of temperature‐sensitive fragrance nanocapsules and its controllable release property. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology No. 100 Haiquan Road, Shanghai China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology Shanghai Institute of Technology No. 100 Haiquan Road, Shanghai China
| | - Zhifei Xu
- Shanghai Zhishengyuan Testing Technology Co., Ltd Shanghai China
| | - Xiaodi Shi
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| |
Collapse
|
28
|
Propolis: Encapsulation and application in the food and pharmaceutical industries. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Sofroniou C, Baglioni M, Mamusa M, Resta C, Doutch J, Smets J, Baglioni P. Self-Assembly of Soluplus in Aqueous Solutions: Characterization and Prospectives on Perfume Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14791-14804. [PMID: 35312278 PMCID: PMC8972246 DOI: 10.1021/acsami.2c01087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Soluplus is an amphiphilic graft copolymer intensively studied as a micellar solubilizer for drugs. An extensive characterization of the nanostructure of its colloidal aggregates is still lacking. Here, we provide insights into the polymer's self-assembly in water, and we assess its use as an encapsulating agent for fragrances. The self-assembly properties of Soluplus aqueous solutions were studied over a wide concentration range (1-70% w/w) by means of small-angle neutron scattering (SANS), differential scanning calorimetry, NMR, and rheometry. SANS analyses revealed the presence of polymeric micelles with a fuzzy surface interacting via a 2-Yukawa potential, up to 15% w/w polymer. Increasing the polymer concentration up to 55% w/w led to tightly packed micelles described according to the Teubner-Strey model. The ability of Soluplus to encapsulate seven perfume molecules, 2-phenyl ethanol, l-carvone, linalool, florhydral, β-citronellol, α-pinene, and R-limonene, was then examined. We showed that the fragrance's octanol/water partition coefficient (log Kow), widely used to characterize the solubilization capacity, is not sufficient to characterize such systems and the presence of specific functional groups or molecular conformation needs to be considered. In fact, the combination of SANS, NMR, confocal laser scanning microscopy, and confocal Raman microscopy showed that the perfumes, interacting with different regions of the polymer aggregates, are able to tune the systems' structures resulting in micelles, matrix-type capsules, core-shell capsules, or oil-in-water emulsions.
Collapse
Affiliation(s)
- Constantina Sofroniou
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Michele Baglioni
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Marianna Mamusa
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudio Resta
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - James Doutch
- Science
and Technology Facilities Council, ISIS
Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Johan Smets
- The
Procter & Gamble Company, Temselaan 100, 1853 Strombeek Bever, Belgium
| | - Piero Baglioni
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
30
|
Trachsel A, Paret N, Berthier D, Herrmann A. Light‐Induced Fragrance Release from 2‐Oxoacetates: Impact of Compound Mixtures on the Efficiency of the Norrish Type II Photoreaction in Solution and in Encapsulation Systems. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alain Trachsel
- Firmenich SA Division Recherche & Développement SWITZERLAND
| | - Nicolas Paret
- Firmenich SA Division Recherche & Développement SWITZERLAND
| | | | - Andreas Herrmann
- Firmenich SA Division Recherche et Développement Rue de la Bergère 7 1242 Satigny SWITZERLAND
| |
Collapse
|
31
|
Enhanced Antioxidant Activity of Fresh Fruits through Salicylic Acid/β-CD Hydroalcoholic Gels. Gels 2022; 8:gels8010061. [PMID: 35049596 PMCID: PMC8775047 DOI: 10.3390/gels8010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Oxidation is an important cause of fruit spoilage, and therefore improving the antioxidant capacity of fresh fruits is beneficial to their preservation. Herein, fresh-cut bananas were used as a type of fresh fruit and soaked in 75% hydroalcoholic gels containing salicylic acid (SA) or SA/β-CD inclusion complex (SA/β-CD). After treatment, they were placed in an atmosphere at 85% relative humidity at 20 °C for 12 days. A significant reduction in spoilage in bananas treated with the hydroalcoholic gels in the presence of SA/β-CD was observed, compared with those treated with gels in the presence or absence of SA. The free-radical-scavenging performances of SA and its complex were investigated using the DPPH (1,1-diphenyl-2-picryl-hydrazil) method. Based on the results, the significant increase in antioxidant activity was attributed to the fact that the inclusion complex could break the intramolecular hydrogen bonding of SA, thus efficiently eliminating ROS in the fruits. The formation of the inclusion complex was confirmed by experiments and theoretical calculations. Our findings indicate that treatment with SA/β-CD can provide an efficient method of maintaining postharvest quality and extending the shelf life of bananas.
Collapse
|
32
|
Abstract
The current consumer demands together with the international regulations have pushed the cosmetic industry to seek new active ingredients from natural renewable sources for manufacturing more eco-sustainability and safe products, with botanical extract being an almost unlimited source of these new actives. Essential oils (EOs) emerge as very common natural ingredients in cosmetics and toiletries as a result of both their odorous character for the design and manufacturing of fragrances and perfumes, and the many beneficial properties of their individual components (EOCs), e.g., anti-inflammatory, antimicrobial and antioxidant properties, and, nowadays, the cosmetic industry includes EOs or different mixtures of their individual components (EOCs), either as active ingredients or as preservatives, in various product ranges (e.g., moisturizers, lotions and cleanser in skin care cosmetics; conditioners, masks or antidandruff products in hair care products; lipsticks, or fragrances in perfumery). However, the unique chemical profile of each individual essential oil is associated with different benefits, and hence it is difficult to generalize their potential applications in cosmetics and toiletries, which often require the effort of formulators in seeking suitable mixtures of EOs or EOCs for obtaining specific benefits in the final products. This work presents an updated review of the available literature related to the most recent advances in the application of EOs and EOCs in the manufacturing of cosmetic products. Furthermore, some specific aspects related to the safety of EOs and EOCs in cosmetics will be discussed. It is expected that the information contained in this comprehensive review can be exploited by formulators in the design and optimization of cosmetic formulations containing botanical extracts.
Collapse
|
33
|
Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.
Collapse
|