1
|
Wu Y, Pang Y, Yang H, Zhu L, Ma T, Chen X. Repurposed Anti-Multiple Sclerosis Drug Fty720 Targets Carbapenem-Resistant Acinetobacter baumannii via Multiple Pathways. Curr Microbiol 2024; 82:17. [PMID: 39607538 DOI: 10.1007/s00284-024-03986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Bacterial antimicrobial resistance (AMR), particularly multidrug resistance (MDR) in gram-negative bacterial strains, has emerged as a formidable challenge of substantial consequence, necessitating an urgent pursuit of a sustainable and efficacious strategic response. Repurposing nonantibiotic drugs as potential antibiotics or antibiotic adjuvants is a valuable approach to targeting MDR bacteria. A total of 1,750 FDA-approved drugs (APExBIO, USA) were screened to test their antimicrobial activities against MDR bacteria using the broth microdilution method according to the standard of the Clinical and Laboratory Standards Institute (CLSI). Microscale thermophoresis (MST) analysis was performed to detect the Fty720-LPS interactions. Fty720-indcued lipid changes were measured by untargeted lipidomic analysis. Isothermal titration calorimetry (ITC) analysis was used to determine the Fty720-lipid binding affinities. DNA degradation was assessed via agarose gel electrophoresis with ethidium bromide (EB) staining and visualized using a gel imaging system. Galleria mellonella larvae infection model and Mouse peritonitis infection models were used to evaluated the antibacterial ability of Fty720 in vivo. In this study, we identified Fty720, a pharmaceutical agent for treating multiple sclerosis, as a potent inhibitor of carbapenem-resistant Acinetobacter baumannii (CRAB). We demonstrated that Fty720 exerts antibacterial effects through multiple strategies, including disruption of the structural integrity of the membranes by interacting with LPS and glycerophospholipids, as well as degradation of bacterial DNA. Furthermore, through judicious structural modification, the pivotal role of the positively charged moiety (NH2) in Fty720's antibacterial activity was substantiated. Intriguingly, the translation of Fty720's antibacterial efficacy was demonstrated in vivo, substantiating its pronounced influence on elevating survival rates among models afflicted with MDR gram-negative bacterial infections. Fty720 targets CRAB via multiple pathways, including disruption of outer and inner membrane integrity and DNA degradation. This investigation unveils the multifaceted antibacterial mechanisms of Fty720 while concurrently delineating a prospective therapeutic avenue to counteract MDR gram-negative bacterial strains.
Collapse
Affiliation(s)
- Yuxuan Wu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Yufan Pang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Han Yang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Li Zhu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China
| | - Tonghui Ma
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| | - Xiuli Chen
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Markus V. Artificial sweetener-induced dysbiosis and associated molecular signatures. Biochem Biophys Res Commun 2024; 735:150798. [PMID: 39406022 DOI: 10.1016/j.bbrc.2024.150798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Despite their approval for inclusion in beverages, and food products, the safety of artificial sweeteners is still a topic of debate within the scientific community. A significant aspect of this debate focuses on the potential of artificial sweeteners to induce dysbiosis, an imbalance in the intestinal microbiota, which has been associated with many diseases including obesity, Type 2 diabetes, and cardiovascular diseases. The interactions and mechanisms of action of artificial sweeteners within the gut microbiota, as well as the extent of associated molecular alterations, are still under active investigation. This review aims to evaluate recent developments in artificial sweetener-induced dysbiosis with its associated molecular signatures. Importantly, potential future directions for research are proposed, offering insights that could guide further targeted studies and inform dietary recommendations and policy revisions.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, 99138, Lefkosa/ TRNC Mersin 10, Turkey.
| |
Collapse
|
3
|
Vergalli J, Réfrégiers M, Ruggerone P, Winterhalter M, Pagès JM. Advances in methods and concepts provide new insight into antibiotic fluxes across the bacterial membrane. Commun Biol 2024; 7:1508. [PMID: 39543341 PMCID: PMC11564671 DOI: 10.1038/s42003-024-07168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
The sophisticated envelope of Gram-negative bacteria modulates the uptake of small molecules in a side-chain-sensitive manner. Despite intensive theoretical and experimental investigations, a general set of pathways underpinning antibiotic uptake has not been identified. This manuscript discusses the passive influx versus active efflux of antibiotics, considering the responsible membrane proteins and the transported molecules. Recent methods have analyzed drug transport across the bacterial membrane in order to understand their activity. The combination of in vitro, in cellulo and in silico methods shed light on the key, mainly electrostatic, interactions between the molecule surface, porins and transporters during permeation. A key factor is the relationship between the dose of an active compound near its target and its antibacterial activity during the critical early window. Today, methodology breakthroughs provide fruitful tools to precisely dissect drug transport, identify key steps in drug resistance associated with membrane impermeability and efflux, and highlight key parameters to generate more effective drugs.
Collapse
Affiliation(s)
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Constructor University, 28719, Bremen, Germany
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | |
Collapse
|
4
|
Zhan JQ, Wu JX, Fu JJ, Li GS, Wu F, Chen YW. Antioxidant synergistic anti-inflammatory effect in the MAPK/NF-κB pathway of peptide KGEYNK (KK-6) from giant salamander (Andrias davidianus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8613-8620. [PMID: 38953326 DOI: 10.1002/jsfa.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Giant salamander protein peptide is a peptide with rich functional properties. Giant salamander protein peptide KGEYNK (KK-6) is a peptide with both antioxidant and anti-inflammatory properties. The antioxidant and anti-inflammatory mechanisms of KK-6 are still unclear. When we studied the functional mechanism of KK-6, we found that the antioxidant property of KK-6 has a synergistic and promoting effect on anti-inflammatory properties. RESULTS KK-6 enhances cellular resistance to LPS via the MAPK/NF-κB signaling pathway, leading to increased levels of inflammatory factors: interleukin-1β (764.81 ng mL-1), interleukin-6 (1.06 ng mL-1) and tumor necrosis factor-α (4440.45 ng mL-1). KK-6 demonstrates potent antioxidant properties by activating the Nrf2 signaling pathway, resulting in elevated levels of antioxidant enzymes (glutathione peroxidase: 0.03 μg mL-1; superoxide dismutase: 0.589 μg mL-1) and a reduction in the concentration of the oxidative product malondialdehyde (967.05 μg mL-1). CONCLUSION Our findings highlight the great potential of KK-6, a peptide extracted from giant salamander protein, as a remedy for intestinal inflammation. Through its dual role as an antioxidant and anti-inflammatory agent, KK-6 offers a promising avenue for alleviating inflammation-related damage and oxidative stress. This study lays the foundation for further exploration of giant salamander products and highlights their importance in health and novel food development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Qi Zhan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Jun-Xin Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Zhejiang, China
| | - Jing-Jing Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| | - Gao-Shang Li
- School of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Fang Wu
- Zhejiang Shanding Biotechnology Co., Ltd, Zhejiang, China
| | - Yue-Wen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Food Safety and Nutrition, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
5
|
Khan RT, Sharma V, Khan SS, Rasool S. Prevention and potential remedies for antibiotic resistance: current research and future prospects. Front Microbiol 2024; 15:1455759. [PMID: 39421555 PMCID: PMC11484029 DOI: 10.3389/fmicb.2024.1455759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The increasing threat of antibiotic resistance and shrinking treatment options for infections have pushed mankind into a difficult position. The looming threat of the return of the pre-antibiotic era has caused a sense of urgency to protect and conserve the potency of antibiotic therapy. One of the perverse effects of antibiotic resistance is the dissemination of its causative agents from non-clinically important strains to clinically important strains and vice versa. The popular saying "Prevention is better than cure" is appropriate for tackling antibiotic resistance. On the one hand, new and effective antibiotics are required; on the other hand, better measures for the use of antibiotics, along with increased awareness in the general public related to antibiotic use, are essential. Awareness, especially of appropriate antibiotic use, antibiotic resistance, its dissemination, and potential threats, can help greatly in controlling the use and abuse of antibiotics, and the containment of antibiotic resistance. Antibiotic drugs' effectiveness can be enhanced by producing novel antibiotic analogs or adding adjuvants to current antibiotics. Combinatorial therapy of antibiotics has proven successful in treating multidrug-resistant (MDR) bacterial infections. This review aims to highlight the current global situation of antibiotic resistance and discuss the methods used to monitor, prevent, inhibit, or reverse bacterial resistance mechanisms in the fight against antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | - Shafaq Rasool
- Molecular Biology Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| |
Collapse
|
6
|
Xue J, Li S, Wang L, Zhao Y, Zhang L, Zheng Y, Zhang W, Chen Z, Jiang T, Sun Y. Enhanced fatty acid biosynthesis by Sigma28 in stringent responses contributes to multidrug resistance and biofilm formation in Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0085024. [PMID: 39046242 PMCID: PMC11373199 DOI: 10.1128/aac.00850-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
The metabolic state of bacteria significantly contributes to their resistance to antibiotics; however, the specific metabolic mechanisms conferring antimicrobial resistance in Helicobacter pylori remain largely understudied. Employing transcriptomic and non-targeted metabolomics, we characterized the metabolic reprogramming of H. pylori when challenged with antibiotic agents. We observed a notable increase in both genetic and key proteomic components involved in fatty acid biosynthesis. Inhibition of this pathway significantly enhanced the antibiotic susceptibility of the sensitive and multidrug-resistant H. pylori strains while also disrupting their biofilm-forming capacities. Further analysis revealed that antibiotic treatment induced a stringent response, triggering the expression of the hp0560-hp0557 operon regulated by Sigma28 (σ28). This activation in turn stimulated the fatty acid biosynthetic pathway, thereby enhancing the antibiotic tolerance of H. pylori. Our findings reveal a novel adaptive strategy employed by H. pylori to withstand antibiotic stress.
Collapse
Affiliation(s)
- Junyuan Xue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Shutong Li
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenxin Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Irankhahi P, Riahi H, Hassani SB, Eskafi M, Azimzadeh Irani M, Shariatmadari Z. The role of the protective shield against UV-C radiation and its molecular interactions in Nostoc species (Cyanobacteria). Sci Rep 2024; 14:19258. [PMID: 39164328 PMCID: PMC11336245 DOI: 10.1038/s41598-024-70002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Cyanobacteria possess special defense mechanisms to protect themselves against ultraviolet (UV) radiation. This study combines experimental and computational methods to identify the role of protective strategies in Nostoc species against UV-C radiation. To achieve this goal, various species of the genus Nostoc from diverse natural habitats in Iran were exposed to artificial UV-C radiation. The results indicated that UV-C treatment significantly reduced the photosynthetic pigments while simultaneously increasing the activity of antioxidant enzymes. Notably, N. sphaericum ISB97 and Nostoc sp. ISB99, the brown Nostoc species isolated from habitats with high solar radiations, exhibited greater resistance compared to the green-colored species. Additionally, an increase in scytonemin content occurred with a high expression of key genes associated with its synthesis (scyF and scyD) during the later stages of UV-C exposure in these species. The molecular docking of scytonemin with lipopolysaccharides of the cyanobacteria that mainly cover the extracellular matrix revealed the top/side positioning of scytonemin on the glycans of these lipopolysaccharides to form a UV-protective shield. These findings pave the way for exploring the molecular effects of scytonemin in forming the UV protection shield in cyanobacteria, an aspect that has been ambiguous until now.
Collapse
Affiliation(s)
- Pardis Irankhahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hossein Riahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyedeh Batool Hassani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Maryam Eskafi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Maryam Azimzadeh Irani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Zeinab Shariatmadari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
8
|
Brandner AF, Prakaash D, Blanco González A, Waterhouse F, Khalid S. Faster but Not Sweeter: A Model of Escherichia coli Re-level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics. J Chem Theory Comput 2024; 20:6890-6903. [PMID: 39008538 PMCID: PMC11325540 DOI: 10.1021/acs.jctc.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipopolysaccharide (LPS) is a complex glycolipid molecule that is the main lipidic component of the outer leaflet of the outer membrane of Gram-negative bacteria. It has very limited lateral motion compared to phospholipids, which are more ubiquitous in biological membranes, including in the inner leaflet of the outer membrane of Gram-negative bacteria. The slow-moving nature of LPS can present a hurdle for molecular dynamics simulations, given that the (pragmatically) accessible timescales to simulations are currently limited to microseconds, during which LPS displays some conformational dynamics but hardly any lateral diffusion. Thus, it is not feasible to observe phenomena such as insertion of molecules, including antibiotics/antimicrobials, directly into the outer membrane from the extracellular side nor to observe LPS dissociating from proteins via molecular dynamics using currently available models at the atomistic and more coarse-grained levels of granularity. Here, we present a model of deep rough LPS compatible with the Martini 2 coarse-grained force field with scaled down nonbonded interactions to enable faster diffusion. We show that the faster-diffusing LPS model is able to reproduce the salient biophysical properties of the standard models, but due to its faster lateral motion, molecules are able to penetrate deeper into membranes containing the faster model. We show that the fast ReLPS model is able to reproduce experimentally determined patterns of interaction with outer membrane proteins while also allowing for LPS to associate and dissociate with proteins within microsecond timescales. We also complete the Martini 3 LPS toolkit for Escherichia coli by presenting a (standard) model of deep rough LPS for this force field.
Collapse
Affiliation(s)
- Astrid F Brandner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Alexandre Blanco González
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela 15782, Spain
| | - Fergus Waterhouse
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| |
Collapse
|
9
|
Wei F, Zheng H, Gao C, Tian J, Gou J, Hamouda HI, Xue C. In Situ Preparation of Star-Shaped Protein-"Smart" Polymer Conjugates with pH and Thermo-Dual Responsibility for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38817042 DOI: 10.1021/acs.jafc.3c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.
Collapse
Affiliation(s)
- Fayi Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Chao Gao
- Technology Center of Qingdao Customs, Qingdao 266003, China
| | - Jiaojiao Tian
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Jinpeng Gou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
10
|
Su Z, Chen A, Lipkowski J. Electrochemical and Infrared Studies of a Model Bilayer of the Outer Membrane of Gram-Negative Bacteria and its Interaction with polymyxin─the Last-Resort Antibiotic. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8248-8259. [PMID: 38578277 DOI: 10.1021/acs.langmuir.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A model bilayer of the outer membrane (OM) of Gram-negative bacteria, composed of lipid A and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), was assembled on the β-Tg modified gold (111) single crystal surface using a combination of Langmuir-Blodgett and Langmuir-Schaefer transfer. Electrochemical and spectroscopic methods were employed to study the properties of the model bilayer and its interaction with polymyxin. The model bilayer is stable on the gold surface in the transmembrane potential region between 0.0 and -0.7 V. The presence of Mg2+ coordinates with the phosphate and carboxylate groups in the leaflet of lipid A and stabilizes the structure of the model bilayer. Polymyxin causes the model bilayer leakage and damage in the transmembrane potential region between 0.2 and -0.4 V. At transmembrane potentials lower than -0.5 V, polymyxin does not affect the membrane integrity. Polymyxin binds to the phosphate and carboxylate groups in lipid A molecules and causes the increase of the tilt angle of acyl chains and the decrease of the tilt of the C═O bond. The results in this paper indicate that the antimicrobial activity of polymyxin depends on the transmembrane potential at the model bilayer and provides useful information for the development of new antibiotics.
Collapse
Affiliation(s)
- ZhangFei Su
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
11
|
Birhanu Hayilesilassie R, Gemta AB, Maremi FT, Getahun Kumela A, Gudishe K, Dana BD. Detection and photothermal inactivation of Gram-positive and Gram-negative bloodstream bacteria using photonic crystal biosensor and plasmonic core-shell. RSC Adv 2024; 14:11594-11603. [PMID: 38601705 PMCID: PMC11004602 DOI: 10.1039/d4ra01802h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Plasmonics and core-shell nanomaterials hold great potential to develop pharmaceuticals and medical equipment due to their eco-friendly and cost effective fabrication procedures. Despite these advancements, combating drug-resistant bacterial infections remains a global challenge. Therefore, this study aims to introduce a tailored theoretical framework for a one-dimensional (1D) photonic crystal biosensor (PCB) composed of (ZrO2/GaN)N/defect layer/(ZrO2/GaN)N, designed to detect Gram-positive and Gram-negative bloodstream bacteria employing the transfer matrix method (TMM). In addition, using the finite difference methods (FDM), the photothermal inactivation of bloodstream bacteria with plasmonic core-shell structures (FeO@AuBiS2) was explored using key factors such as light absorption, heat generation, and thermal diffusion. By incorporating six dielectric layers and contaminated blood into the proposed PCB, a maximum sensitivity of 562 nm per RIU was recorded, and using rod-shaped plasmonic core-shell structures, 5.8 nm-1 light absorption capacity and 152 K change in temperature were achieved. The maximum detection sensitivity, light absorption, heat conduction and heat convection capacity of the proposed 1D PCB and plasmonic core-shell show an effective approach to combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Ruth Birhanu Hayilesilassie
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia
| | - Abebe Belay Gemta
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia
| | - Fekadu Tolessa Maremi
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University P.O.Box 1888 Adama Ethiopia
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, College of Natural and Computational Sciences, Mekdela Amba University P.O.Box 032 Tullu Awulia Ethiopia
| | - Kusse Gudishe
- Department of Applied Physics, College of Natural and Computational Sciences, Jinka University Jinka Ethiopia
| | - Bereket Delga Dana
- Department of Applied Physics, College of Natural and Computational Sciences, Jinka University Jinka Ethiopia
| |
Collapse
|
12
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
13
|
Vaiwala R, Ayappa KG. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of Escherichia coli. J Chem Theory Comput 2024; 20:1704-1716. [PMID: 37676287 DOI: 10.1021/acs.jctc.3c00471] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The outer lipopolysaccharide (LPS) membrane of Gram-negative bacteria forms the main barrier for transport of antimicrobial molecules into the bacterial cell. In this study we develop coarse-grained models for the outer membrane of Escherichia coli in the Martini-3 framework. The coarse-grained model force field was parametrized and validated using all-atom simulations of symmetric membranes of lipid A and rough LPS as well as a complete asymmetric membrane of LPS with the O-antigen. The bonded parameters were obtained using an iterative refinement procedure with target bonded distributions obtained from all-atom simulations. The membrane thickness, area of the LPS, and density distributions for the different regions as well as the water and ion densities in Martini-3 simulations show excellent agreement with the all-atom data. Additionally the solvent accessible surface area for individual molecules in water was found to be in good agreement. The binding of calcium ions with phosphate and carboxylate moieties of LPS is accurately captured in the Martini-3 model, indicative of the integrity of the highly negatively charged LPS molecules in the outer membranes of Gram-negative bacteria. The melting transition of the coarse-grained lipid A membrane model was found to occur between 300 and 310 K, and the model captured variations in area per LPS, order parameter, and membrane thickness across the melting transition. Our study reveals that the proposed Martini-3 models for LPS are able to capture the physicochemical balance of the complex sugar architecture of the outer membrane of Escherichia coli. The coarse-grained models developed in this study would be useful for determining membrane protein interactions and permeation of potential antimicrobials through bacterial membranes at mesoscopic spatial and temporal scales.
Collapse
Affiliation(s)
- Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Fux AC, Casonato Melo C, Schlahsa L, Burzan NB, Felsberger A, Gessner I, Fauerbach JA, Horejs-Hoeck J, Droste M, Siewert C. Generation of Endotoxin-Specific Monoclonal Antibodies by Phage and Yeast Display for Capturing Endotoxin. Int J Mol Sci 2024; 25:2297. [PMID: 38396974 PMCID: PMC10889169 DOI: 10.3390/ijms25042297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.
Collapse
Affiliation(s)
- Alexandra C. Fux
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Laura Schlahsa
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nico B. Burzan
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - André Felsberger
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Isabel Gessner
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Jonathan A. Fauerbach
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Miriam Droste
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Christiane Siewert
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
15
|
Kong J, Yang F, Zong Y, Wang M, Jiang S, Ma Z, Li Z, Li W, Cai Y, Zhang H, Zhao X, Wang J. Early-life antibiotic exposure promotes house dust mite-induced allergic airway inflammation by impacting gut microbiota and lung lipid metabolism. Int Immunopharmacol 2024; 128:111449. [PMID: 38199196 DOI: 10.1016/j.intimp.2023.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Asthma is a chronic inflammatory respiratory disease. Early-life antibiotic exposure is a unique risk factor for the incidence and severity of asthma later in life. Perturbations in microbial-metabolite-immune interaction caused by antibiotics are closely associated with the pathogenesis of allergy and asthma. We investigated the effect of early intervention with common oral antibiotics on later asthma exacerbations and found that different antibiotic exposures can amplify different types of immune responses induced by HDM. Cefixime (CFX) promoted a biased type 2 inflammation, azithromycin (AZM) enhanced Th17 immune response, and cefuroxime axetil (CFA) induced eosinophils recruitment. Moreover, early-life antibiotic exposure can have short- and long-term effects on the abundance, composition, and diversity of the gut microbiota. In the model of CFX-promoted type 2 airway inflammation, fecal metabolomics indicated abnormal lipid metabolism and T cell response. Lipidomic also suggested allergic airway inflammation amplified by CFX is closely associated with abnormal lipid metabolism in lung tissues. Moreover, abnormalities in lipid metabolism-related genes (LMRGs) were found to have cellular heterogeneity be associated with asthma severity by bioinformatics analysis.
Collapse
Affiliation(s)
- Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyuan Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaotian Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenle Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyang Cai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huixian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
16
|
Khan R, Aslam Khan MU, Stojanović GM, Javed A, Haider S, Abd Razak SI. Fabrication of Bilayer Nanofibrous-Hydrogel Scaffold from Bacterial Cellulose, PVA, and Gelatin as Advanced Dressing for Wound Healing and Soft Tissue Engineering. ACS OMEGA 2024; 9:6527-6536. [PMID: 38371763 PMCID: PMC10870282 DOI: 10.1021/acsomega.3c06613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024]
Abstract
Tissue engineering is currently one of the fastest-growing areas of engineering, requiring the fabrication of advanced and multifunctional materials that can be used as scaffolds or dressings for tissue regeneration. In this work, we report a bilayer material prepared by electrospinning a hybrid material of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC NFs) (top layer) over a highly interconnected porous 3D gelatin-PVA hydrogel obtained by a freeze-drying process (bottom layer). The techniques were combined to produce an advanced material with synergistic effects on the physical and biological properties of the two materials. The bilayer material was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a water contact measurement system (WCMS). Studies on swelling, degradability, porosity, drug release, cellular and antibacterial activities were performed using standardized procedures and assays. FTIR confirmed cross-linking of both the top and bottom layers, and SEM showed porous structure for the bottom layer, random deposition of NFs on the surface, and aligned NFs in the cross section. The water contact angle (WCA) showed a hydrophilic surface for the bilayer material. Swelling analysis showed high swelling, and degradation analysis showed good stability. The bilayer material released Ag-sulfadiazine in a sustained and controlled manner and showed good antibacterial activities against severe disease-causing gram + ive and -ive (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) bacterial strains. In vitro biological studies were performed on fibroblasts (3T3) and human embryonic kidneys (HEK-293), which showed desirable cell viability, proliferation, and adhesion to the bilayer. Thus, the synergistic effect of NFs and the hydrogel resulted in a potential wound dressing material for wound healing and soft tissue engineering.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia (UTM), UTM Skudai, Johor Bahru, Johor 81310, Malaysia
| | - Muhammad Umar Aslam Khan
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- BioInspired
Device and Tissue Engineering Research Group, School of Biomedical
Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia
| | - Goran M. Stojanović
- Department
of Electronics, Faculty of Technical Sciences, University of Novi Sad, Novi Sad 21000, Serbia
| | - Aneela Javed
- Department
of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sajjad Haider
- Chemical
Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Saiful Izwan Abd Razak
- BioInspired
Device and Tissue Engineering Research Group, School of Biomedical
Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia
- Sports
Innovation
& Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81300, Malaysia
| |
Collapse
|
17
|
Brahmi F, Bentouhami NE, Rbah Y, Elbouzidi A, Mokhtari O, Salamatullah AM, Ibenmoussa S, Bourhia M, Addi M, Asehraou A, Legssyer B. Chemical composition, antioxidant, and antimicrobial properties of Mentha subtomentella: in sight in vitro and in silico analysis. Front Chem 2024; 11:1341704. [PMID: 38313220 PMCID: PMC10834779 DOI: 10.3389/fchem.2023.1341704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024] Open
Abstract
Our research focused on assessing essential oils (MSEO) and aqueous extracts (MSAE) derived from M. subtomentella leaves, with a primary focus on evaluating their properties. From 1 kg of leaves, we successfully obtained 18 mL of essential oil. Upon conducting GC/MS analysis, we identified eleven compounds within the oil, collectively accounting for 100% of the constituents identified. Notably, the predominant compounds in the leaf oil were p-Menth-48) -en-3-one (50.48%), 9-Ethylbicyclo (3.3.1) nonan-9-ol (10.04%) (E)-3,3-Dimethyl-delta-1, alpha-cyclohexaneacetaldehyde (8.53%), and D-Limonene (7.22%). Furthermore, utilizing HPLC/DAD, we explored the phenolic profile of MSAE, extracted through decoction. This analysis revealed the presence of fifty-eight compounds, with five major components collectively constituting 61% of the total compounds identified, rosmarinic acid as the major one. We evaluated the antimicrobial effectiveness of the MSEO against ten different strains, observing its notable efficacy against A. Niger (MIC = 0.09%), P. digitatum (MIC = 0.5%), and G. candidum (MIC = 1%). However, the essential oil demonstrated comparatively lower efficacy against bacteria than fungi. In contrast, the MSAE did not exhibit any antimicrobial activity against the tested strains. Regarding antioxidant activity, the aqueous extract displayed a significantly higher antioxidant capacity than the essential oil, which exhibited relatively lower antioxidant activity. The IC50 values were determined to be 0.04 ± 0.01 mg/mL, 0.17 ± 0.01 mg/mL, and 13% ± 0.01% (V/V), for ascorbic acid MSAE and MSEO, respectively. We used a computational method called molecular docking to investigate how certain plant compounds affect antioxidant, antibacterial, and antifungal activities. This involved analyzing the interactions between these compounds and specific protein targets known for their roles in these activities.
Collapse
Affiliation(s)
- Fatima Brahmi
- Laboratory for the Improvement of Agricultural Production, Biotechnology, and Environment, University Mohammed Premier, Oujda, Morocco
| | - Nour Eddine Bentouhami
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Science, University Mohammed Premier, Oujda, Morocco
| | - Youssef Rbah
- Laboratory for the Improvement of Agricultural Production, Biotechnology, and Environment, University Mohammed Premier, Oujda, Morocco
| | - Amine Elbouzidi
- Laboratory for the Improvement of Agricultural Production, Biotechnology, and Environment, University Mohammed Premier, Oujda, Morocco
- Euromed University of Fez, Fez, Morocco
| | - Ouafae Mokhtari
- Laboratory for the Improvement of Agricultural Production, Biotechnology, and Environment, University Mohammed Premier, Oujda, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, France
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, Casablanca, Morocco
| | - Mohamed Addi
- Laboratory for the Improvement of Agricultural Production, Biotechnology, and Environment, University Mohammed Premier, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Science, University Mohammed Premier, Oujda, Morocco
| | - Bouchra Legssyer
- Laboratory for the Improvement of Agricultural Production, Biotechnology, and Environment, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
18
|
Demir D, Goksen G, Ceylan S, Trif M, Rusu AV. Optimized Peppermint Essential Oil Microcapsules Loaded into Gelatin-Based Cryogels with Enhanced Antimicrobial Activity. Polymers (Basel) 2023; 15:2782. [PMID: 37447427 DOI: 10.3390/polym15132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, chitosan (Chi) was used to microencapsulate peppermint essential oil (PEO). A novel gelatin-based cryogel loaded with PEO microcapsules was further developed and characterized for potential applications. Four different cryogel systems were designed, and the morphological, molecular, physical and antibacterial properties were investigated. Additionally, the antimicrobial properties of PEO, alone and microcapsulated, incorporated into the cryogel network were evaluated. The observed gel structure of cryogels exhibited a highly porous morphology in the microcapsules. The highest values of the equilibrium swelling ratio were acquired for the GelCryo-ChiCap and GelCryo-PEO@ChiCap samples. The contact angle GelCryo-PEO@ChiCap sample was lower than the control (GelCryo) due to the water repelling of the essential oil. It has been found that the incorporation of encapsulated PEO into the cryogels would be more advantageous compared to its direct addition. Moreover, GelCryo-PEO@ChiCap cryogels showed the strongest antibacterial activities, especially against Staphylococcus aureus (Gram-positive bacteria) and Escherichia coli (Gram-negative bacteria). The system that was developed showed promising results, indicating an improved antibacterial efficacy and enhanced structural properties due to the presence of microcapsules. These findings suggest that the system may be an appropriate candidate for various applications, including, but not limited to, drug release, tissue engineering, and food packaging. Finally, this system demonstrates a strategy to stabilize the releasing of the volatile compounds for creating successful results.
Collapse
Affiliation(s)
- Didem Demir
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Türkiye
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin 33100, Türkiye
| | - Seda Ceylan
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Türkiye
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Castelletto V, Seitsonen J, Hamley IW. Effect of Glycosylation on Self-Assembly of Lipid A Lipopolysaccharides in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289534 DOI: 10.1021/acs.langmuir.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipopolysaccharides (LPSs) based on lipid A produced by bacteria are of interest due to their bioactivity in stimulating immune responses, as are simpler synthetic components or analogues. Here, the self-assembly in water of two monodisperse lipid A derivatives based on simplified bacterial LPS structures is examined and compared to that of a native Escherichia coli LPS using small-angle X-ray scattering and cryogenic transmission electron microscopy. The critical aggregation concentration is obtained from fluorescence probe experiments, and conformation is probed using circular dichroism spectroscopy. The E. coli LPS is found to form wormlike micelles, whereas the synthetic analogues bearing six lipid chains and with four or two saccharide head groups (Kdo2-lipid A and monophosphoryl lipid A) self-assemble into nanosheets or vesicles, respectively. These observations are rationalized by considering the surfactant packing parameter.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
20
|
Liu C, Zhu X, You L, Gin KYH, Chen H, Chen B. Per/polyfluoroalkyl substances modulate plasmid transfer of antibiotic resistance genes: A balance between oxidative stress and energy support. WATER RESEARCH 2023; 240:120086. [PMID: 37257295 DOI: 10.1016/j.watres.2023.120086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Emerging contaminants can accelerate the transmission of antibiotic resistance genes (ARGs) from environmental bacteria to human pathogens via plasmid conjugation, posing a great challenge to the public health. Although the toxic effects of per/polyfluoroalkyl substances (PFAS) as persistent organic pollutants have been understood, it is still unclear whether and how PFAS modulate the transmission of ARGs. In this study, we for the first time reported that perfluorooctanoic acid (PFOA), perfluorododecanoic acid (PFDoA) and ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX) at relatively low concentrations (0.01, 0.1 mg/L) promoted the conjugative transfer of plasmid RP4 within Escherichia coli, while the plasmid conjugation was inhibited by PFOA, PFDoA and GenX at relatively high concentrations (1, 10 mg/L). The non-unidirectional conjugation result was ascribed to the co-regulation of ROS overproduction, enhanced cell membrane permeability, shortage of energy support as well as l-arginine pool depletion. Taking the well-known PFOA as an example, it significantly enhanced the conjugation frequency by 1.4 and 3.4 times at relatively low concentrations (0.01, 0.1 mg/L), respectively. Exposure to PFOA resulted in enhanced cell membrane permeability and ROS overproduction in donor cells. At high concentrations of PFOA (1, 10 mg/L), although enhanced oxidative stress and cell membrane permeability still occurred, the ATP contents in E. coli decreased, which contributed to the inhibited conjugation. Transcriptome analysis further showed that the expression levels of genes related to arginine biosynthesis (argA, argC, argF, argG, argI) and transport (artJ, artM, artQ) pathways were significantly increased. Intracellular l-arginine concentration deficiency were observed at high concentrations of PFOA. With the supplementary exogenous arginine, it was demonstrated that arginine upregulated conjugation transfer- related genes (trfAp, trbBp) and restores the cell number of transconjugants in PFOA-treated group. Therefore, the inhibited conjugation at high concentrations PFOA were attributed to the shortage of ATP and the depletion of L-arginine pool. These findings provide important insights into the effect environmental concentrations of PFAS on the conjugative transfer of ARGs, and update the regulation mechanism of plasmid conjugation, which is critical for the management of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Luhua You
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
21
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
22
|
Arya SS, Morsy NK, Islayem DK, Alkhatib SA, Pitsalidis C, Pappa AM. Bacterial Membrane Mimetics: From Biosensing to Disease Prevention and Treatment. BIOSENSORS 2023; 13:bios13020189. [PMID: 36831955 PMCID: PMC9953710 DOI: 10.3390/bios13020189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Plasma membrane mimetics can potentially play a vital role in drug discovery and immunotherapy owing to the versatility to assemble facilely cellular membranes on surfaces and/or nanoparticles, allowing for direct assessment of drug/membrane interactions. Recently, bacterial membranes (BMs) have found widespread applications in biomedical research as antibiotic resistance is on the rise, and bacteria-associated infections have become one of the major causes of death worldwide. Over the last decade, BM research has greatly benefited from parallel advancements in nanotechnology and bioelectronics, resulting in multifaceted systems for a variety of sensing and drug discovery applications. As such, BMs coated on electroactive surfaces are a particularly promising label-free platform to investigate interfacial phenomena, as well as interactions with drugs at the first point of contact: the bacterial membrane. Another common approach suggests the use of lipid-coated nanoparticles as a drug carrier system for therapies for infectious diseases and cancer. Herein, we discuss emerging platforms that make use of BMs for biosensing, bioimaging, drug delivery/discovery, and immunotherapy, focusing on bacterial infections and cancer. Further, we detail the synthesis and characteristics of BMs, followed by various models for utilizing them in biomedical applications. The key research areas required to augment the characteristics of bacterial membranes to facilitate wider applicability are also touched upon. Overall, this review provides an interdisciplinary approach to exploit the potential of BMs and current emerging technologies to generate novel solutions to unmet clinical needs.
Collapse
Affiliation(s)
- Sagar S. Arya
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Nada K. Morsy
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Deema K. Islayem
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Sarah A. Alkhatib
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Charalampos Pitsalidis
- Department of Physics Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemical Engineering and Biotechnology, Cambridge University, Philippa Fawcett Drive, Cambridge CB30AS, UK
| |
Collapse
|
23
|
Lai L, Yang J, Sun W, Su X, Chen J, Chen X, Pei S. Design, synthesis and antibacterial evaluation of a novel class of tetrahydrobenzothiophene derivatives. RSC Med Chem 2023; 14:166-172. [PMID: 36760738 PMCID: PMC9890943 DOI: 10.1039/d2md00373b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, a new series of tetrahydrobenzothiophene derivatives have been designed. Newly designed molecules have been synthesized through a medicinal chemistry route, and their characterization was done by using NMR and HR-MS techniques. Biological evaluation of the synthesized compounds has been done on Gram-negative and Gram-positive bacteria. The marketed antibiotics such as ciprofloxacin and gentamicin were used as controls. The in vitro evaluation results have shown that most of the targeted compounds exhibit good potency in inhibiting the growth of bacteria, including E. coli (MIC: 0.64-19.92 μM), P. aeruginosa (MIC: 0.72-45.30 μM), Salmonella (MIC: 0.54-90.58 μM) and S. aureus (MIC: 1.11-99.92 μM). In particular, compound 3b showed excellent activity with an MIC value of 1.11 μM against E. coli, 1.00 μM against P. aeruginosa, 0.54 μM against Salmonella, and 1.11 μM against S. aureus. From the results, a promising lead compound was identified for future development.
Collapse
Affiliation(s)
- Lin Lai
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 China
| | - Jinhua Yang
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 China
| | - Wanlin Sun
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 China
| | - Xiaoyan Su
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 China
| | - Jun Chen
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 China
| | - Xinan Chen
- German Institute of Engineering, Chongqing College of Mobile Communtion Chongqing 401520 China
| | - Shuchen Pei
- Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology Chongqing 401331 China
| |
Collapse
|
24
|
Stephan MS, Dunsing V, Pramanik S, Chiantia S, Barbirz S, Robinson T, Dimova R. Biomimetic asymmetric bacterial membranes incorporating lipopolysaccharides. Biophys J 2022:S0006-3495(22)03927-3. [PMID: 36523159 DOI: 10.1016/j.bpj.2022.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gram-negative bacteria are equipped with a cell wall that contains a complex matrix of lipids, proteins, and glycans, which form a rigid layer protecting bacteria from the environment. Major components of this outer membrane are the high-molecular weight and amphiphilic lipopolysaccharides (LPSs). They form the extracellular part of a heterobilayer with phospholipids. Understanding LPS properties within the outer membrane is therefore important to develop new antimicrobial strategies. Model systems, such as giant unilamellar vesicles (GUVs), provide a suitable platform for exploring membrane properties and interactions. However, LPS molecules contain large polysaccharide parts that confer high water solubility, which makes LPS incorporation in artificial membranes difficult; this hindrance is exacerbated for LPS with long polysaccharide chains, i.e., the smooth LPS. Here, a novel emulsification step of the inverted emulsion method is introduced to incorporate LPS in the outer or the inner leaflet of GUVs, exclusively. We developed an approach to determine the LPS content on individual GUVs and quantify membrane asymmetry. The asymmetric membranes with outer leaflet LPS show incorporations of 1-16 mol % smooth LPS (corresponding to 16-79 wt %), while vesicles with inner leaflet LPS reach coverages of 2-7 mol % smooth LPS (28-60 wt %). Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity.
Collapse
Affiliation(s)
| | - Valentin Dunsing
- Aix-Marseille Université, CNRS, IBDM, Turing Center for Living Systems, Marseille, France; University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Stefanie Barbirz
- Department Humanmedizin, MSB Medical School Berlin, Berlin, Germany
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
25
|
Investigation on the Chemical Composition of Phenolic, Fatty Acid Profiles (GC-FID) and Biological Activities from Leucaena leucocephala (Lam de wit) Seed Oil and Leaves Extracts: Effect of Geographical Location and Maturation Stage. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Navarro S, Sherman E, Colmer-Hamood JA, Nelius T, Myntti M, Hamood AN. Urinary Catheters Coated with a Novel Biofilm Preventative Agent Inhibit Biofilm Development by Diverse Bacterial Uropathogens. Antibiotics (Basel) 2022; 11:1514. [PMID: 36358169 PMCID: PMC9686518 DOI: 10.3390/antibiotics11111514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/03/2023] Open
Abstract
Despite the implementation of stringent guidelines for the prevention of catheter-associated (CA) urinary tract infection (UTI), CAUTI remains one of the most common health care-related infections. We previously showed that an antimicrobial/antibiofilm agent inhibited biofilm development by Gram-positive and Gram-negative bacterial pathogens isolated from human infections. In this study, we examined the ability of a novel biofilm preventative agent (BPA) coating on silicone urinary catheters to inhibit biofilm formation on the catheters by six different bacterial pathogens isolated from UTIs: three Escherichia coli strains, representative of the most common bacterium isolated from UTI; one Enterobacter cloacae, a multidrug-resistant isolate; one Pseudomonas aeruginosa, common among patients with long-term catheterization; and one isolate of methicillin-resistant Staphylococcus aureus, as both a Gram-positive and a resistant organism. First, we tested the ability of these strains to form biofilms on urinary catheters made of red rubber, polyvinyl chloride (PVC), and silicone using the microtiter plate biofilm assay. When grown in artificial urine medium, which closely mimics human urine, all tested isolates formed considerable biofilms on all three catheter materials. As the biofilm biomass formed on silicone catheters was 0.5 to 1.6 logs less than that formed on rubber or PVC, respectively, we then coated the silicone catheters with BPA (benzalkonium chloride, polyacrylic acid, and glutaraldehyde), and tested the ability of the coated catheters to further inhibit biofilm development by these uropathogens. Compared with the uncoated silicone catheters, BPA-coated catheters completely prevented biofilm development by all the uropathogens, except P. aeruginosa, which showed no reduction in biofilm biomass. To explore the reason for P. aeruginosa resistance to the BPA coating, we utilized two specific lipopolysaccharide (LPS) mutants. In contrast to their parent strain, the two mutants failed to form biofilms on the BPA-coated catheters, which suggests that the composition of P. aeruginosa LPS plays a role in the resistance of wild-type P. aeruginosa to the BPA coating. Together, our results suggest that, except for P. aeruginosa, BPA-coated silicone catheters may prevent biofilm formation by both Gram-negative and Gram-positive uropathogens.
Collapse
Affiliation(s)
- Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Thomas Nelius
- Department of Urology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
27
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
28
|
Hryc J, Szczelina R, Markiewicz M, Pasenkiewicz-Gierula M. Lipid/water interface of galactolipid bilayers in different lyotropic liquid-crystalline phases. Front Mol Biosci 2022; 9:958537. [PMID: 36046609 PMCID: PMC9423040 DOI: 10.3389/fmolb.2022.958537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, carried out using computational methods, the organisation of the lipid/water interface of bilayers composed of galactolipids with both α-linolenoyl acyl chains is analysed and compared in three different lyotropic liquid-crystalline phases. These systems include the monogalactosyldiglyceride (MGDG) and digalactosyldiglyceride (DGDG) bilayers in the lamellar phase, the MGDG double bilayer during stalk phase formation and the inverse hexagonal MGDG phase. For each system, lipid-water and direct and water-mediated lipid-lipid interactions between the lipids of one bilayer leaflet and those of two apposing leaflets at the onset of new phase (stalk) formation, are identified. A network of interactions between DGDG molecules and its topological properties are derived and compared to those for the MGDG bilayer.
Collapse
Affiliation(s)
- Jakub Hryc
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Szczelina
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
| | - Michal Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
29
|
Lakey JH, Paracini N, Clifton LA. Exploiting neutron scattering contrast variation in biological membrane studies. BIOPHYSICS REVIEWS 2022; 3:021307. [PMID: 38505417 PMCID: PMC10903484 DOI: 10.1063/5.0091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/03/2022] [Indexed: 03/21/2024]
Abstract
Biological membranes composed of lipids and proteins are central for the function of all cells and individual components, such as proteins, that are readily studied by a range of structural approaches, including x-ray crystallography and cryo-electron microscopy. However, the study of complex molecular mixtures within the biological membrane structure and dynamics requires techniques that can study nanometer thick molecular bilayers in an aqueous environment at ambient temperature and pressure. Neutron methods, including scattering and spectroscopic approaches, are useful since they can measure structure and dynamics while also being able to penetrate sample holders and cuvettes. The structural approaches, such as small angle neutron scattering and neutron reflectometry, detect scattering caused by the difference in neutron contrast (scattering length) between different molecular components such as lipids or proteins. Usually, the bigger the contrast, the clearer the structural data, and this review uses examples from our research to illustrate how contrast can be increased to allow the structures of individual membrane components to be resolved. Most often this relies upon the use of deuterium in place of hydrogen, but we also discuss the use of magnetic contrast and other elements with useful scattering length values.
Collapse
Affiliation(s)
- Jeremy H. Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicolò Paracini
- Biofilms Research Center for Biointerfaces, Malmö University, Per Albin Hanssons väg 35, 21432 Malmö, Sweden
| | - Luke A. Clifton
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| |
Collapse
|
30
|
Belhadj-Salah K, Sheikh HM, Al-Hasawi ZM, Selim EM, Touliabah HE. In vitro antifungal and antibacterial potentials of organic extracts of Avicennia marina collected from Rabigh Lagoon, Red Sea Coasts in Saudi Arabia. BRAZ J BIOL 2022; 82:e265038. [DOI: 10.1590/1519-6984.265038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Mangrove shrub Avicennia marina (Forsk.) Vierh was used to test the antifungal and antibacterial activities of aerial fractions in vitro. Aspergillus sp, Candida sp and Gram positive bacteria have all been found to be sensitive to mangrove extracts, whereas Gram negative bacteria have been found to be resistant to them. Agar disc diffusion and well-cut diffusion were employed to conduct antifungal and antibacterial activities. The MICs (minimum inhibitory concentrations) for each assay have been established. Several extracts from Mangrove reduced fungus growth (diameters fluctuated between 11 and 41 mm). The Ethyl acetate fraction showed particularly strong inhibition of C. tropicalis, C. albicanis, and A. fumigatus. They had 41, 40, and 25 mm-diameter inhibition zones, respectively. Nesoral, a synthetic antifungal medication, showed no significant changes in its MICs compared to different extracts. Enterococcus faecalis and Bacillus subtilis were inhibited by Petroleum Ether extracts at MICs of 0.78 and 0.35 mg/mL, respectively. It is possible that A. marina extracts may be exploited as a viable natural alternative that may be employed in the management of various infections, notably nosocomial bacterial infections, as anti-candidiasis and as anti-aspergillosis agents.
Collapse
Affiliation(s)
- K. Belhadj-Salah
- King Abdulaziz University, Saudi Arabia; University of Monastir, Tunisia
| | - H. M. Sheikh
- King Abdulaziz University, Saudi Arabia; University of Jeddah, Saudi Arabia
| | - Z. M. Al-Hasawi
- King Abdulaziz University, Saudi Arabia; King Abdulaziz University, Saudi Arabia
| | | | - H. E. Touliabah
- King Abdulaziz University, Saudi Arabia; Ain Shams University, Egypt
| |
Collapse
|