1
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Recent advances and challenges of the green ZnO-based composites biosynthesized using plant extracts for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:67534-67549. [PMID: 38809407 DOI: 10.1007/s11356-024-33748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Recently, there has been a notable rise in the prevalence of persistent pollutants in the environment, posing a significant hazard due to their toxicity and enduring nature. Conventional wastewater treatment methods employed in treatment plants rarely address these persistent pollutants adequately. Meanwhile, the concept of green synthesis has garnered considerable attention, owing to its environmentally friendly approach that utilizes fewer toxic chemicals and solvents. The utilization of materials derived from sustainable sources presents a promising avenue for solving pressing environmental concerns. Among the various sources of biological agents, plants stand out for their accessibility, eco-friendliness, and rich reserves of phytochemicals suitable for material synthesis. The plant extract-mediated synthesis of zinc oxide nanoparticles (ZnONPs) has emerged as a promising solution for applications in wastewater treatment. Thorough investigations into the factors influencing the properties of these green ZnONPs are essential to establish a detailed and reliable synthesis process. Major weaknesses inherent in ZnONPs can be addressed by changing the optical, magnetic, and interface properties through doping with various semiconductor materials. Consequently, research efforts to mitigate water pollution are being driven by both the future prospects and limitations of ZnO-based composites. This review underscores the recent advancements of plant extract-mediated ZnONP composites for water treatment.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
2
|
Quevedo Robles RV, Vilchis Nestor AR, Luque Morales PA. Synthesis of zinc oxide semiconductor nanoparticles using natural extract: a systematic evaluation of cationic dye photodegradation influenced by extract concentration, catalyst dose, and pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63161-63175. [PMID: 39476155 DOI: 10.1007/s11356-024-35431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024]
Abstract
This work obtained zinc oxide nanoparticles (ZnO NPs) using organic components extracted from Waltheria americana at different concentrations. ZnO materials were subsequently applied in the photodegradation of two cationic dyes, Rhodamine B (RB) and methylene blue (MB), at different doses of catalyst and pH. The crystallinity and hexagonal Wurtzite structure of ZnO were established through XRD analysis. The Zn-O bond in the ZnO NPs was confirmed in the FTIR, with the characteristic signals observed in the fingerprint region at ~ 400 cm-1. SEM and TEM revealed the formation of quasi-spherical particles with an average size ranging from 2 to 12 nm, depending on extract concentrations during synthesis. UV-Vis studies indicated the optical bandgap of ZnO, with values below 3 eV, also dependent on extract concentration. PL analysis revealed the recombination of free excitons and defects in ZnO. Photocatalytic studies of ZnO materials demonstrated excellent degradation efficiency of RB and MB dyes, which was influenced by the extract concentration of NPs, while the degradation of MB was enhanced with a 1:1 dye-to-catalyst ratio under acidic conditions. In contrast, due to RB more complex structure, an increased ratio of 1:1 to 1:3 and acidic pH conditions improved its degradation. Green-synthesized ZnO NPs using photocatalysis techniques exhibit significant potential as eco-friendly alternatives for removing contaminants from water.
Collapse
Affiliation(s)
- Reina Vianey Quevedo Robles
- Facultad de Ingeniería, Arquitectura y Diseño-Universidad Autónoma de Baja California, C.P. 22860, Ensenada, Baja California, México
| | | | - Priscy Alfredo Luque Morales
- Facultad de Ingeniería, Arquitectura y Diseño-Universidad Autónoma de Baja California, C.P. 22860, Ensenada, Baja California, México.
| |
Collapse
|
3
|
Samy M, Tang S, Zhang Y, Leung DYC. Understanding the variations in degradation pathways and generated by-products of antibiotics in modified TiO 2 and ZnO photodegradation systems: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122402. [PMID: 39243651 DOI: 10.1016/j.jenvman.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
This review examines various modification techniques, including metal doping, non-metal doping, multi doping, mixed doping, and the construction of heterojunction photocatalysts, for enhancing the performance of pure TiO2 and ZnO in the photodegradation of antibiotics. The study finds that mixed and multi doping approaches are more effective in improving photodegradation performance compared to single doping. Furthermore, the selection of suitable semiconductors for constructing heterojunction photocatalysts is crucial for achieving an efficient charge carrier separation. The environmental impacts, recent research, and real application of photocatalysis process have been discussed. The review also investigates the impact of operating parameters on the degradation pathways and the generation of by-products for different antibiotics. Additionally, the toxicity of the by-products resulting from the photodegradation of antibiotics using modified ZnO and TiO2 photocatalysts is explored, revealing that these by-products may exhibit higher toxicity than the original antibiotics. Consequently, to enable the widespread implementation of photodegradation systems, researchers should focus on optimizing degradation systems to control the conversion pathways of by-products, developing innovative photoreactors, and evaluating toxicity in real wastewater matrices.
Collapse
Affiliation(s)
- Mahmoud Samy
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Shaoru Tang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
4
|
Zelekew OA, Haitosa HH, He L, Ma H, Cai J, Wang Z, Wu YN. Boosted visible-light-induced photo-Fenton degradation of organic pollutants over a novel direct Z-scheme NH 2-MIL-125(Ti)@FeOCl heterojunction catalyst. CHEMOSPHERE 2024; 365:143347. [PMID: 39284552 DOI: 10.1016/j.chemosphere.2024.143347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/21/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Improving the charge separation, charge transfer, and effective utilization is crucial in a photocatalysis system. Herein, we prepared a novel direct Z-scheme NH2-MIL-125(Ti)@FeOCl (Ti-MOF@FeOCl) composite photocatalyst through a simple method. The prepared composite catalyst was utilized in the photo-Fenton degradation of Rhodamine B (RhB) and ciprofloxacin (CIP). The Ti-MOF@FeOCl (10FeTi-MOF) catalyst exhibited the highest catalytic performance and degraded 99.1 and 66% of RhB and CIP, respectively. However, the pure NH2-MIL-125(Ti) (Ti-MOF) and FeOCl catalysts achieved only 50 and 92% of RhB and 50 and 37% of CIP, respectively. The higher catalytic activities of the Ti-MOF@FeOCl composite catalyst could be due to the electronic structure improvements, photoinduced charge separations, and charge transfer abilities in the catalyst system. The composite catalysts have also enhanced adsorption and visible light-responsive properties, allowing for efficient degradation. Furthermore, the electron paramagnetic resonance (EPR) signals, the reactive species trapping experiments, and Mott-Schottky (M - S) measurements revealed that the photogenerated superoxide radical (•O2-), hydroxyl radical (•OH), and holes (h+) played a vital role in the degradation process. The results also demonstrated that the Ti-MOF@FeOCl heterojunction composite catalysts could be a promising photo-Fenton catalyst system for the environmental remediation. Environmental implications The discharging of toxic contaminants such as organic dyes, antibiotics, and other emerging pollutants to the environment deteriorates the ecosystem. Specifically, the residues of organic pollutants recognized as a threat to ecosystem and a cause for carcinogenic effects. Among them, ciprofloxacin is one of antibiotics which has biological resistance, and metabolize partially in the human or animal bodies. It is also difficult to degrade ciprofloxacin completely with traditional treatment methods. Similarly, organic dyes are also toxic and a cause for carcinogenic effects. Therefore, effective degradation of organic pollutants such as RhB and ciprofloxacin with appropriate method is crucial.
Collapse
Affiliation(s)
- Osman Ahmed Zelekew
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China; Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Haileyesus Hatano Haitosa
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Lina He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Hui Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Junyi Cai
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziqi Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China.
| |
Collapse
|
5
|
Udayagiri H, Sana SS, Dogiparthi LK, Vadde R, Varma RS, Koduru JR, Ghodake GS, Somala AR, Boya VKN, Kim SC, Karri RR. Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity. Sci Rep 2024; 14:19714. [PMID: 39181904 PMCID: PMC11344770 DOI: 10.1038/s41598-024-69044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
The synthesis of metal nanoparticles through bio-reduction is environmentally benign and devoid of impurities, which is very important for biological applications. This method aims to improve ZnO nanoparticle's antibacterial and anti-biofilm activity while reducing the amount of hazardous chemicals used in nanoparticle production. The assembly of zinc oxide nanoparticles (ZnO NPs) is presented via bio-reduction of an aqueous zinc nitrate solution using Echinochloacolona (E. colona) plant aqueous leaf extract comprising various phytochemical components such as phenols, flavonoids, proteins, and sugars. The synthesized nano ZnO NPs are characterized by UV-visible spectrophotometer (UV-vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (X-RD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and elemental composition by energy-dispersive x-ray spectroscopy (EDX). The formation of biosynthesized ZnO nanoparticles was confirmed by the absorbance at 360-370 nm in the UV-vis spectrum. The average crystal size of the particles was found to be 15.8 nm, as calculated from XRD. SEM and TEM analysis of prepared ZnO NPs confirmed the spherical and hexagonal shaped nanoparticles. ZnO NPs showed antibacterial activity against Escherichia coli and Klebsiella pneumoniae with the largest zone of inhibition (ZOI) of 17 and 18 mm, respectively, from the disc diffusion method. Furthermore, ZnO NPs exhibited significant anti-biofilm activity in a dose-dependent manner against selected bacterial strains, thus suggesting that ZnO NPs can be deployed in the prevention of infectious diseases and also used in food preservation.
Collapse
Affiliation(s)
- Hussain Udayagiri
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Siva Sankar Sana
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Lakshman Kumar Dogiparthi
- Department of Pharmacognosy, MB School of Pharmaceutical Sciences, Mohan Babu University, Tirupati, Andhra Pradesh, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-Gu, Goyang-Si, 10326, Gyeonggi-Do, South Korea
| | - Adinarayana Reddy Somala
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - Vijaya Kumar Naidu Boya
- Department of Materials Science and Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, India.
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
6
|
Nguyen DTC, Nguyen NTT, Nguyen TTT, Tran TV. Recent advances in the biosynthesis of ZnO nanoparticles using floral waste extract for water treatment, agriculture and biomedical engineering. NANOSCALE ADVANCES 2024; 6:4047-4061. [PMID: 39114141 PMCID: PMC11302053 DOI: 10.1039/d4na00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Flowers are often discarded after cultural and religious events, making it worthwhile to explore the utilization of this floral waste for material production. Floral extracts contain a diverse array of phytochemicals such as polyphenols, flavonoids, and reducing sugars, which play a significant role in the formation and influencing the properties of zinc oxide (ZnO) nanoparticles. In this review, we delve into the importance of floral extract, methodology, mechanism, and influencing factors in the production of ZnO nanoparticles. Additionally, the role of green ZnO nanoparticles as an adsorbent and photocatalyst for water treatment is discussed. These floral extract-mediated ZnO nanoparticles exhibit advantages in agricultural and biomedical applications, including promoting seed germination and demonstrating antibacterial, anticancer, and antifungal properties. Cost analysis reveals that while various expenses are associated with ZnO production, scaling up processes can help reduce these costs. This review underscores the potential of floral waste extract for the synthesis of green ZnO nanoparticles, thereby contributing to waste-to-wealth strategies and adhering to green chemistry principles.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
- Nong Lam University - Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | | | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| |
Collapse
|
7
|
Barathi S, Ramalingam S, Krishnasamy G, Lee J. Exploring the Biomedical Frontiers of Plant-Derived Nanoparticles: Synthesis and Biological Reactions. Pharmaceutics 2024; 16:923. [PMID: 39065620 PMCID: PMC11279729 DOI: 10.3390/pharmaceutics16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
As contemporary technology advances, scientists are striving to identify new approaches to managing several diseases. Compared to the more popular physiochemical synthesis, the plant-derived combination of metallic nanoparticles using plant secondary metabolites as a precursor has a number of benefits, including low expenses, low energy consumption, biocompatibility, and medicinal usefulness. This study intends to explore the impacts of using plant-derived synthetic materials including metallic nanoparticles (NPs), emphasizing the benefits of their broad use in next-generation treatments for cancer, diabetes, Alzheimer's, and vector diseases. This comprehensive analysis investigates the potential of plant-derived remedies for diseases and looks at cutting-edge nanoformulation techniques aimed at addressing the function of the nanoparticles that accompany these organic substances. The purpose of the current review is to determine how plant extracts contribute to the synthesis of Silver nanoparticles (AgNPs), Gold nanoparticles (GtNPs), and platinum nanoparticles (PtNPs). It provides an overview of the many phytocompounds and their functions in biomedicine, including antibacterial, antioxidant, anticancer, and anti-inflammatory properties. Furthermore, this study placed a special focus on a range of applications, including drug delivery systems, diagnostics and therapy, the present benefits of nanoparticles (NPs), their biomedical uses in medical technology, and their toxicities.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
8
|
Liu Z, Ruan Z, Yang X, Huang Y, Xing J. Enhancing Performance of Organic Pollutant Degradation via Building Heterojunctions with ZnO Nanowires and Na Doped Conjugated 2,4,6-Triaminopyrimidin-g-C 3N 4. Molecules 2024; 29:3240. [PMID: 38999191 PMCID: PMC11243435 DOI: 10.3390/molecules29133240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Organic pollutants were one of the main sources of environmental pollutants. The degradation of organic pollutants through photocatalytic technology was one of the effective solutions. By preparing zinc oxide(ZnO) nanowires modified with sodium-doped conjugated 2,4,6-triaminopyrimidin-g-C3N4 (NaTCN) heterojunction (ZnO/NaTCN), the photocatalytic performance of NaTCN modified with different ratios of ZnO was systematically studied. The photocatalytic performance was studied through the degradation performance of methyl blue (MB) dye. The results showed that 22.5 wt% ZnO/NaTCN had the best degradation effect on MB dye. The degradation rate of MB reached 98.54% in 70 min. After three cycles, it shows good cycling stability (degradation rate is 96.99%) for dye degradation. It was found that there are two types of active species: ·OH and h+, of which h+ is the main active species produced by photocatalytic degradation of dyes. The excellent degradation performance was attributed to the fact that ZnO facilitated the extraction and transport of photogenerated carriers. The doping of sodium facilitated charge transfer. The NaTCN conjugated system promoted the extraction and transfer of photogenerated carriers. It provided guidance for designing efficient composite catalysts for use in other renewable energy fields.
Collapse
Affiliation(s)
- Ziyi Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zixin Ruan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yaqiong Huang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jun Xing
- School of Biomedical Engineering and Imaging, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
9
|
Vasiljevic Z, Vunduk J, Bartolic D, Miskovic G, Ognjanovic M, Tadic NB, Nikolic MV. An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity. ACS APPLIED BIO MATERIALS 2024; 7:3014-3032. [PMID: 38597359 DOI: 10.1021/acsabm.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Emission of greenhouse gases and infectious diseases caused by improper agro-waste disposal has gained significant attention in recent years. To overcome these hurdles, agro-waste can be valorized into valuable bioactive compounds that act as reducing or stabilizing agents in the synthesis of nanomaterials. Herein, we report a simple circular approach using Citrus reticulata Blanco (C. reticulata) waste (peel powder/aqueous extract) as green reducing and capping/stabilizing agents and Zn nitrate/acetate precursors to synthesize ZnO nanoparticles (NPs) with efficient antimicrobial and photocatalytic activities. The obtained NPs crystallized in a hexagonal wurtzite structure and differed clearly in their morphology. UV-vis analysis of the nanoparticles showed a characteristic broad absorption band between 330 and 414 nm belonging to ZnO NPs. Fourier transform infrared (FTIR) spectroscopy of ZnO NPs exhibited a Zn-O band close to 450 cm-1. The band gap values were in the range of 2.84-3.14 eV depending on the precursor and agent used. The crystallite size obtained from size-strain plots from measured XRD patterns was between 7 and 26 nm, with strain between 16 and 4%. The highly crystalline nature of obtained ZnO NPs was confirmed by clear ring diffraction patterns and d-spacing values of the observed lattice fringes. ZnNPeelMan_400 and ZnNExtrMan showed good stability, as the zeta potential was found to be around -20 mV, and reduced particle aggregation. Photoluminescence analysis revealed different defects belonging to oxygen vacancies (VO+ and VO+2) and zinc interstitial (Zni) sites. The presence of oxygen vacancies on the surface of ZnAcExtrMan_400 and ZnAcPeelMan_400 increased antimicrobial activity, specifically against Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis). ZnNExtrMan with a minimal inhibitory concentration of 0.156 mg/mL was more effective against Gram-positive bacteria Staphylococcus aureus (S. aureus), revealing a high influence of particle size and shape on antimicrobial activity. In addition, the photocatalytic activity of the ZnO NPs was examined by assessing the degradation of acid green dye in an aqueous solution under UV light irradiation. ZnAcPeelMan_400 exhibited excellent photocatalytic activity (94%) within 90 min after irradiation compared to other obtained ZnO NPs.
Collapse
Affiliation(s)
- Zorka Vasiljevic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, 11158 Belgrade, Serbia
| | - Dragana Bartolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| | - Goran Miskovic
- Silicon Austria Laboratories GMBH, High Tech Campus Villach, A-9524 Villach, Austria
| | - Milos Ognjanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, 11000 Belgrade, Serbia
| | - Nenad B Tadic
- Faculty of Physics, University of Belgrade, 11000 Belgrade, Serbia
| | - Maria Vesna Nikolic
- University of Belgrade-Institute for Multidisciplinary Research, 11030 Belgrade, Serbia
| |
Collapse
|
10
|
Rehman A, Rahman SU, Li P, Shah IH, Manzoor MA, Azam M, Cao J, Malik MS, Jeridi M, Ahmad N, Alabbosh KF, Liu Q, Khalid M, Niu Q. Modulating plant-soil microcosm with green synthesized ZnONPs in arsenic contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134130. [PMID: 38555668 DOI: 10.1016/j.jhazmat.2024.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Biogenic nanoparticle (NP), derived from plant sources, is gaining prominence as a viable, cost-effective, sustainable, and biocompatible alternative for mitigating the extensive environmental impact of arsenic on the interplay between plant-soil system. Herein, the impact of green synthesized zinc oxide nanoparticles (ZnONPs) was assessed on Catharanthus roseus root system-associated enzymes and their possible impact on microbiome niches (rhizocompartments) and overall plant performance under arsenic (As) gradients. The application of ZnONPs at different concentrations successfully modified the arsenic uptake in various plant parts, with the root arsenic levels increasing 1.5 and 1.4-fold after 25 and 50 days, respectively, at medium concentration compared to the control. Moreover, ZnONPs gradients regulated the various soil enzyme activities. Notably, urease and catalase activities showed an increase when exposed to low concentrations of ZnONPs, whereas saccharase and acid phosphatase displayed the opposite pattern, showing increased activities under medium concentration which possibly in turn influence the plant root system associated microflora. The use of nonmetric multidimensional scaling ordination revealed a significant differentiation (with a significance level of p < 0.05) in the structure of both bacterial and fungal communities under different treatment conditions across root associated niches. Bacterial and fungal phyla level analysis showed that Proteobacteria and Basidiomycota displayed a significant increase in relative abundance under medium ZnONPs concentration, as opposed to low and high concentrations, respectively. Similarly, in depth genera level analysis revealed that Burkholderia, Halomonas, Thelephora and Sebacina exhibited a notably high relative abundance in both the rhizosphere and rhizoplane (the former refers to the soil region influenced by root exudates, while the latter is the root surface itself) under medium concentrations of ZnONPs, respectively. These adjustments to the plant root-associated microcosm likely play a role in protecting the plant from oxidative stress by regulating the plant's antioxidant system and overall biomass.
Collapse
Affiliation(s)
- Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saeed Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengli Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Azam
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junfeng Cao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Qunlu Liu
- Department of Landscape Architecture, School of Design, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Khalid
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China.
| | - Qingliang Niu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Lemecho B, Andoshe DM, Gultom NS, Abdullah H, Kuo DH, Chen X, Desissa TD, Wondimageng DT, Wu YN, Zelekew OA. Biological Renewable Cellulose-Templated Zn 1-XCu XO/Ag 2O Nanocomposite Photocatalysts for the Degradation of Methylene Blue. ACS OMEGA 2024; 9:13714-13727. [PMID: 38559997 PMCID: PMC10975585 DOI: 10.1021/acsomega.3c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Herein, Cellulose-templated Zn1-XCuXO/Ag2O nanocomposites were prepared using biological renewable cellulose extracted from water hyacinth (Eichhornia crassipes). Cellulose-templated Cu-doped ZnO catalysts with different amounts of Cu as the dopants (1, 2, 3, and 4%) were prepared and denoted CZ-1, CZ-2, CZ-3, and CZ-4, respectively, for simplicity. The prepared catalysts were tested for the degradation of methylene blue (MB), and 2% Cu-doped ZnO (CZ-2) showed the best catalytic performance (82%), while the pure ZnO, CZ-1, CZ-3, and CZ-4 catalysts exhibited MB dye degradation efficiencies of 54, 63, 65, and 60%, respectively. The best catalyst (CZ-2) was chosen to further improve the degradation efficiency. Different amounts of AgNO3 (10, 15, 30, and 45 mg) were used for the deposition of Ag2O on the surface of CZ-2 and denoted CZA-10, CZA-15, CZA-30, and CZA-45, respectively. Among the composite catalysts, CZA-15 showed remarkable degradation efficiency and degraded 94% of MB, while the CZA-10, CZA-30, and CZA-45 catalysts showed 90, 81, and 79% degradation efficiencies, respectively, under visible light within 100 min of irradiation. The enhanced catalytic performance could be due to the smaller particle size, the higher electron and hole separation and charge transfer efficiencies, and the lower agglomeration in the composite catalyst system. The results also demonstrated that the Cu-doped ZnO prepared with cellulose as a template, followed by the optimum amount of Ag2O deposition, could have promising applications in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Biruktait
Ayele Lemecho
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Noto Susanto Gultom
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hairus Abdullah
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department
of Materials Science and Engineering, National
Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Xiaoyun Chen
- College
of Materials Engineering, Fujian Agriculture
and Forestry University, Fuzhou 350002, China
| | - Temesgen D. Desissa
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Demeke Tesfaye Wondimageng
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| | - Yi-nan Wu
- College
of Environmental Science and Engineering, State Key Laboratory of
Pollution Control and Resource Reuse, Tongji
University, 1239 Siping Rd., Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Osman Ahmed Zelekew
- Department
of Materials Science and Engineering, Adama
Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
12
|
Usman UL, Allam BK, Sajad S, Singh NB, Banerjee S. Plant leaves extract assisted eco-friendly fabrication of ZnO-SnO2@Chitosan for UV-induced enhanced photodegradation of single and ternary mixtures of Rhodamine B. NANO-STRUCTURES & NANO-OBJECTS 2024; 37:101072. [DOI: 10.1016/j.nanoso.2023.101072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Berede HT, Andoshe DM, Gultom NS, Kuo DH, Chen X, Abdullah H, Wondimu TH, Wu YN, Zelekew OA. Photocatalytic activity of the biogenic mediated green synthesized CuO nanoparticles confined into MgAl LDH matrix. Sci Rep 2024; 14:2314. [PMID: 38281984 PMCID: PMC10822861 DOI: 10.1038/s41598-024-52547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
The global concern over water pollution caused by organic pollutants such as methylene blue (MB) and other dyes has reached a critical level. Herein, the Allium cepa L. peel extract was utilized to fabricate copper oxide (CuO) nanoparticles. The CuO was combined with MgAl-layered double hydroxides (MgAl-LDHs) via a co-precipitation method with varying weight ratios of the CuO/LDHs. The composite catalysts were characterized and tested for the degradation of MB dye. The CuO/MgAl-LDH (1:2) showed the highest photocatalytic performance and achieved 99.20% MB degradation. However, only 90.03, 85.30, 71.87, and 35.53% MB dye was degraded with CuO/MgAl-LDHs (1:1), CuO/MgAl-LDHs (2:1), CuO, and MgAl-LDHs catalysts, respectively. Furthermore, a pseudo-first-order rate constant of the CuO/MgAl-LDHs (1:2) was 0.03141 min-1 while the rate constants for CuO and MgAl-LDHs were 0.0156 and 0.0052 min-1, respectively. The results demonstrated that the composite catalysts exhibited an improved catalytic performance than the pristine CuO and MgAl-LDHs. The higher photocatalytic performances of composite catalysts may be due to the uniform distribution of CuO nanoparticles into the LDH matrix, the higher surface area, and the lower electron and hole recombination rates. Therefore, the CuO/MgAl-LDHs composite catalyst can be one of the candidates used in environmental remediation.
Collapse
Affiliation(s)
- Hildana Tesfaye Berede
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hairus Abdullah
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Osman Ahmed Zelekew
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama, Ethiopia.
| |
Collapse
|