1
|
Alkhatib B, Ciarelli J, Ghnenis A, Pallas B, Olivier N, Padmanabhan V, Vyas AK. Early- to mid-gestational testosterone excess leads to adverse cardiac outcomes in postpartum sheep. Am J Physiol Heart Circ Physiol 2024; 327:H315-H330. [PMID: 38819385 PMCID: PMC11687963 DOI: 10.1152/ajpheart.00763.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Cardiovascular dysfunctions complicate 10-20% of pregnancies, increasing the risk for postpartum mortality. Various gestational insults, including preeclampsia are reported to be associated with adverse maternal cardiovascular outcomes. One such insult, gestational hyperandrogenism increases the risk for preeclampsia and other gestational morbidities but its impact on postpartum maternal health is not well known. We hypothesize that gestational hyperandrogenism such as testosterone (T) excess will adversely impact the maternal heart in the postpartum period. Pregnant ewes were injected with T propionate from day 30 to day 90 of gestation (term 147 days). Three months postpartum, echocardiograms, plasma cytokine profiles, cardiac morphometric, and molecular analysis were conducted [control (C) n = 6, T-treated (T) n = 7 number of animals]. Data were analyzed by two-tailed Student's t test and Cohen's effect size (d) analysis. There was a nonsignificant large magnitude decrease in cardiac output (7.64 ± 1.27 L/min vs. 10.19 ± 1.40, P = 0.22, d = 0.81) and fractional shortening in the T ewes compared with C (35.83 ± 2.33% vs. 41.50 ± 2.84, P = 0.15, d = 0.89). T treatment significantly increased 1) left ventricle (LV) weight-to-body weight ratio (2.82 ± 0.14 g/kg vs. 2.46 ± 0.08) and LV thickness (14.56 ± 0.52 mm vs. 12.50 ± 0.75), 2) proinflammatory marker [tumor necrosis factor-alpha (TNF-α)] in LV (1.66 ± 0.35 vs. 1.06 ± 0.18), 3) LV collagen (Masson's Trichrome stain: 3.38 ± 0.35 vs. 1.49 ± 0.15 and Picrosirius red stain: 5.50 ± 0.32 vs. 3.01 ± 0.23), 4) markers of LV apoptosis, including TUNEL (8.3 ± 1.1 vs. 0.9 ± 0.18), bcl-2-associated X protein (Bax)+-to-b-cell lymphoma 2 (Bcl2)+ ratio (0.68 ± 0.30 vs. 0.13 ± 0.02), and cleaved caspase 3 (15.4 ± 1.7 vs. 4.4 ± 0.38). These findings suggest that gestational testosterone excess adversely programs the maternal LV, leading to adverse structural and functional consequences in the postpartum period.NEW & NOTEWORTHY Using a sheep model of human translational relevance, this study provides evidence that excess gestational testosterone exposure such as that seen in hyperandrogenic disorders adversely impacts postpartum maternal hearts.
Collapse
Affiliation(s)
- Bashar Alkhatib
- Department of Pediatrics, Washington University, St Louis, Missouri, United States
| | - Joseph Ciarelli
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas Olivier
- Department of Veterinary Medicine, Michigan State University, Lansing, Michigan, United States
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University, St Louis, Missouri, United States
| |
Collapse
|
2
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Potential molecular and cellular mechanisms of the effects of cuproptosis-related genes in the cardiomyocytes of patients with diabetic heart failure: a bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1370387. [PMID: 38883603 PMCID: PMC11176466 DOI: 10.3389/fendo.2024.1370387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Background Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Niu Y, Zhou T, Zhang S, Li W, Wang K, Dong N, Wu Q. Corin deficiency impairs cardiac function in mouse models of heart failure. Front Cardiovasc Med 2023; 10:1164524. [PMID: 37636304 PMCID: PMC10450958 DOI: 10.3389/fcvm.2023.1164524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Corin is a protease in the natriuretic peptide system. Deleterious CORIN variants are associated with hypertension and heart disease. It remains unclear if and to what extent corin deficiency may contribute to heart failure (HF). Methods Corin knockout (KO) mice were used as a model. Cardiac function was assessed by echocardiography and tissue analysis in Corin KO mice at different ages or subjected to transverse aortic constriction (TAC), which increased pressure overload. Heart and lung tissues were analyzed for cardiac hypertrophy and lung edema using wheat germ agglutinin, Sirius red, Masson's trichrome, and Prussian blue staining. Recombinant corin was tested for its effect on cardiac function in the TAC-operated Corin KO mice. Selected gene expression in the heart was examined by RT-PCR. ELISA was used to analyze factors in plasma. Results Corin KO mice had progressive cardiac dysfunction with cardiac hypertrophy and fibrosis after 9 months of age, likely due to chronic hypertension. When Corin KO mice were subjected to TAC at 10-12 weeks of age, cardiac function decreased more rapidly than in similarly treated wild-type mice. When the TAC-operated Corin KO mice were treated with recombinant corin protein, cardiac dysfunction, hypertrophy, and fibrosis were ameliorated. The corin treatment also decreased the gene expression associated with cardiac hypertrophy and fibrosis, increased plasma cGMP levels, lowered plasma levels of N-terminal pro-atrial natriuretic peptide, angiotensin II, and aldosterone, and lessened lung edema in the Corin KO mice subjected to TAC. Conclusion Corin deficiency impairs cardiac function and exacerbates HF development in mice. Corin protein may be used to reduce cardiac hypertrophy and fibrosis, suppress the renin-angiotensin-aldosterone system, and improve cardiac function in HF.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Alkhatib B, Salimi S, Jabari M, Padmanabhan V, Vyas AK. Impact of Adverse Gestational Milieu on Maternal Cardiovascular Health. Endocrinology 2023; 164:bqad060. [PMID: 37042476 PMCID: PMC10164662 DOI: 10.1210/endocr/bqad060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/13/2023]
Abstract
Cardiovascular disease affects 1% to 4% of the nearly 4 million pregnancies in the United States each year and is the primary cause of pregnancy-related mortality. Adverse pregnancy outcomes are associated with cardiovascular complications during pregnancy persisting into the postpartum period. Recently, investigations have identified an altered sex hormone milieu, such as in the case of hyperandrogenism, as a causative factor in the development of gestational cardiovascular dysfunction. The mechanisms involved in the development of cardiovascular disease in postpartum women are largely unknown. Animal studies have attempted to recapitulate adverse pregnancy outcomes to investigate causal relationships and molecular underpinnings of adverse gestational cardiac events and progression to the development of cardiovascular disease postpartum. This review will focus on summarizing clinical and animal studies detailing the impact of adverse pregnancy outcomes, including preeclampsia, gestational diabetes mellitus, and maternal obesity, on gestational cardiometabolic dysfunction and postpartum cardiovascular disease. Specifically, we will highlight the adverse impact of gestational hyperandrogenism and its potential to serve as a biomarker for maternal gestational and postpartum cardiovascular dysfunctions.
Collapse
Affiliation(s)
- Bashar Alkhatib
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Shadi Salimi
- College of Human Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Mary Jabari
- College of Human Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | | | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
- College of Human Medicine, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
6
|
Binder NK, Beard S, de Alwis N, Fato BR, Nguyen TV, Kaitu’u-Lino TJ, Hannan NJ. Investigating the Effects of Atrial Natriuretic Peptide on the Maternal Endothelium to Determine Potential Implications for Preeclampsia. Int J Mol Sci 2023; 24:ijms24076182. [PMID: 37047162 PMCID: PMC10094118 DOI: 10.3390/ijms24076182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Preeclampsia is associated with an increased lifelong risk of cardiovascular disease (CVD). It is not clear whether this is induced by persistent systemic organ and vascular damage following preeclampsia or due to a predisposition to both conditions that share cardiovascular pathophysiology. Common to both CVD and preeclampsia is the dysregulation of corin and its proteolytic product, atrial natriuretic peptide (ANP). ANP, a hypotensive hormone converted from pro-ANP by corin, is involved in blood pressure homeostasis. While corin is predominantly a cardiac enzyme, both corin and pro-ANP are significantly upregulated in the gravid uterus and dysregulated in preeclampsia. Relatively little is known about ANP function in the endothelium during a pregnancy complicated by preeclampsia. Here, we investigated the effect of ANP on endothelial cell proliferation and migration, markers of endothelial dysfunction, and receptor expression in omental arteries exposed to circulating preeclamptic toxins. ANP receptor expression is significantly upregulated in preeclamptic vasculature but not because of exposure to preeclampsia toxins tumour necrosis factor α or soluble fms-like tyrosine kinase-1. The supplementation of endothelial cells with ANP did not promote proliferation or migration, nor did ANP improve markers of endothelial dysfunction. The role of ANP in preeclampsia is unlikely to be via endothelial pathways.
Collapse
Affiliation(s)
- Natalie K. Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Bianca R. Fato
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
| | - Tuong-Vi Nguyen
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Diagnostics Discovery and Reverse Translation Laboratory, Heidelberg, VIC 3084, Australia
| | - Tu’uhevaha J. Kaitu’u-Lino
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Diagnostics Discovery and Reverse Translation Laboratory, Heidelberg, VIC 3084, Australia
| | - Natalie J. Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Laboratory, Heidelberg, VIC 3084, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC 3084, Australia
- Correspondence: ; Tel.: +613-8458-4371
| |
Collapse
|
7
|
Zhu X, Chen X, Qiu L, Zhu J, Wang J. Norcantharidin induces ferroptosis via the suppression of NRF2/HO-1 signaling in ovarian cancer cells. Oncol Lett 2022; 24:359. [PMID: 36168316 PMCID: PMC9478624 DOI: 10.3892/ol.2022.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence has indicated a crucial role of ferroptosis in ovarian cancer (OC). Norcantharidin (NCTD), a normethyl compound of cantharidin, is extensively used in clinical practice as an optional anticancer drug. However, whether NCTD leads to ferroptosis in OC has not been previously explored, at least to the best of our knowledge. In the present study, the effect of NCTD on SKOV3 and OVCAR-3 cells was evaluated. The experimental data of the present study revealed that NCTD significantly suppressed SKOV3 and OVCAR-3 cell viability in a concentration- and time-dependent manner. The results of Cell Counting Kit-8 assay revealed that NCTD treatment decreased SKOV3 and OVCAR-3 cell viability. In comparison, pre-incubation with ferrostatin-1 (Fer-1) significantly reversed the NCTD-induced reduction in SKOV3 and OVCAR-3 cell viability; however, no changes in cell viability were observed when the SKOV3 and OVCAR-3 cells were treated with NCTD, in combination with the apoptosis inhibitor, Z-VAD-FMK, the ferroptosis inhibitor, necrostatin-1, and the autophagy inhibitor, 3-methyladenine. Additionally, it was observed that NCTD markedly enhanced reactive oxygen species production and malondialdehyde and ferrous ion levels in the SKOV3 and OVCAR-3 cells; however, pre-incubation with Fer-1 abolished these effects. Flow cytometry also demonstrated a significant increase in cell death following treatment of the SKOV3 and OVCAR-3 cells with NCTD; however, pre-incubation with Fer-1 also reversed these effects. In vivo experiments demonstrated that NCTD significantly reduced tumor volume and weight. More importantly, it was revealed that nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase 1 (HO-1), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (xCT) expression levels were significantly decreased following NCTD treatment. Collectively, NCTD may represent a potent anticancer agent in OC cells, and NCTD-induced ferroptotic cell death may be achieved by inhibiting the NRF2/HO-1/GPX4/xCT axis.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Xiaohong Chen
- Department of Gynecology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Longshan Qiu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Jianhua Zhu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Jiancai Wang
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
8
|
Sangaralingham SJ, Kuhn M, Cannone V, Chen HH, Burnett JC. Natriuretic peptide pathways in heart failure: further therapeutic possibilities. Cardiovasc Res 2022; 118:3416-3433. [PMID: 36004816 PMCID: PMC9897690 DOI: 10.1093/cvr/cvac125] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
The discovery of the heart as an endocrine organ resulted in a remarkable recognition of the natriuretic peptide system (NPS). Specifically, research has established the production of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) from the heart, which exert pleiotropic cardiovascular, endocrine, renal, and metabolic actions via the particulate guanylyl cyclase A receptor (GC-A) and the second messenger, cGMP. C-type natriuretic peptide (CNP) is produced in the endothelium and kidney and mediates important protective auto/paracrine actions via GC-B and cGMP. These actions, in part, participate in the efficacy of sacubitril/valsartan in heart failure (HF) due to the augmentation of the NPS. Here, we will review important insights into the biology of the NPS, the role of precision medicine, and focus on the phenotypes of human genetic variants of ANP and BNP in the general population and the relevance to HF. We will also provide an update of the existence of NP deficiency states, including in HF, which provide the rationale for further therapeutics for the NPS. Finally, we will review the field of peptide engineering and the development of novel designer NPs for the treatment of HF. Notably, the recent discovery of a first-in-class small molecule GC-A enhancer, which is orally deliverable, will be highlighted. These innovative designer NPs and small molecule possess enhanced and novel properties for the treatment of HF and cardiovascular diseases.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Physiology and Biomedical Engineering, Mayo Clinic 200 1st St SW, Rochester MN 55905, USA
| | - Michaela Kuhn
- Institute of Physiology, University of Wuerzburg, Roentgenring 9, D-97070 Wuerzburg, Germany
| | - Valentina Cannone
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA,Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - John C Burnett
- Corresponding author. Tel: 507 284-4343; fax: 507 266-4710; E-mail:
| |
Collapse
|
9
|
Corin: A Key Mediator in Sodium Homeostasis, Vascular Remodeling, and Heart Failure. BIOLOGY 2022; 11:biology11050717. [PMID: 35625445 PMCID: PMC9138375 DOI: 10.3390/biology11050717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Atrial natriuretic peptide (ANP) is an important hormone that regulates many physiological and pathological processes, including electrolyte and body fluid balance, blood volume and pressure, cardiac channel activity and function, inflammatory response, lipid metabolism, and vascular remodeling. Corin is a transmembrane serine protease that activates ANP. Variants in the CORIN gene are associated with cardiovascular disease, including hypertension, cardiac hypertrophy, atrial fibrillation, heart failure, and preeclampsia. The current data indicate a key role of corin-mediated ANP production and signaling in the maintenance of cardiovascular homeostasis. In this review, we discuss the latest findings regarding the molecular and cellular mechanisms underlying the role of corin in sodium homeostasis, uterine spiral artery remodeling, and heart failure. Abstract Atrial natriuretic peptide (ANP) is a crucial element of the cardiac endocrine function that promotes natriuresis, diuresis, and vasodilation, thereby protecting normal blood pressure and cardiac function. Corin is a type II transmembrane serine protease that is highly expressed in the heart, where it converts the ANP precursor to mature ANP. Corin deficiency prevents ANP activation and causes hypertension and heart disease. In addition to the heart, corin is expressed in other tissues, including those of the kidney, skin, and uterus, where corin-mediated ANP production and signaling act locally to promote sodium excretion and vascular remodeling. These results indicate that corin and ANP function in many tissues via endocrine and autocrine mechanisms. In heart failure patients, impaired natriuretic peptide processing is a common pathological mechanism that contributes to sodium and body fluid retention. In this review, we discuss most recent findings regarding the role of corin in non-cardiac tissues, including the kidney and skin, in regulating sodium homeostasis and body fluid excretion. Moreover, we describe the molecular mechanisms underlying corin and ANP function in supporting orderly cellular events in uterine spiral artery remodeling. Finally, we assess the potential of corin-based approaches to enhance natriuretic peptide production and activity as a treatment of heart failure.
Collapse
|
10
|
Zhang W, Zhou Y, Dong Y, Liu W, Li H, Song W. Correlation between N-terminal pro-atrial natriuretic peptide, corin, and target organ damage in hypertensive disorders of pregnancy. J Clin Hypertens (Greenwich) 2022; 24:644-651. [PMID: 35199942 PMCID: PMC9106090 DOI: 10.1111/jch.14450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
The objective was to evaluate the correlation between N‐terminal pro‐atrial natriuretic peptide (NT‐proANP), corin and the severity of target organ injury in hypertensive disorders of pregnancy. A total of 78 women with hypertensive disorders of pregnancy and 49 normotensive pregnancies were enrolled. The clinical characteristics, laboratory index and echocardiogram results were collected. NT‐proANP, corin, sFlt‐1 and PlGF levels were measured. A receiver's operating characteristics (ROC) curve was performed to evaluate the efficacy of predicting target organ injury in the HDP group. The NT‐proANP, corin, and sFlt‐1/PlGF ratio were increased in the HDP group (p < .05). The area under the curve (AUC) predicted by NT‐proANP and corin were larger than sFlt‐1/PlGF ratio (0.779, 0.867, and 0.766, respectively). The creatinine and urine protein were significantly increased, while the estimated glomerular filtration rate (eGFR) was dramatically decreased in the HDP group (p < .05 each). The left atrial diameter (LAD), left atrial volume index (LAVI), left ventricular posterior wall thickness (LVPWT), and left ventricular septal thickness (LVST) were larger in the HDP group (p < .001 each). The NT‐proANP/corin levels were positively correlated with LAD, creatinine, and urine protein, and negatively correlated with eGFR in HDP group (p < .05 each). Multiple regressions demonstrated that NT‐proANP was an independent risk factor of LAD and urine protein, and corin was an independent risk factor of creatinine and eGFR in HDP group. NT‐proANP and corin may be reliable biomarkers for evaluating the severity of target organ damage in the hypertensive disorders of pregnant patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Ying Zhou
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Yubing Dong
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Wanyu Liu
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| | - Haiying Li
- The Dalian Obstetrics and Gynecology Hospital, DaLian Liaoning, China
| | - Wei Song
- Department of Hypertension, The First Affiliated Hospital of Dalian Medical University, DaLian Liaoning, China
| |
Collapse
|
11
|
Zhao T, Wang Z, Chi Y, Ni C, Zheng X. TFEC contributes to cardiac hypertrophy by inhibiting AMPK/mTOR signaling. Exp Ther Med 2021; 22:1271. [PMID: 34594408 PMCID: PMC8456502 DOI: 10.3892/etm.2021.10706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
The underlying mechanism of cardiac hypertrophy has not yet been fully elucidated. The present study aimed to explore the function of transcription factor EC (TFEC) in mouse models of cardiac hypertrophy and to determine the underlying mechanism. Pressure-overload cardiac hypertrophy and angiotensin II (AngII) infusion-induced animal models of cardiac hypertrophy were established in vivo. The expression of TFEC was explored via western blotting. The results demonstrated that TFEC expression was significantly increased in the hearts of mice with pressure overload- and AngII-induced hypertrophy. Injection of rAd-short hairpin (sh)-TFEC significantly decreased the expression of TFEC in heart tissues compared with group injected with rAd-negative control (NC). Furthermore, the expression levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) were increased in the hearts of AngII-treated mice; however, compared with rAd-NC transfection, transfection with rAd-sh-TFEC decreased the expression levels of ANP, BNP and β-MHC. The results from echocardiographic analysis indicated that transfection with rAd-sh-TFEC improved the cardiac function of AngII-treated mice compared with transfection with rAd-NC. In addition, the AngII-induced increase in cardiomyocyte size could be reversed by TFEC knockdown in primary cardiomyocytes. The elevated expression levels of ANP, BNP and β-MHC induced by AngII could be partially abolished following TFEC knockdown. The results from western blotting demonstrated that TFEC overexpression decreased the expression of phosphorylated AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but increased the expression of phosphorylated mechanistic target of rapamycin (mTOR). Furthermore, Compound C significantly suppressed the activation of AMPK/ACC but increased the activation of mTOR, even in primary cardiomyocytes transfected with rAd-sh-TFEC. In conclusion, the findings from this study demonstrated that TFEC was overexpressed in the hearts of mice with cardiac hypertrophy and that silencing TFEC may improve AngII-induced cardiac hypertrophy and dysfunction by activating AMPK/mTOR signaling.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Zhenyu Wang
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Yehong Chi
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Chunmei Ni
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| | - Xudan Zheng
- Department of Cardiology, Weapon Industry 521 Hospital, Xi'an, Shanxi 710065, P.R. China
| |
Collapse
|
12
|
Zhao Y, Yuan X, Zhong Y, Zhang Y, Zhang S, Li S, Zhao Y, Zheng W, Liu J, Xia Y, Yang Y, Liu Y, Chen F. Single-Nucleotide Polymorphisms in the 3' Untranslated Region of CORIN Associated With Cardiovascular Diseases in a Chinese Han Population: A Case-Control Study. Front Cardiovasc Med 2021; 8:625072. [PMID: 34409072 PMCID: PMC8365884 DOI: 10.3389/fcvm.2021.625072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Corin is a transmembrane serine protease that activates pro-forms of atrial and brain natriuretic peptides. Numerous studies have indicated that corin played an important role in cardiovascular diseases (CVDs). However, there have been few studies about the correlation between single-nucleotide polymorphisms (SNPs) in the 3' untranslated region (3'UTR) of CORIN and CVDs. The aims of this study were to investigate the associations of three SNPs (rs3749585, rs4695253, and rs12641823) in the 3'UTR of CORIN with CVDs and to find the seed regions of microRNAs (miRNAs) that bind to SNPs of CORIN. Methods and Results: A case–control study (n = 3,537) was performed in a Han population of northeastern China. CVDs included essential hypertension (EH), atrial fibrillation (AF), heart failure (HF), and coronary artery disease (CAD). Genotyping was performed using high-resolution melt analysis. In the EH-control study, rs3749585T was significantly associated with the risk of EH after adjusting for sex and age in allelic (padj = 0.049; OR: 1.113) and dominant (padj = 0.015, OR: 1.233) models. Rs4695253T was significantly associated with the risk of EH in the recessive model after adjusting for sex and age (padj = 0.005, OR: 2.084). Rs3749585T was significantly and negatively associated with AF in the dominant and additive models after adjusting for sex, age, EH, HF, T2DM, and CAD (dominant: padj = 0.009, OR: 0.762; additive: padj = 0.048, OR: 0.873). In the HF-control study and CAD-control study, none of the three SNPs was associated with HF and CAD after adjusting for covariates in any models (padj > 0.05). The levels of high-density lipoprotein (HDL) in rs4695253CC+CT were lower than the levels of HDL in rs4695253TT (42.47 ± 10.30 vs. 48.0 ± 10.24 mg/dl, padj = 0.008). The levels of total cholesterol (TC) in rs4695253CC+CT were lower than the levels of TC in rs4695253TT (164.01 ± 49.15 vs. 180.81 ± 43.92 mg/dl, padj = 0.036). Luciferase assay revealed that the relative luciferase activity of rs3749585CC-transfected cells was significantly decreased by miR-494-3p, in comparison to cells transfected with rs3749585TT (p < 0.001). A significant decrease in the relative luciferase activity of rs3749585TT reporter was observed as compared with rs3749585CC reporter in the presence of miR-1323 or miR-548o-3p (p = 0.017 and 0.012, respectively). Conclusions: We found significant associations between rs3749585T and rs4695253T and EH, between rs4695253T and the levels of TC and HDL, and between rs3749585T and AF. Hsa-miR-494-3p may serve as a potential therapeutic target for EH and AF patients in the future.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyang Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Zhong
- Department of Cardiology, The Fifth People's Hospital of Dalian, Dalian, China
| | - Yutao Zhang
- Chinese Center for Disease Control and Prevention, National Institute of Occupational Health and Poison Control, Beijing, China
| | - Shushan Zhang
- Department of Ultrasonography, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sisi Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Department of Epidemiology, School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation, National Health Commission (NHC) Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Institute of Organ Transplantation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinqiu Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanzong Yang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feifei Chen
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Function and regulation of corin in physiology and disease. Biochem Soc Trans 2021; 48:1905-1916. [PMID: 33125488 DOI: 10.1042/bst20190760] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Atrial natriuretic peptide (ANP) is of major importance in the maintenance of electrolyte balance and normal blood pressure. Reduced plasma ANP levels are associated with the increased risk of cardiovascular disease. Corin is a type II transmembrane serine protease that converts the ANP precursor to mature ANP. Corin deficiency prevents ANP generation and alters electrolyte and body fluid homeostasis. Corin is synthesized as a zymogen that is proteolytically activated on the cell surface. Factors that disrupt corin folding, intracellular trafficking, cell surface expression, and zymogen activation are expected to impair corin function. To date, CORIN variants that reduce corin activity have been identified in hypertensive patients. In addition to the heart, corin expression has been detected in non-cardiac tissues, where corin and ANP participate in diverse physiological processes. In this review, we summarize the current knowledge in corin biosynthesis and post-translational modifications. We also discuss tissue-specific corin expression and function in physiology and disease.
Collapse
|
14
|
Niu Y, Zhang S, Gu X, Zhou T, Li F, Liu M, Wu Q, Dong N. Recombinant Soluble Corin Improves Cardiac Function in Mouse Models of Heart Failure. J Am Heart Assoc 2021; 10:e019961. [PMID: 33759549 PMCID: PMC8174325 DOI: 10.1161/jaha.120.019961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Corin is a transmembrane protease that activates ANP and BNP (atrial and B‐type natriuretic peptides). Impaired corin expression and function are associated with heart failure. In this study, we characterized a soluble form of corin (sCorin) and examined its effects on cardiac morphology and function in mouse heart failure models. Methods and Results sCorin, consisting of the full‐length extracellular fragment of human corin with an engineered activation site, was expressed in Chinese hamster ovary cells, purified from the conditioned medium with affinity chromatography, and characterized in pro‐ANP processing assays in vitro and pharmacokinetic studies in mice. Effects of sCorin on mouse models of heart failure induced by left coronary artery ligation and transverse aortic constriction were assessed by ELISA analysis of plasma markers, histologic examination, and echocardiography. We showed that purified and activated sCorin converted pro‐ANP to ANP that stimulated cGMP production in cultured cells. In mice, intravenously and intraperitoneally administered sCorin had plasma half‐lives of 3.5±0.1 and 8.3±0.3 hour, respectively. In the mouse heart failure models, intraperitoneal injection of sCorin increased plasma ANP, BNP, and cGMP levels; lowered plasma levels of NT‐proANP (N‐terminal‐pro‐ANP), angiotensin II, and aldosterone; reduced cardiac hypertrophy and fibrosis; and improved cardiac function. Conclusions We show that sCorin treatment enhanced natriuretic peptide processing and activity, suppressed the renin‐angiotensin‐aldosterone system, and improved cardiac morphology and function in mice with failing hearts.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Xiabing Gu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China
| | - Feng Li
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| | - Meng Liu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China
| | - Qingyu Wu
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,Cardiovascular & Metabolic Sciences Lerner Research InstituteCleveland Clinic Cleveland OH
| | - Ningzheng Dong
- Cyrus Tang Hematology Center Collaborative Innovation Center of Hematology State Key Laboratory of Radiation Medicine and Prevention The First Affiliated HospitalMedical CollegeSoochow University Suzhou China.,MOH Key Laboratory of Thrombosis and Hemostasis Jiangsu Institute of HematologySoochow University Suzhou China
| |
Collapse
|
15
|
Membrane-anchored serine proteases as regulators of epithelial function. Biochem Soc Trans 2020; 48:517-528. [PMID: 32196551 PMCID: PMC9869603 DOI: 10.1042/bst20190675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Cleavage of proteins in the extracellular milieu, including hormones, growth factors and their receptors, ion channels, and various cell adhesion and extracellular matrix molecules, plays a key role in the regulation of cell behavior. Among more than 500 proteolytic enzymes encoded by mammalian genomes, membrane-anchored serine proteases (MASPs), which are expressed on the surface of epithelial cells of all major organs, are excellently suited to mediate signal transduction across the epithelia and are increasingly being recognized as important regulators of epithelial development, function, and disease [ 1-3]. In this minireview, we summarize current knowledge of the in vivo roles of MASPs in acquisition and maintenance of some of the defining functions of epithelial tissues, such as barrier formation, ion transport, and sensory perception.
Collapse
|
16
|
Aryan L, Medzikovic L, Umar S, Eghbali M. Pregnancy-associated cardiac dysfunction and the regulatory role of microRNAs. Biol Sex Differ 2020; 11:14. [PMID: 32252821 PMCID: PMC7137306 DOI: 10.1186/s13293-020-00292-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Many crucial cardiovascular adaptations occur in the body during pregnancy to ensure successful gestation. Maladaptation of the cardiovascular system during pregnancy can lead to complications that promote cardiac dysfunction and may lead to heart failure (HF). About 12% of pregnancy-related deaths in the USA have been attributed to HF and the detrimental effects of cardiovascular complications on the heart can be long-lasting, pre-disposing the mother to HF later in life. Indeed, cardiovascular complications such as gestational diabetes mellitus, preeclampsia, gestational hypertension, and peripartum cardiomyopathy have been shown to induce cardiac metabolic dysfunction, oxidative stress, fibrosis, apoptosis, and diastolic and systolic dysfunction in the hearts of pregnant women, all of which are hallmarks of HF. The exact etiology and cardiac pathophysiology of pregnancy-related complications is not yet fully deciphered. Furthermore, diagnosis of cardiac dysfunction in pregnancy is often made only after clinical symptoms are already present, thus necessitating the need for novel diagnostic and prognostic biomarkers. Mounting data demonstrates an altered expression of maternal circulating miRNAs during pregnancy affected by cardiovascular complications. Throughout the past decade, miRNAs have become of growing interest as modulators and biomarkers of pathophysiology, diagnosis, and prognosis in cardiac dysfunction. While the association between pregnancy-related cardiovascular complications and cardiac dysfunction or HF is becoming increasingly evident, the roles of miRNA-mediated regulation herein remain poorly understood. Therefore, this review will summarize current reports on pregnancy-related cardiovascular complications that may lead to cardiac dysfunction and HF during and after pregnancy in previously healthy women, with a focus on the pathophysiological role of miRNAs.
Collapse
Affiliation(s)
- Laila Aryan
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Soban Umar
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
17
|
Miralles F, Collinot H, Boumerdassi Y, Ducat A, Duché A, Renault G, Marchiol C, Lagoutte I, Bertholle C, Andrieu M, Jacques S, Méhats C, Vaiman D. Long-term cardiovascular disorders in the STOX1 mouse model of preeclampsia. Sci Rep 2019; 9:11918. [PMID: 31417152 PMCID: PMC6695383 DOI: 10.1038/s41598-019-48427-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adverse long-term cardiovascular (CV) consequences of PE are well established in women. However, the mechanism responsible for that risk remains unknown. Here, we mated wild-type female mice of the FVB/N strain to STOX1A-overexpressing mice to mimic severe PE and investigated the long-term consequences on the maternal cardiovascular system. Ultrasonography parameters were analyzed in mice before pregnancy and at 3 and 6 months post-pregnancy. At 6 months post-pregnancy, cardiac stress test induced by dobutamine injection revealed an abnormal ultrasonography Doppler profile in mice with previous PE. Eight months post-pregnancy, the heart, endothelial cells (ECs) and plasma of females were analyzed and compared to controls. The heart of mice with PE showed left-ventricular hypertrophy associated with altered histology (fibrosis). Transcriptomic analysis revealed the deregulation of 1149 genes in purified ECs and of 165 genes in the hearts, many being involved in heart hypertrophy. In ECs, the upregulated genes were associated with inflammation and cellular stress. Systems biology analysis identified interleukin 6 (IL-6) as a hub gene connecting these pathways. Plasma profiling of 33 cytokines showed that, 8 of them (Cxcl13, Cxcl16, Cxcl11, IL-16, IL-10, IL-2, IL-4 and Ccl1) allowed to discriminate mice with previous PE from controls. Thus, PE triggers female long-term CV consequences on the STOX1 mouse model.
Collapse
Affiliation(s)
- Francisco Miralles
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Hélène Collinot
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Yasmine Boumerdassi
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Aurélien Ducat
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Angéline Duché
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Gilles Renault
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Carmen Marchiol
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Isabelle Lagoutte
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, PIV Platform, 22 rue Méchain, 75014, Paris, France
| | - Céline Bertholle
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Muriel Andrieu
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, CYBIO Platform, 27 rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Sébastien Jacques
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Genom'IC Platform, Bâtiment Gustave Roussy, 27 rue du faubourg Saint Jacques, 75014, Paris, France
| | - Céline Méhats
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM - UMR8104, CNRS - Université Paris Descartes, Team "From Gametes To Birth", 24 rue du Faubourg St Jacques, 75014, Paris, France.
| |
Collapse
|
18
|
Abstract
Calnexin is a chaperone protein that plays a critical role in glycoprotein folding in the endoplasmic reticulum (ER). The function of calnexin depends on its binding to monoglucosylated oligosaccharides on nascent glycoproteins, whereas the generation of monoglucosylated oligosaccharides depends on the activity of α-glucosidases I and II, which trim off terminal glucose residues sequentially from triglucosylated N-glycans. This biochemical mechanism can be exploited to study calnexin-assisted folding and subsequent ER exiting of glycoproteins in cells. In our investigation of the intracellular trafficking of N-glycosylated serine proteases, we used an inhibitor of α-glucosidases I and II to block the trimming of triglucosylated oligosaccharides, thereby inhibiting calnexin-assisted glycoprotein folding. The study helped us to discover a key role of calnexin in the folding, ER exiting, and extracellular expression of N-glycosylated serine proteases such as corin, enteropeptidase, and prothrombin. A similar approach of glucosidase inhibition can be used to study the calnexin/calreticulin-dependent folding and intracellular trafficking of other N-glycosylated proteins.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China.,Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| |
Collapse
|
19
|
Vaiman D. At the Core of Preeclampsia Genetics: Key Insights into the Neurohormonal Contribution to Hypertensive Diseases of Pregnancy and Their Complications. Can J Cardiol 2018; 35:19-22. [PMID: 30595178 DOI: 10.1016/j.cjca.2018.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- Daniel Vaiman
- Department of Development, Reproduction, Cancer, Institut Cochin, Paris, France.
| |
Collapse
|