1
|
Jalal Z, Langouet E, Dib N, Le-Quellenec S, Mostefa-Kara M, Martin A, Roubertie F, Thambo JB. Role and Applications of Experimental Animal Models of Fontan Circulation. J Clin Med 2024; 13:2601. [PMID: 38731130 PMCID: PMC11084605 DOI: 10.3390/jcm13092601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Over the last four decades, the Fontan operation has been the treatment of choice for children born with complex congenital heart diseases and a single-ventricle physiology. However, therapeutic options remain limited and despite ongoing improvements in initial surgical repair, patients still experience a multiplicity of cardiovascular complications. The causes for cardiovascular failure are multifactorial and include systemic ventricular dysfunction, pulmonary vascular resistance, atrioventricular valve regurgitation, arrhythmia, development of collaterals, protein-losing enteropathy, hepatic dysfunction, and plastic bronchitis, among others. The mechanisms leading to these late complications remain to be fully elucidated. Experimental animal models have been developed as preclinical steps that enable a better understanding of the underlying pathophysiology. They furthermore play a key role in the evaluation of the efficacy and safety of new medical devices prior to their use in human clinical studies. However, these experimental models have several limitations. In this review, we aim to provide an overview of the evolution and progress of the various types of experimental animal models used in the Fontan procedure published to date in the literature. A special focus is placed on experimental studies performed on animal models of the Fontan procedure with or without mechanical circulatory support as well as a description of their impact in the evolution of the Fontan design. We also highlight the contribution of animal models to our understanding of the pathophysiology and assess forthcoming developments that may improve the contribution of animal models for the testing of new therapeutic solutions.
Collapse
Affiliation(s)
- Zakaria Jalal
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, 33600 Pessac, France; (N.D.); (F.R.); (J.-B.T.)
- LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, 33600 Pessac, France
| | - Elise Langouet
- Department of Pediatric and Adult Congenital Cardiology Anesthesiology, University Hospital of Bordeaux, 33600 Pessac, France;
| | - Nabil Dib
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, 33600 Pessac, France; (N.D.); (F.R.); (J.-B.T.)
- LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, 33600 Pessac, France
| | | | - Mansour Mostefa-Kara
- Adult Congenital Heart Disease Medico-Surgical Unit, European Georges Pompidou Hospital, 75015 Paris, France;
| | - Amandine Martin
- Department of Cardiac Surgery, University Hospital, 97400 Saint-Denis, France;
| | - François Roubertie
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, 33600 Pessac, France; (N.D.); (F.R.); (J.-B.T.)
- LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, 33600 Pessac, France
| | - Jean-Benoît Thambo
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, 33600 Pessac, France; (N.D.); (F.R.); (J.-B.T.)
- LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, 33600 Pessac, France
| |
Collapse
|
2
|
Davidson JA, Thomson LM, Frank BS. Invited Commentary: Omics Approaches to Mechanistic, Biomarker, and Therapeutic Development for Right Ventricular Failure in Congenital Right-Sided Obstructive Lesions: A Brave New World? World J Pediatr Congenit Heart Surg 2024; 15:174-176. [PMID: 38478369 DOI: 10.1177/21501351231217172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Affiliation(s)
- Jesse A Davidson
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Heart Institute, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Benjamin S Frank
- Department of Pediatrics, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Harvey DC, Verma R, Sedaghat B, Hjelm BE, Morton SU, Seidman JG, Kumar SR. Mutations in genes related to myocyte contraction and ventricular septum development in non-syndromic tetralogy of Fallot. Front Cardiovasc Med 2023; 10:1249605. [PMID: 37840956 PMCID: PMC10569225 DOI: 10.3389/fcvm.2023.1249605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Eighty percent of patients with a diagnosis of tetralogy of Fallot (TOF) do not have a known genetic etiology or syndrome. We sought to identify key molecular pathways and biological processes that are enriched in non-syndromic TOF, the most common form of cyanotic congenital heart disease, rather than single driver genes to elucidate the pathogenesis of this disease. Methods We undertook exome sequencing of 362 probands with non-syndromic TOF and their parents within the Pediatric Cardiac Genomics Consortium (PCGC). We identified rare (minor allele frequency <1 × 10-4), de novo variants to ascertain pathways and processes affected in this population to better understand TOF pathogenesis. Pathways and biological processes enriched in the PCGC TOF cohort were compared to 317 controls without heart defects (and their parents) from the Simons Foundation Autism Research Initiative (SFARI). Results A total of 120 variants in 117 genes were identified as most likely to be deleterious, with CHD7, CLUH, UNC13C, and WASHC5 identified in two probands each. Gene ontology analyses of these variants using multiple bioinformatic tools demonstrated significant enrichment in processes including cell cycle progression, chromatin remodeling, myocyte contraction and calcium transport, and development of the ventricular septum and ventricle. There was also a significant enrichment of target genes of SOX9, which is critical in second heart field development and whose loss results in membranous ventricular septal defects related to disruption of the proximal outlet septum. None of these processes was significantly enriched in the SFARI control cohort. Conclusion Innate molecular defects in cardiac progenitor cells and genes related to their viability and contractile function appear central to non-syndromic TOF pathogenesis. Future research utilizing our results is likely to have significant implications in stratification of TOF patients and delivery of personalized clinical care.
Collapse
Affiliation(s)
- Drayton C. Harvey
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Riya Verma
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brandon Sedaghat
- Department of Medicine, Rosalind Franklin University School of Medicine and Science, Chicago, IL, United States
| | - Brooke E. Hjelm
- Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Sarah U. Morton
- Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Jon G. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - S. Ram Kumar
- Departments of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Gaur N, Qi XY, Benoist D, Bernus O, Coronel R, Nattel S, Vigmond EJ. A computational model of pig ventricular cardiomyocyte electrophysiology and calcium handling: Translation from pig to human electrophysiology. PLoS Comput Biol 2021; 17:e1009137. [PMID: 34191797 PMCID: PMC8277015 DOI: 10.1371/journal.pcbi.1009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/13/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O’Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic. The pig is an animal commonly used experimentally to study diseases of the heart, as well as investigate therapies to treat them, such as drugs. However, although similar, pigs differ from humans in certain aspects which may mean experimental results do not always directly translate between species. We propose a mathematical model of porcine electrophysiology which can serve as a tool to understand differences between the species and translate responses. Using new measurements along with values from literature, we built a computer model of porcine cardiac myocyte which replicated voltage and calcium behaviour over a range of pacing frequencies. The pig cell had a two-stage calcium release, unlike humans with a single stage. We predict that pigs and humans differ in the type of potassium current block that makes them most susceptible to cardiac arrhythmia. The model we developed can elucidate important differences between human and pig arrhythmia response.
Collapse
Affiliation(s)
- Namit Gaur
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Xiao-Yan Qi
- Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - David Benoist
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, Inserm, CRCTB, U1045, Pessac, France
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, Inserm, CRCTB, U1045, Pessac, France
| | - Ruben Coronel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Stanley Nattel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Montreal Heart Institute and Université de Montréal, Montreal, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Edward J. Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac- Bordeaux, France
- Univ. Bordeaux, IMB, UMR 5251, Talence, France
- * E-mail:
| |
Collapse
|
5
|
Wang Y, Jiang T, Xu J, Gu Y, Zhou Y, Lin Y, Wu Y, Li W, Wang C, Shen B, Mo X, Wang X, Zhou B, Ding C, Hu Z. Mutations in RNA Methyltransferase Gene NSUN5 Confer High Risk of Outflow Tract Malformation. Front Cell Dev Biol 2021; 9:623394. [PMID: 33968922 PMCID: PMC8097101 DOI: 10.3389/fcell.2021.623394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
NSUN5, encoding a cytosine-5 RNA methyltransferase and located in the 7q11.23 locus, is a candidate gene for tetralogy of Fallot (TOF). Deletion of the 7q11.23 locus in humans is linked to cardiac outflow tract (OFT) disorders including TOF. We identified four potential pathogenic mutations in the coding region of NSUN5 and which were enriched in TOF patients by an association study of 132 TOF patients and 2,000 in-house controls (P = 1.44 × 10-5). We then generated a Nsun5 null (Nsun5 -/-) mouse model to validate the human findings by defining the functions of Nsun5 in OFT morphogenesis. The OFT did not develop properly in the Nsun5 deletion embryonic heart. We found a misalignment of the aorta and septum defects caused by the delayed fusion of the membraneous ventricular spetum as an OFT development delay. This caused OFT development delay in 27 of 64 (42.2%) Nsun5 -/- mice. Moreover, we also found OFT development delay in 8 of 51 (15.7%) Nsun5 +/- mice. Further functional experiments showed that the loss of Nsun5 function impaired the 5-methylcytosine (m5C) modification and translation efficiency of essential cardiac genes. Nsun5 is required for normal OFT morphogenesis and it regulates the m5C modification of essential cardiac genes. Our findings suggest the involvement of NSUN5 in the pathogenesis of TOF.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Jiani Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yan Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Wei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Chenyue Ding
- Center of Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Center for Global Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|