1
|
Ryan MJ, Clemmer JS, Mathew RO, Faulkner JL, Taylor EB, Abais-Battad JM, Hollis F, Sullivan JC. Revisiting sex as a biological variable in hypertension research. J Clin Invest 2024; 134:e180078. [PMID: 39225093 PMCID: PMC11364402 DOI: 10.1172/jci180078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Half of adults in the United States have hypertension as defined by clinical practice guidelines. Interestingly, women are generally more likely to be aware of their hypertension and have their blood pressure controlled with treatment compared with men, yet hypertension-related mortality is greater in women. This may reflect the fact that the female sex remains underrepresented in clinical and basic science studies investigating the effectiveness of therapies and the mechanisms controlling blood pressure. This Review provides an overview of the impact of the way hypertension research has explored sex as a biological variable (SABV). Emphasis is placed on epidemiological studies, hypertension clinical trials, the genetics of hypertension, sex differences in immunology and gut microbiota in hypertension, and the effect of sex on the central control of blood pressure. The goal is to offer historical perspective on SABV in hypertension, highlight recent studies that include SABV, and identify key gaps in SABV inclusion and questions that remain in the field. Through continued awareness campaigns and engagement/education at the level of funding agencies, individual investigators, and in the editorial peer review system, investigation of SABV in the field of hypertension research will ultimately lead to improved clinical outcomes.
Collapse
Affiliation(s)
- Michael J. Ryan
- Columbia VA Health Care System, Columbia, South Carolina, USA
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John S. Clemmer
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy O. Mathew
- Loma Linda VA Health Care System, Loma Linda, California, USA
| | | | - Erin B. Taylor
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Fiona Hollis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | |
Collapse
|
2
|
Berillo O, Schiffrin EL. Advances in Understanding of the Role of Immune Cell Phenotypes in Hypertension and Associated Vascular Disease. Can J Cardiol 2024:S0828-282X(24)00919-X. [PMID: 39154911 DOI: 10.1016/j.cjca.2024.08.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αβ T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
Collapse
Affiliation(s)
- Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Berillo O, Comeau K, Caillon A, Leclerc S, Shokoples BG, Mahmoud AUM, Andelfinger G, Paradis P, Schiffrin EL. CD28-expressing δ T cells are increased in perivascular adipose tissue of hypertensive mice and in subcutaneous adipose tissue of obese humans. J Hypertens 2024; 42:1256-1268. [PMID: 38704218 DOI: 10.1097/hjh.0000000000003725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
OBJECTIVES γδ T-lymphocytes play a role in angiotensin II (AngII)-induced hypertension, vascular injury and T-cell infiltration in perivascular adipose tissue (PVAT) in mice. Mesenteric arteries of hypertensive mice and subcutaneous arteries from obese humans present similar remodeling. We hypothesized that γδ T-cell subtypes in mesenteric vessels with PVAT (MV/PVAT) from hypertensive mice and subcutaneous adipose tissue (SAT) from obese humans, who are prone to develop hypertension, would be similar. METHODS Mice were infused with AngII for 14 days. MV/PVAT T-cells were used for single-cell RNA-sequencing (scRNA-seq). scRNA-seq data (GSE155960) of SAT CD45 + cells from three lean and three obese women were downloaded from the Gene Expression Omnibus database. RESULTS δ T-cell subclustering identified six δ T-cell subtypes. AngII increased T-cell receptor δ variable 4 ( Trdv4 ) + γδ T-effector memory cells and Cd28high δ T EM -cells, changes confirmed by flow cytometry. δ T-cell subclustering identified nine δ T-cell subtypes in human SAT. CD28 expressing δ T-cell subclustering demonstrated similar δ T-cell subpopulations in murine MV/PVAT and human SAT. Cd28+ γδ NKT EM and Cd28high δ T EM -cells increased in MV/PVAT from hypertensive mice and CD28high δ T EM -cells in SAT from obese women compared to the lean women. CONCLUSION Similar CD28 + δ T-cells were identified in murine MV/PVAT and human SAT. CD28 high δ T EM -cells increased in MV/PVAT in hypertensive mice and in SAT from humans with obesity, a prehypertensive condition. CD28 + δ T-lymphocytes could have a pathogenic role in human hypertension associated with obesity, and could be a potential target for therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gregor Andelfinger
- Research Center, Sainte-Justine University Health Center
- Department of Pediatrics, University of Montreal, Montréal, Québec, Canada
| | | | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University
| |
Collapse
|
4
|
Karbasion N, Xu Y, Snider JC, Bersi MR. Primary Mouse Aortic Smooth Muscle Cells Exhibit Region- and Sex-Dependent Biological Responses In Vitro. J Biomech Eng 2024; 146:060904. [PMID: 38421345 PMCID: PMC11005860 DOI: 10.1115/1.4064965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-β1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-β1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.
Collapse
Affiliation(s)
- Niyousha Karbasion
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| | - Yujun Xu
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - J. Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - Matthew R. Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| |
Collapse
|
5
|
Suanrueang P. A comparison of the disease occurrence of cerebrovascular diseases, diabetes mellitus, hypertensive diseases, and ischaemic heart diseases among hospitalized older adults in Thailand. Sci Rep 2024; 14:123. [PMID: 38168490 PMCID: PMC10761676 DOI: 10.1038/s41598-023-49274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
This observational research analyzed public hospital data from the Thailand Ministry of Public Health website to investigate gender differences in four categories of non-communicable diseases (NCDs) affecting hospitalized senior Thai populations for 12 years. This study aimed to determine the cumulative effects and analyze the odds ratio (OR) according to ICD-10 cause categories for the data from 2010 to 2021, accounting for 1,327,093 cases in 2010 and 2,275,936 cases in 2021. The findings revealed statistically significant gender differences in four categories of NCDs. Men were found to be more likely than women to have two types of NCDs, as measured by the OR (95%CI): cerebrovascular diseases (OR 1.34-1.47, 95%CI 1.32-1.48), and ischaemic heart disease (OR 1.24-1.63, 95%CI 1.23-1.64). Conversely, diabetes mellitus (OR 0.64-0.84, 95%CI 0.63-0.85) and hypertensive disorders (OR 0.82-0.95, 95%CI 0.81-0.97) were discovered to have a lower likelihood of ratios related in men compared to women. However, the trend of all four NCDs in men has significantly increased every year: cerebrovascular diseases = 0.0093 year(s) + 1.3391, (R2 0.82, p-value 0.001); diabetes mellitus = 0.0171 year(s) + 0.6143, (R2 0.97, p-value 0.001); hypertension = 0.0125 year(s) + 0.8091, (R2 0.96, p-value 0.001); and ischaemic heart disease = 0.0345 year(s) + 1.1884, (R2 0.99, p-value 0.001).Gender, a crucial biological factor, contributes to variations in the prevalence of illness. As such, it is essential to prioritize the disease risk occurrence and preventive care for men and women separately, with a focus on implementing more detailed screening and detection strategies, as well as tailored interventions.
Collapse
Affiliation(s)
- Passakorn Suanrueang
- Department of Health Education and Behavioral Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Ping Y, Quanlin S, Yue H, Jing Z, Wenjun L. Screening and validation of double allele-specific binding F-primers for the measurement of antihypertensive pharmacogenomics. Front Med (Lausanne) 2023; 10:1269221. [PMID: 38173939 PMCID: PMC10761462 DOI: 10.3389/fmed.2023.1269221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Previous studies have proposed that genetic polymorphisms of CYP2D6*10, ADRB1, NPPA, CYP3A5*3, ACE, CYP2C9*3, and AGTR1 are involved in antihypertensive pharmacogenomics. The purpose of this study is to develop an amplification analysis using double allele-specific (AS) binding primers for accurate measurement of antihypertensive pharmacogenomics. Methods To establish a quadruplex quantitative PCR (qPCR) analysis for genotyping of CYP2D6*10, ADRB1 (1165 G>C), NPPA (2238 T>C) and CYP3A5*3, and a triplex qPCR analysis for genotyping of ACE (I/D), CYP2C9*3 and AGTR1 (1166 A>C), mismatch AS F-primers were screened by detection of plasmid/gDNA, and were validated by agreement analysis/reproducibility evaluation, in which the ΔCq (differences in threshold cycles between the wild-type F-primer-based amplification assay and the mutant-type F-primer-based amplification assay) was employed to determine genotypes. Results Seven pairs of primers were successfully selected through three rounds of F-primers screening. Except for ADRB1, the robustness assessment showed the amplification efficiency ranging from 0.9 to 1.1. In agreement analysis, two specimens in the training set (n = 203) were defined by the triplex analysis rather than NGS as heterozygotes for ACE, which was evidenced by gel electrophoresis. Reproducibility evaluation demonstrated that the coefficient of variation (CV) was <5%. Conclusion Multiplex amplification analysis using screened AS binding primers is a simple, reliable, and accurate tool to guide drug delivery in antihypertensive personalized treatment.
Collapse
Affiliation(s)
| | | | | | - Zhang Jing
- Institute of Biomedical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Lan Wenjun
- Institute of Biomedical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
7
|
Colvert CA, Hawkins KP, Semenikhina M, Stefanenko M, Pavlykivska O, Oates JC, DeLeon-Pennell KY, Palygin O, Van Beusecum JP. Endothelial mechanical stretch regulates the immunological synapse interface of renal endothelial cells in a sex-dependent manner. Am J Physiol Renal Physiol 2023; 325:F22-F37. [PMID: 37167273 PMCID: PMC10292970 DOI: 10.1152/ajprenal.00258.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Increased mechanical endothelial cell stretch contributes to the development of numerous cardiovascular and renal pathologies. Recent studies have shone a light on the importance of sex-dependent inflammation in the pathogenesis of renal disease states. The endothelium plays an intimate and critical role in the orchestration of immune cell activation through upregulation of adhesion molecules and secretion of cytokines and chemokines. While endothelial cells are not recognized as professional antigen-presenting cells, in response to cytokine stimulation, endothelial cells can express both major histocompatibility complex (MHC) I and MHC II. MHCs are essential to forming a part of the immunological synapse interface during antigen presentation to adaptive immune cells. Whether MHC I and II are increased under increased mechanical stretch is unknown. Due to hypertension being multifactorial, we hypothesized that increased mechanical endothelial stretch promotes the regulation of MHCs and key costimulatory proteins on mouse renal endothelial cells (MRECs) in a stretch-dependent manner. MRECs derived from both sexes underwent 5%, 10%, or 15% uniaxial cyclical stretch, and immunological synapse interface proteins were determined by immunofluorescence microscopy, immunoblot analysis, and RNA sequencing. We found that increased endothelial mechanical stretch conditions promoted downregulation of MHC I in male MRECs but upregulation in female MRECs. Moreover, MHC II was upregulated by mechanical stretch in both male and female MRECs, whereas CD86 and CD70 were regulated in a sex-dependent manner. By bulk RNA sequencing, we found that increased mechanical endothelial cell stretch promoted differential gene expression of key antigen processing and presentation genes in female MRECs, demonstrating that females have upregulation of key antigen presentation pathways. Taken together, our data demonstrate that mechanical endothelial stretch regulates endothelial activation and immunological synapse interface formation in renal endothelial cells in a sex-dependent manner.NEW & NOTEWORTHY Endothelial cells contribute to the development of renal inflammation and have the unique ability to express antigen presentation proteins. Whether increased endothelial mechanical stretch regulates immunological synapse interface proteins remains unknown. We found that antigen presentation proteins and costimulatory proteins on renal endothelial cells are modulated by mechanical stretch in a sex-dependent manner. Our data provide novel insights into the sex-dependent ability of renal endothelial cells to present antigens in response to endothelial mechanical stimuli.
Collapse
Affiliation(s)
- C Alex Colvert
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kennedy P Hawkins
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Olesia Pavlykivska
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jim C Oates
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Kristine Y DeLeon-Pennell
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
8
|
Kresovich JK, Xu Z, O'Brien KM, Parks CG, Weinberg CR, Sandler DP, Taylor JA. Peripheral Immune Cell Composition is Altered in Women Before and After a Hypertension Diagnosis. Hypertension 2023; 80:43-53. [PMID: 36259385 PMCID: PMC9742333 DOI: 10.1161/hypertensionaha.122.20001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND The development and consequences of hypertension involve multiple biological systems that may include changes in immune profiles. Whether hypertension is related to peripheral immune cell composition has not been examined in large human cohorts. METHODS We estimated circulating proportions of 12 leukocyte subsets from the lymphoid and myeloid lineages by deconvolving cell-type-specific DNA methylation data from 4124 women. Hypertension status at baseline was defined by current use of antihypertensive medication and blood pressure measurements while new incident cases were identified during follow-up via annual health questionnaires. RESULTS Among hypertension-free women at baseline, higher B cell and lower naïve CD4+ helper T cell proportions were associated with subsequent increased hazard of hypertension incidence (B cells; adjusted HR: 1.17 [95% CI: 1.02-1.35]; P=0.03; naïve CD4+ T cell, adjusted HR: 0.88 [95% CI: 0.78-0.99]; P=0.04). Blood pressure measurements at baseline were similarly positively associated with B cells and inversely associated with naïve CD4+ helper T cells. Compared to normotensive women, women with hypertension had higher circulating proportions of neutrophils (adjusted odds ratio: 1.18 [95% CI: 1.07-1.31]; P=0.001) and lower proportions of CD4+ helper T cells (adjusted odds ratio: 0.90 [95% CI: 0.81-1.00] P=0.05), natural killers (adjusted odds ratio: 0.82 [95% CI: 0.74-0.91]; P<0.001), and B cells (adjusted odds ratio: 0.84 [95% CI: 0.74-0.96]; P=0.01). CONCLUSIONS These observations suggest that shifts in lymphocyte subsets occur before hypertension development, followed by later changes to neutrophils and additional lymphocytes.
Collapse
Affiliation(s)
- Jacob K Kresovich
- Departments of Cancer Epidemiology and Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (J.K.K.)
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.K.K., Z.X., K.M.O., C.G.P., D.P.S., J.A.T.)
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.K.K., Z.X., K.M.O., C.G.P., D.P.S., J.A.T.)
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.K.K., Z.X., K.M.O., C.G.P., D.P.S., J.A.T.)
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.K.K., Z.X., K.M.O., C.G.P., D.P.S., J.A.T.)
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (C.R.W.)
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.K.K., Z.X., K.M.O., C.G.P., D.P.S., J.A.T.)
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.K.K., Z.X., K.M.O., C.G.P., D.P.S., J.A.T.)
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC (J.A.T.)
| |
Collapse
|
9
|
Yerly A, van der Vorst EPC, Baumgartner I, Bernhard SM, Schindewolf M, Döring Y. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. Eur J Clin Invest 2023; 53:e13885. [PMID: 36219492 DOI: 10.1111/eci.13885] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022]
Abstract
Atherosclerosis, a lipid-driven inflammatory disease, is the main underlying cause of cardiovascular diseases (CVDs) both in men and women. Sex-related dimorphisms regarding CVDs and atherosclerosis were observed since more than a decade ago. Inflammatory mediators such as cytokines, but also endothelial dysfunction, vascular smooth muscle cell migration and proliferation lead to vascular remodelling but are differentially affected by sex. Each year a greater number of men die of CVDs compared with women and are also affected by CVDs at an earlier age (40-70 years old) while women develop atherosclerosis-related complications mainly after menopause (60+ years). The exact biological reasons behind this discrepancy are still not well-understood. From the numerous animal studies on atherosclerosis, only a few include both sexes and even less investigate and highlight the sex-specific differences that may arise. Endogenous sex hormones such as testosterone and oestrogen modulate the atherosclerotic plaque composition and the frequency of such plaques. In men, testosterone seems to act like a double-edged sword as its decrease with ageing correlates with an increased risk of atherosclerotic CVDs, while testosterone is also reported to promote inflammatory immune cell recruitment into the atherosclerotic plaque. In premenopausal women, oestrogen exerts anti-atherosclerotic effects, which decline together with its level after menopause resulting in increased CVD risk in ageing women. However, the interplay of sex hormones, sex-specific immune responses and other sex-related factors is still incompletely understood. This review highlights reported sex differences in atherosclerotic vascular remodelling and the role of endogenous sex hormones in this process.
Collapse
Affiliation(s)
- Anaïs Yerly
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Institute for Molecular Cardiovascular Research (IMCAR) and Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
10
|
Garcia JN, Wanjalla CN, Mashayekhi M, Hasty AH. Immune Cell Activation in Obesity and Cardiovascular Disease. Curr Hypertens Rep 2022; 24:627-637. [PMID: 36136214 PMCID: PMC9510332 DOI: 10.1007/s11906-022-01222-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases. RECENT FINDINGS Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations. How this inflammatory tissue state contributes to more systemic conditions such as cardiovascular and infectious disease is less well understood. However, current research suggests that changes in the adipose tissue immune environment impact an individual's ability to combat illnesses such as influenza and SARS-CoV2. Obesity is becoming increasingly prevalent globally and is often associated with type 2 diabetes and heart disease. An increased inflammatory state is a major contributor to this association. Widespread chronic inflammation in these disease states is accompanied by an increase in both innate and adaptive immune cell activation. Acutely, these immune cell changes are beneficial as they sustain homeostasis as inflammation increases. However, persistent inflammation subsequently damages tissues and organs throughout the body. Future studies aimed at understanding the unique immune cell populations in each tissue compartment impacted by obesity may hold potential for therapeutic applications.
Collapse
Affiliation(s)
- Jamie N Garcia
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN, 37232, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, 702 Light Hall, Nashville, TN, 37232, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
11
|
Chaudhari S, D'Souza BM, Morales JY, Young-Stubbs CM, Shimoura CG, Ma R, Mathis KW. Renal TLR-7/TNF-α pathway as a potential female-specific mechanism in the pathogenesis of autoimmune-induced hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H1331-H1342. [PMID: 36367687 PMCID: PMC9744658 DOI: 10.1152/ajpheart.00286.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
Hypertension is prevalent in patients with systemic lupus erythematosus (SLE). The goal of the current study is to track the pathogenesis of hypertension and renal injury in SLE, identify contributory mechanisms, and highlight differences in disease development among sexes. Mean arterial pressure was measured in conscious male and female SLE (NZBWF1) and control (NZW) mice at 34-35 wk of age using indwelling arterial catheters. Measures of renal injury, renal inflammation, and renal hemodynamics were used to monitor the potential contributors to latent sex differences. Both male and female SLE mice were hypertensive at 35 wk of age, and the hypertension was linked to renal injury in females, but not in males. A known contributor of renal pathology in SLE, Toll-like receptor (TLR)-7, and its downstream effector, the proinflammatory cytokine tumor necrosis factor (TNF)-α, were lower in male SLE mice than in females. Male SLE mice also had higher glomerular filtration rate (GFR) and lower renal vascular resistance (RVR) than females. Our data suggest that although hypertension in female SLE mice is associated with renal mechanisms, hypertension in male SLE mice may develop independent of renal changes. Future studies will continue to dissect sex-specific factors that should be considered when treating patients with hypertension with underlying chronic inflammation and/or autoimmunity.NEW & NOTEWORTHY There is a high prevalence of hypertension in male and female SLE; however, male SLE mice are hypertensive without renal involvement. The development of hypertension in female SLE mice is renocentric and strongly associated with injurious renal mechanisms like the TLR-7→TNF-α pathway. This clear difference in the pathogenesis among the sexes could have a significant impact on how we treat patients with hypertension with underlying chronic autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Bradley M D'Souza
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|