1
|
Bilal M, Zdarta J, Jesionowski T, Iqbal HMN. Manganese peroxidases as robust biocatalytic tool - An overview of sources, immobilization, and biotechnological applications. Int J Biol Macromol 2023; 234:123531. [PMID: 36754266 DOI: 10.1016/j.ijbiomac.2023.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
With robust catalytic features, manganese peroxidases (MnPs) from various sources, including fungi and bacteria, have gained much consideration in many biotechnological applications with particular emphasis on environmental remediation. MnP is a heme-containing enzyme that belongs to the oxidoreductases that can catalyze the degradation of various organic pollutants, such as chlorophenols, nitroaromatic compounds, industrial dyes, and polycyclic aromatic hydrocarbons. To spotlight the MnP as biocatalytic tool, an effort has been put forward to cover the four major compartments. For instance, following a brief introduction, first, various microbial sources of MnP are discussed with examples. Second, structural attributes and biocatalytic features of MnP are given with examples. Third, different MnP immobilization strategies, including adsorption, covalent linking, entrapment, and cross-linking, are discussed with a significant motive to strengthen the enzyme's stability against diverse deactivation agents by restricting the conformational mobility of molecules. Compared to free counterparts, immobilized MnP fractions perform well in hostile environments. Finally, various biotechnological applications, such as fuel ethanol production, de-lignification, textile industry, pulp and paper industry, degradation of phenolic and non-phenolic compounds, and pharmaceutical and pesticide degradation, are briefly discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
2
|
Islam T, Repon MR, Islam T, Sarwar Z, Rahman MM. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9207-9242. [PMID: 36459315 DOI: 10.1007/s11356-022-24398-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapid growth of population and industrialization have intensified the problem of water pollution globally. To meet the challenge of industrialization, the use of synthetic dyes in the textile industry, dyeing and printing industry, tannery and paint industry, paper and pulp industry, cosmetic and food industry, dye manufacturing industry, and pharmaceutical industry has increased exponentially. Among these industries, the textile industry is prominent for the water pollution due to the hefty consumption of water and discharge of coloring materials in the effluent. The discharge of this effluent into the aquatic reservoir affects its biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and pH. The release of the effluents without any remedial treatment will generate a gigantic peril to the aquatic ecosystem and human health. The ecological-friendly treatment of the dye-containing wastewater to minimize the detrimental effect on human health and the environment is the need of the hour. The purpose of this review is to evaluate the catastrophic effects of textile dyes on human health and the environment. This review provides a comprehensive insight into the dyes and chemicals used in the textile industry, focusing on the typical treatment processes for their removal from industrial wastewaters, including chemical, biological, physical, and hybrid techniques.
Collapse
Affiliation(s)
- Tarekul Islam
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Md Reazuddin Repon
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh.
- Department of Textile Engineering, Khwaja Yunus Ali University, Sirajgang, 6751, Bangladesh.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zahid Sarwar
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) &, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Saikia S, Yadav M, Hoque RA, Yadav HS. Bioremediation mediated by manganese peroxidase – An overview. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shilpa Saikia
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| | - Meera Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| | - Rohida Amin Hoque
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| | - Hardeo Singh Yadav
- Department of Chemistry, North Eastern Regional Institute of Science and Technology, Itanagar, India
| |
Collapse
|
4
|
Cebecioglu RE, Akagunduz D, Bermek H, Atalay VE, Catal T. Decolorization mechanisms of reactive yellow 145 and ponceau S in microbial fuel cells during simultaneous electricity production. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Environmental pollution is increasing in parallel with the increase in the world population. Azo dyes are one of the most important causes of environmental pollution. Microbial electrochemical cells are biotechnological systems that generate energy from renewable sources such as electricity. This study investigated simultaneous electricity generation with the decolorization of two different azo dyes in microbial fuel cells. And also, changes in pH values, chemical oxygen demand analysis, hourly color removal rate, dye spectral scanning were investigated. Reactive Yellow 145 dye with a concentration of 10 mg/L, 20 mg/L, and 40 mg/L, and Ponceau S dye with 20 mg/L and 40 mg/L concentration were tested in microbial fuel cells, respectively. Results indicate that the maximum voltage obtained was 0.11 V at the same time as the 100% decolorization rate in Reactive Yellow 145 and was achieved at a concentration of 10 mg/L also, the maximum voltage obtained was 0.24 V at the same time as the 100% decolorization rate in Ponceau S. It was achieved at a concentration of 20 mg/L. In conclusion, microbial fuel cells appear to be promising tools in treating textile azo dye wastewaters, and computational methods can be applied to estimate the degradation mechanisms of complex organic molecules found in wastewaters.
Collapse
Affiliation(s)
- Rumeysa Emine Cebecioglu
- Istanbul Protein Research-Application and Innovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey
| | - Dilan Akagunduz
- Istanbul Protein Research-Application and Innovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey
| | - Hakan Bermek
- Department of Molecular Biology and Genetics, Istanbul Technical University 34467-Maslak, Istanbul, Turkey
| | - Vildan Enisoglu Atalay
- Istanbul Protein Research-Application and Innovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Uskudar University 34662 Uskudar, Istanbul, Turkey
| | - Tunc Catal
- Istanbul Protein Research-Application and Innovation Center (PROMER), Uskudar University 34662 Uskudar, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Uskudar University 34662 Uskudar, Istanbul, Turkey
| |
Collapse
|
5
|
Ahsan Z, Kalsoom U, Bhatti HN, Aftab K, Khalid N, Bilal M. Enzyme-assisted bioremediation approach for synthetic dyes and polycyclic aromatic hydrocarbons degradation. J Basic Microbiol 2021; 61:960-981. [PMID: 34608659 DOI: 10.1002/jobm.202100218] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Environmental protection from emerging pollutants has become a significant challenge for mankind as an increasing number of contaminants, including synthetic dyes and polycyclic aromatic hydrocarbons (PAHs), represent a serious risk to ecological and environmental balance. Most synthetic dyes have complex aromatic structures and are resistant to degrade by classical approaches, such as physical and chemical processes, including adsorption, chemical coagulation, flocculation, ion exchange, membrane separation, froth flotation, and reverse osmosis. Enzymes-assisted catalytic transformation of pollutants has become a potential alternative to classical methods because of their ability to react with complex compounds, a quick degradation rate, and producing less harmful by-products. Plant peroxidases, and microbial laccase and lignin-degrading peroxidases (manganese and lignin peroxidase) have gained significant attention for treating aromatic waste due to their capability of oxidizing and detoxifying a wide range of recalcitrant xenobiotics, including PAHs and synthetic dyes. Peroxidases being efficient biocatalysts detoxify an array of toxic compounds by simple free-radical mechanism resulting in the formation of oxidized and depolymerized products of significantly reduced toxicity. Moreover, it is an ecofriendly and economically favorable approach towards the biodegradation of recalcitrant and toxic industrial waste. Among microbial and plant peroxidases, bacterial enzymes have broad substrate specificity and can transform a wide range of recalcitrant substrates. Ligninolytic enzymes oxidize the aromatic ring into quinones and acids by producing free hydroxyl radicals instead of dihydrodiols and mineralize aromatic hydrocarbon in combination with cytochrome P450, monooxygenases, and epoxide hydrolases. In the review, an attempt has been made to provide detailed knowledge about the availability of inexpensive peroxidases sources, their mechanism of action, and degradation potential. The present review summarizes the exploitation of peroxidases from plants, bacteria, and fungus (manganese peroxidase, lignin peroxidase, and laccases) for detoxification and degradation of textile dyes as well as PAHs. Conclusively, peroxidases have great potential to react with almost all classes of synthetic dyes and most PAHs due to broad substrate specificity and transformed them into less harmful metabolites.
Collapse
Affiliation(s)
- Zainab Ahsan
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Haq N Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nasira Khalid
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
6
|
Sosa-Martínez J, Balagurusamy N, Benavente-Valdés JR, Montañez J, Morales-Oyervides L. Process performance improvement for the simultaneous production of ligninolytic enzymes in solid culture using agricultural wastes through the Taguchi method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112966. [PMID: 34098354 DOI: 10.1016/j.jenvman.2021.112966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Despite a large amount of published research on the production of ligninolytic enzymes, the latter are not yet being applied to combat environmental pollution. No cost-effective process has been developed to date. This study describes an improvement of the solid-state fermentation procedure for the production of ligninolytic enzymes via Phanerochaete chrysosporium ATX by applying the Taguchi method and using an agro-industrial waste as substrate. The production of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) were simultaneously increased within a packed-bed column. The factors and levels studied were humidity (A: 60, 70, 80%), inoculum concentration (B: 7.5, 10.0, 12.5 × 105 spores/mL), packed density (C: 0.14, 0.16, 0.18 g/mL), and time (D: 6, 8, 10 days). The results showed that humidity was the factor with a higher effect upon LiP and Lac's production, while time was for MnP. Humidity exerted the greatest influence on the global desirability of the process. Improved conditions (A, 60%; B, 1.0 × 106 spores/mL; C, 0.17 g/mL; D, 8 days) were further validated: the results revealed an overall desirability increase of 237% over the unoptimized process. Process performance was likewise maintained at a higher scale (1:10). The results contribute to establishing a cost-effective bioprocess to produce ligninolytic enzymes by reducing the cost associated with raw materials and purification steps.
Collapse
Affiliation(s)
- Jazel Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Libramiento Torreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Juan Roberto Benavente-Valdés
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
7
|
Textile Dye Biodecolorization by Manganese Peroxidase: A Review. Molecules 2021; 26:molecules26154403. [PMID: 34361556 PMCID: PMC8348190 DOI: 10.3390/molecules26154403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022] Open
Abstract
Wastewater emissions from textile factories cause serious environmental problems. Manganese peroxidase (MnP) is an oxidoreductase with ligninolytic activity and is a promising biocatalyst for the biodegradation of hazardous environmental contaminants, and especially for dye wastewater decolorization. This article first summarizes the origin, crystal structure, and catalytic cycle of MnP, and then reviews the recent literature on its application to dye wastewater decolorization. In addition, the application of new technologies such as enzyme immobilization and genetic engineering that could improve the stability, durability, adaptability, and operating costs of the enzyme are highlighted. Finally, we discuss and propose future strategies to improve the performance of MnP-assisted dye decolorization in industrial applications.
Collapse
|
8
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146255] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural dyes have been used from ancient times for multiple purposes, most importantly in the field of textile dying. The increasing demand and excessive costs of natural dye extraction engendered the discovery of synthetic dyes from petrochemical compounds. Nowadays, they are dominating the textile market, with nearly 8 × 105 tons produced per year due to their wide range of color pigments and consistent coloration. Textile industries consume huge amounts of water in the dyeing processes, making it hard to treat the enormous quantities of this hazardous wastewater. Thus, they have harmful impacts when discharged in non-treated or partially treated forms in the environment (air, soil, plants and water), causing several human diseases. In the present work we focused on synthetic dyes. We started by studying their classification which depended on the nature of the manufactured fiber (cellulose, protein and synthetic fiber dyes). Then, we mentioned the characteristics of synthetic dyes, however, we focused more on their negative impacts on the ecosystem (soil, plants, water and air) and on humans. Lastly, we discussed the applied physical, chemical and biological strategies solely or in combination for textile dye wastewater treatments. Additionally, we described the newly established nanotechnology which achieves complete discharge decontamination.
Collapse
|
10
|
Sosa-Martínez JD, Balagurusamy N, Montañez J, Peralta RA, Moreira RDFPM, Bracht A, Peralta RM, Morales-Oyervides L. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123254. [PMID: 32947692 DOI: 10.1016/j.jhazmat.2020.123254] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to provide information that contributes to establishing environmental-friendly methods for synthetic dyes' degradation. The potential decolorization capacity of the crude enzymatic extract produced by Phanerochaete chrysosporium CDBB 686 using corncob as a substrate was evaluated on seven different dyes. Critical variables affecting the in-vitro decolorization process were further evaluated and results were compared with an in-vivo decolorization system. Decolorization with enzymatic extracts presented advantages over the in-vivo system (higher or similar decolorization within a shorter period). Under improved in-vitro process conditions, the dyes with higher decolorization were: Congo red (41.84 %), Poly R-478 (56.86 %), Methyl green (69.79 %). Attempts were made to confirm the transformation of the dyes after the in-vitro process as well as to establish a molecular basis for interpreting changes in toxicity along with the degradation process. In-vitro degradation products of Methyl green presented a toxicity reduction compared with the original dye; however, increased toxicity was found for Congo red degradation products when compared with the original dyes. Thus, for future applications, it is crucial to evaluate the mechanisms of biodegradation of each target synthetic dye as well as the toxicity of the products obtained after enzymatic oxidation.
Collapse
Affiliation(s)
- Jazel Doménica Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, LibramientoTorreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
11
|
Voběrková S, Solčány V, Vršanská M, Adam V. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. CHEMOSPHERE 2018; 202:694-707. [PMID: 29602102 DOI: 10.1016/j.chemosphere.2018.03.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 05/20/2023]
Abstract
Ligninolytic enzymes from white-rot fungi are widely used in biotechnological processes. However, the application of these enzymes as free enzymes is limited due to their instability and lack of reusability. Enzyme stabilization is therefore a major challenge in biocatalytic process research, and immobilization methods are desirable. Using cross-linked enzyme aggregates (CLEAs) such as magnetic CLEAs, porous-CLEAs and combi-CLEAs is a promising technique for overcoming these issues. Cross-linking methods can stabilize and immobilize enzymes by interconnecting enzyme molecules via multiple bonds using cross-linking agents such as glutaraldehyde. The high catalyst density and microporous assembly of CLEAs guarantee high catalyst activity, which, together with their long shelf life, operational stability, and reusability, provide a cost-efficient alternative to matrix-assisted immobilization approaches. Here, we review current progress in ligninolytic enzyme immobilization and provide a comprehensive review of CLEAs. Moreover, we summarize the use of these CLEAs for biocatalysis processes, bioremediation such as dye decolourization, wastewater treatment or pharmaceutically active compound elimination.
Collapse
Affiliation(s)
- Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Veronika Solčány
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| |
Collapse
|
12
|
Shu J, Liu R, Liu Z, Chen H, Tao C. Leaching of manganese from electrolytic manganese residue by electro-reduction. ENVIRONMENTAL TECHNOLOGY 2017; 38:2077-2084. [PMID: 27766915 DOI: 10.1080/09593330.2016.1245789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H2SO4, current density of 25 mA/cm2, solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.
Collapse
Affiliation(s)
- Jiancheng Shu
- a School of Chemistry and Chemical Engineering , Chongqing University , Chongqing , People's Republic of China
- b Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , Chongqing , People's Republic of China
| | - Renlong Liu
- a School of Chemistry and Chemical Engineering , Chongqing University , Chongqing , People's Republic of China
- b Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , Chongqing , People's Republic of China
| | - Zuohua Liu
- a School of Chemistry and Chemical Engineering , Chongqing University , Chongqing , People's Republic of China
- b Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , Chongqing , People's Republic of China
| | - Hongliang Chen
- a School of Chemistry and Chemical Engineering , Chongqing University , Chongqing , People's Republic of China
- b Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , Chongqing , People's Republic of China
| | - Changyuan Tao
- a School of Chemistry and Chemical Engineering , Chongqing University , Chongqing , People's Republic of China
- b Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization , Chongqing , People's Republic of China
| |
Collapse
|
13
|
El Enshasy HA, Hanapi SZ, Abdelgalil SA, Malek RA, Pareek A. Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes. Fungal Biol 2017. [DOI: 10.1007/978-3-319-68957-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Zhang M, Xie L, Yin Z, Khanal SK, Zhou Q. Biorefinery approach for cassava-based industrial wastes: Current status and opportunities. BIORESOURCE TECHNOLOGY 2016; 215:50-62. [PMID: 27117291 DOI: 10.1016/j.biortech.2016.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Cassava, an important food crop, has been extensively employed as raw materials for various agri-industries to produce starch, bioethanol and other biobased products/chemicals. These cassava-based industries also generate large quantities of wastes/residues, rich in organic matter and suspended solids, and pose significant environmental issues. Their complex biochemical composition with high organic content endows them with a great potential for bioconversion into value-added products via biorefinery thereby providing economic and environmental sustainability to cassava industries. This state-of-the-art review covers the source, composition and characteristics of cassava industrial wastes and residues, and their bioconversion into value-added products, mainly biofuels (ethanol and butanol), biogas, biosurfactant, organic acids and other valuable biochemicals among others. This paper also outlines future perspectives with respect to developing more effective and efficient bioconversion processes for converting the cassava wastes and residues into high-value products.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| | - Zhixuan Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, Agricultural Sciences Building 218, 1955 East-West Road, Honolulu, HI 96822, United States
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
15
|
Yang X, Zheng J, Lu Y, Jia R. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9585-97. [PMID: 26846235 DOI: 10.1007/s11356-016-6164-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/21/2016] [Indexed: 05/11/2023]
Abstract
Malachite green (MG), a recalcitrant, carcinogenic, and mutagenic triphenylmethane dye, was decolorized and detoxified using crude manganese peroxidase (MnP) prepared from the white rot fungus Irpex lacteus F17. In this study, the key factors (pH, temperature, MG, Mn(2+), H2O2, MnP) in these processes were investigated. Under optimal conditions, 96 % of 200 mg L(-1) of MG was decolorized when 66.32 U L(-1) of MnP was added for 1 h. The K m, V max, and k cat values were 109.9 μmol L(-1), 152.8 μmol L(-1) min(-1), and 44.5 s(-1), respectively. The decolorization of MG by MnP followed first-order reaction kinetics with a kinetic rate constant of 0.0129 h(-1). UV-vis and UPLC analysis revealed degradation of MG. Furthermore, seven different intermediates formed during the MnP treatment of 0.5 h were identified by LC-TOF-MS. These degradation products were generated via two different routes by either N-demethylation of MG or the oxidative cleavage of the C-C double bond in MG. Based on ecotoxicity analyses performed on bacteria and algae, it was confirmed that MG metabolites produced by the MnP-catalyzed system were appreciably less toxic than the parent compound. These studies indicate the potential use of this enzyme system in the clean-up of aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Xueting Yang
- School of Life Science, Anhui University, Hefei, 230601, People's Republic of China
| | - Jinzhao Zheng
- School of Life Science, Anhui University, Hefei, 230601, People's Republic of China
| | - Yongming Lu
- School of Life Science, Anhui University, Hefei, 230601, People's Republic of China
| | - Rong Jia
- School of Life Science, Anhui University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
16
|
Bilal M, Iqbal M, Hu H, Zhang X. Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2332-2344. [PMID: 27191553 DOI: 10.2166/wst.2016.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Colored effluents from the textile industry have led to severe environmental pollution, and this has emerged as a global issue. The feasibility of ligninolytic enzymes for the detoxification and degradation of textile wastewater was investigated. Ganoderma lucidum crude ligninolytic enzymes extract (MnP 717.7, LiP 576.3, and Laccase 323.2 IU/mL) was produced using solid-state culture using wheat bran as substrate. The biodegradation treatment efficiency was evaluated on the basis of degradation and detoxification of textile effluents. Standard bioassays were employed for mutagenicity, cytotoxicity and phytotoxicity evaluation before and after biodegradation. The degradation of Masood Textile, Kalash Textile, Khyber Textile and Sitara Textile effluents was achieved up to 87.29%, 80.17%, 77.31% and 69.04%, respectively. The biochemical oxygen demand, chemical oxygen demand, total suspended solids and total organic carbon were improved considerably as a result of biodegradation of textile effluents, which were beyond the permissible limits established by the National Environmental Quality Standards before treatment. The cytotoxicity (Allium cepa, hemolytic, Daphnia magna and brine shrimp), mutagenicity (Ames TA98 and TA100) and phytotoxicity (Triticum aestivum) tests revealed that biodegradation significantly (P < 0.05) detoxifies the toxic agents in wastewater. Results revealed that biodegradation could possibly be used for remediation of textile effluents. However, detoxification monitoring is crucial and should always be used to evaluate the bio-efficiency of a treatment technique.
Collapse
Affiliation(s)
- Muhammad Bilal
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan E-mail: ; State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Munawar Iqbal
- National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|