1
|
Duarah P, Haldar D, Singhania RR, Dong CD, Patel AK, Purkait MK. Sustainable management of tea wastes: resource recovery and conversion techniques. Crit Rev Biotechnol 2024; 44:255-274. [PMID: 36658718 DOI: 10.1080/07388551.2022.2157701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/30/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.
Collapse
Affiliation(s)
- Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, India
| |
Collapse
|
2
|
Nordin AH, Ngadi N, Nordin ML, Noralidin NA, Nabgan W, Osman AY, Shaari R. Spent tea waste extract as a green modifying agent of chitosan for aspirin adsorption: Fixed-bed column, modeling and toxicity studies. Int J Biol Macromol 2023; 253:126501. [PMID: 37678687 DOI: 10.1016/j.ijbiomac.2023.126501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Aspirin is a prevalent over-the-counter medicine that has been categorized as an emerging contaminant due to its danger to both living things and the environment. This work presents chitosan modified with spent tea waste extract (STWE) via the wet impregnation method as an adsorbent for the enhanced removal of aspirin in a fixed-bed column. The adsorbent (named chitosan-STWE) was successfully synthesized and exhibited a low crystallinity structure, good stability against thermal and acidic conditions, as depicted by HNMR, XRD, TGA, and the dissolution rate of the adsorbent. The adsorption column study reveals that increasing bed height (up to 6 cm) increases the percentage of aspirin removal (up to 40.8 %). Increasing aspirin concentration enhances the amount of aspirin that comes into contact with the chitosan-STWE adsorbent, thereby increasing the adsorption capacity. On the other hand, higher flow rates result in shorter contact times between the adsorbent and adsorbates, which lowers the quantity of aspirin adsorbed. The experimental data are in accordance with the values generated by the Thomas and Yoon-Nelson models, with the maximum adsorption capacity of 61.7 mg/g. The chitosan-STWE adsorbent was determined to be non-toxic, thus safe to be used in wastewater treatment applications.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nur Amalina Noralidin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av Països Catalans 26, 43007 Tarragona, Spain
| | - Abdinasir Yusuf Osman
- Department of Pathobiology and Population Science, The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, Hertfordshire, UK
| | - Rumaizi Shaari
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
3
|
Nordin AH, Ngadi N, Ilyas RA, Abd Latif NAF, Nordin ML, Mohd Syukri MS, Nabgan W, Paiman SH. Green surface functionalization of chitosan with spent tea waste extract for the development of an efficient adsorbent for aspirin removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125048-125065. [PMID: 36795217 DOI: 10.1007/s11356-023-25816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
This study investigates the feasibility of spent tea waste extract (STWE) as a green modifying agent for the modification of chitosan adsorbent towards aspirin removal. Response surface methodology based on Box-Behnken design was employed to find the optimal synthesis parameters (chitosan dosage, spent tea waste concentration, and impregnation time) for aspirin removal. The results revealed that the optimum conditions for preparing chitotea with 84.65% aspirin removal were 2.89 g of chitosan, 18.95 mg/mL of STWE, and 20.72 h of impregnation time. The surface chemistry and characteristics of chitosan were successfully altered and improved by STWE, as evidenced by FESEM, EDX, BET, and FTIR analysis. The adsorption data were best fitted to pseudo 2nd order, followed by chemisorption mechanisms. The maximum adsorption capacity of chitotea was 157.24 mg/g, as fitted by Langmuir, which is impressive for a green adsorbent with a simple synthesis method. Thermodynamic studies demonstrated the endothermic nature of aspirin adsorption onto chitotea.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - Nur Aien Fatini Abd Latif
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia
| | - Mohd Syahlan Mohd Syukri
- Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Syafikah Huda Paiman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
4
|
Seth D, Athparia M, Singh A, Rathore D, Venkatramanan V, Channashettar V, Prasad S, Maddirala S, Sevda S, Kataki R. Sustainable environmental practices of tea waste-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30848-3. [PMID: 37991614 DOI: 10.1007/s11356-023-30848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Tea, the major beverage worldwide, is one of the oldest commercial commodities traded from ancient times. Apart from many of its advantages, including health, socio-economic, climatic, and agro-ecological values, FAO has recognized that the tea value chain covering its growth in the field, processing and marketing, and finally, the hot cup at the user's hand needs to be made sustainable during all these stages. Tea generates a lot of waste in different forms in different stages of its growth and processing, and these wastes, if not managed properly, may cause environmental pollution. A planned utilization of these wastes as feedstocks for various processes can generate more income, create rural livelihood opportunities, help grow tea environmentally sustainable, avoid GHG emissions, and make a real contribution to SDGs. Thermochemical and biological conversion of tea wastes generates value-added products. This review provides an overview on the impacts of the tea wastes on the environment, tea waste valorization processes, and applications of value-added products. The application of value-added products for energy generation, wastewater treatment, soil conditioners, adsorbents, biofertilizers, food additives, dietary supplements, animal feed bioactive chemicals, dye, colourant, and phytochemicals has been reviewed. Further, the challenges in sustainable utilization of tea wastes and opportunities for commercial exploitation of value-added products from tea wastes have been reviewed.
Collapse
Affiliation(s)
- Dibyakanta Seth
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Mondita Athparia
- Department of Energy, Tezpur University, Tezpur, 784028, Assam, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India, Technology Bhawan, New Mehrauli Road, New Delhi, 110016, India
| | - Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Veluswamy Venkatramanan
- Department of Environmental Studies, Indira Gandhi National Open University, New Delhi, 110068, India
| | - Veeranna Channashettar
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, Lodhi Road, New Delhi, 110003, India
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Shivani Maddirala
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Surajbhan Sevda
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal, 506004, Telangana, India
| | - Rupam Kataki
- Department of Energy, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
5
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
6
|
Chowdhury MF, Kim CM, Jang A. High-efficient and rapid removal of anionic and cationic dyes using a facile synthesized sole adsorbent NiAlFe-layered triple hydroxide (LTH). CHEMOSPHERE 2023; 332:138878. [PMID: 37172625 DOI: 10.1016/j.chemosphere.2023.138878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
It would be extremely momentous to familiarize a low-cost sole adsorbent NiAlFe-layered triple hydroxides (LTHs) having a strong sorption affinity towards both anionic and cationic dyes. Using the urea hydrolysis hydrothermal method LTHs were fabricated and by altering the ratio of participant metal cations the adsorbent was optimized. BET analysis revealed that the optimized LTHs possess an elevated surface area (160.04 m2/g) while TEM and FESEM analysis portrayed the stacked sheets-like 2D morphology. LTHs were employed for the amputation of anionic congo red (CR) and cationic brilliant green (BG) dye. The adsorption study showed that within 20 and 60 min, respectively, maximum adsorption capacities were achieved at 57.47 mg/g and 192.30 mg/g for CR and BG dye. Adsorption isotherm, kinetics, and thermodynamics study revealed that both chemisorptions with physisorptions were the assertive factor for the dye encapsulation. This enhanced adsorption performance of the optimized LTH for the anionic dye is attributed to its inherent anions exchange properties and new bond formation with the adsorbent skeleton. Whereas for the cationic dye, it was because of the formation of strong hydrogen bonds, and electrostatic interaction. Morphological manipulation of LTHs, formulates the optimized adsorbent LTH111, provokes the adsorbent for this elevated adsorption performance. Overall, this study revealed that LTHs have a high potential for the effectual remediation of dyes from wastewater as a sole adsorbent at a low cost.
Collapse
Affiliation(s)
- Mir Ferdous Chowdhury
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Chang-Min Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
7
|
Madikizela LM, Pakade VE. Trends in removal of pharmaceuticals in contaminated water using waste coffee and tea-based materials with their derivatives. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10857. [PMID: 36973862 DOI: 10.1002/wer.10857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
The introduction of large amounts of pharmaceuticals into the environmental waters is well-documented in literature with their occurrence reported in all different water matrices accessible to humans and animals. At the same time, the increasing consumption of coffee and tea-based beverages results in the generation of solid waste, which is mostly disposed-off in the environment. To minimize environmental pollution, coffee and tea-based materials have been proposed as suitable options to remove pharmaceuticals in environmental waters. Therefore, this article provides a critical review on the preparation and applications of coffee and tea-based materials in removing pharmaceuticals from contaminated water. In this context, most studies in literature focused on the applications of these materials as adsorbents, while only limited work on their role in degradation of pharmaceuticals is discussed. The successful application in adsorption studies is attributed to high surface areas of adsorbents and the ability to easily modify the adsorbent surfaces by incorporating functional groups that provide additional oxygen atoms, which promote easy interactions with pharmaceuticals. Hence, the adsorption mechanisms are mostly described by hydrogen bonding, electrostatic and π-π interactions with sample pH playing a dominant role in the adsorption process. Overall, the present article focused on the developments, trends and future research direction on the preparations and applications of coffee and tea-based materials for efficient removal of pharmaceuticals in water. PRACTITIONER POINTS: Review of tea and coffee wastes application for removal of pharmaceuticals in water Key applications in adsorption and degradation of pharmaceuticals in water Removal mostly explained by hydrogen bonding, electrostatic, and π-π interactions Trends, gaps, and future research to be explored are reviewed and highlighted.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, South Africa
| | - Vusumzi Emmanuel Pakade
- Department of Biotechnology and Chemistry, Private Bag X 021, Vaal University of Technology, Vanderbijlpark, South Africa
| |
Collapse
|
8
|
Neolaka YA, Riwu AA, Aigbe UO, Ukhurebor KE, Onyancha RB, Darmokoesoemo H, Kusuma HS. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2022.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Debnath B, Haldar D, Purkait MK. Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. CHEMOSPHERE 2022; 300:134480. [PMID: 35395270 DOI: 10.1016/j.chemosphere.2022.134480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The rising consumption of the popular non-alcoholic beverage tea and its derivative products caused massive growth in worldwide tea production in the last decade, leading to the generation of huge quantities of waste tea residues every year. Most of these wastes are usually burnt or disposed in landfills without proper treatment which results in serious environmental issues by polluting water, air and soil. In the recent times, 'waste to wealth' is a fast-growing concept for environment friendly sustainable development. Utilization of the large amount of tea wastes for the production of low-cost adsorbents to reduce the expenses of water and wastewater treatment can be a sustainable way of management of these wastes which at the same time will improve circular economy also. This review endeavours to evaluate the potential of both raw and modified tea wastes towards the adsorption of pollutants from wastewater. The production of various adsorptive materials such as biochar, activated carbon, nanocomposites, hydrogels, nanoparticles from tea wastes are summarized. The advancements in their applications for the removal of different emerging contaminants from wastewater as well as potable water, air and soil are exhaustively reviewed. The outcome of the present review reveals that tea waste and its derivatives are appropriate candidates to be used as adsorbents that show tremendous effectiveness in cleaning the environment. This article will provide the readers with an in-depth knowledge on the sustainable utilization of tea waste as adsorbent materials and will assist them to explore this abundant cheap waste biomass for environmental remediation.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
10
|
Abd-Ur-Rehman HM, Deletic A, Zhang K, Prodanovic V. The comparative performance of lightweight green wall media for the removal of xenobiotic organic compounds from domestic greywater. WATER RESEARCH 2022; 221:118774. [PMID: 35759846 DOI: 10.1016/j.watres.2022.118774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Green walls can provide an aesthetic approach to treat domestic greywater in urban landscapes. However, the widespread adoption of green walls for greywater treatment depends on its performance to remove the emerging contaminants from greywater such as xenobiotic organic compounds (XOCs). In this study, the performance of five lightweight green wall media types (zeolite, perlite, date seeds, coffee grinds, and coco coir) was evaluated for the removal of six XOCs representing a range of hydrophilic to hydrophobic organic micropollutants in domestic greywater (acetaminophen, diethyltoluamide, bisphenol A, oxybenzone, triclosan, nonylphenol). The adsorption affinity of targeted XOCs on different green wall media types, the role of contact time on XOCs removal, and the impact of background pollutants in greywater matrix on the adsorption of XOCs were analysed. Results indicate that removal of XOCs was higher using carbonaceous waste materials (date seeds, coffee grinds, and coco coir) as compared to natural minerals (zeolite and perlite). Moreover, the adsorption of XOCs increased with the increase in pollutant hydrophobicity. All XOCs showed highest removal using coco coir with fast adsorption kinetics, achieving 90% of the removal in 30 min. The only exception was acetaminophen that showed best removal using zeolite but exhibited slow adsorption kinetics with 90% of the removal attained in 24 h. The initial adsorption kinetics (<30 min) of XOCs in greywater were adversely affected by the presence of background pollutants, indicating the need of higher residence time of greywater in green wall system for better removal of XOCs. Based on the findings of this batch study, it is recommended to design a green wall system with more than 30 min of greywater residence time using a mixture of coco coir and zeolite for effective removal of XOCs from domestic greywater.
Collapse
Affiliation(s)
- H M Abd-Ur-Rehman
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - A Deletic
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - K Zhang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - V Prodanovic
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Fakhry H, El-Sonbati M, Omar B, El-Henawy R, Zhang Y, El-Kady M. Novel fabricated low-cost hybrid polyacrylonitrile/polyvinylpyrrolidone coated polyurethane foam (PAN/PVP@PUF) membrane for the decolorization of cationic and anionic dyes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115128. [PMID: 35483254 DOI: 10.1016/j.jenvman.2022.115128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Dyes are recalcitrait organic pollutants threatening the aquatic environment and human health. In the present study, a novel low-cost hybrid membrane was fabricated by coating polyurethane foam (PUF) with polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) via phase inversion technique from casting solutions consisting of PAN and PVP with Dimethyl formamide (DMF) and applied for removal of cationic (Methylene Blue (MB)) and anionic (Methyl Orange (MO)) dyes from aqueous solutions. The as-prepared membrane was first characterized by Scan Electron Microscope (SEM), Fourier Transform Infrared (FTIR), Energy Dispersive Spectrometry (EDS), etc. Then, batch experiments were conducted to optimize the adsorption conditions, including contact time, adsorbent dose, dyes concentration, and pH. The dye removal results fitted with pseudo first and second-order kinetics; Langmuir, Freundlich, and Temkin isotherms' models. The maximum dye decolorization was approximately 97% and 95% within 60 and 120 min using 0.5 and 1 g of the fabricated composite for MB and MO, respectively. The kinetic studies showed rapid sorption dynamics following a second-order kinetic model. In addition, dye adsorption equilibrium data fitted well to the Freundlich isotherm with monolayer maximum adsorption capacity of 6.356 and 3.321 mg/g for MO and MB dye, respectively. Thus, the novel hybrid membrane is promising as a cheap and efficient adsorbent for the removal of both cationic and anionic dyes from wastewater. The current study demonstrated a new avenue to achieve efficient management of dyes in aquatic environments.
Collapse
Affiliation(s)
- Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mervat El-Sonbati
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Basma Omar
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Reham El-Henawy
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517, Damietta, Egypt
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
| | - Marwa El-Kady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications, (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt; Chemical and Petrochemicals Engineering Department, Engineering Faculty, Egypt-Japan University of Science and Technology, New BorgEl-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
12
|
Hassen JH, Abdulkadir HK. Recent developments in the use of activated charcoal in medicine. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the raw forms of graphite is activated charcoal which has an extensive surface area allowing for the adsorption of a wide range of chemicals. It possesses the strongest physical adsorption forces of the available materials, as well as the largest volume of adsorbing porosity. Activated charcoal acts as an adsorbent, collecting and storing substances in the gastrointestinal tract, reducing or blocking absorption in the bloodstream. The ingested toxins interact with charcoal by recycling toxins in the intestinal cavity. In cases where the drug has not been absorbed from the abdominal system, it is recirculated through the liver and intestines or by means of passive diffusion or active secretion. The article aims to review the most recent advances in the use of the activated charcoal, including the dose, how charcoal acts in the body, the mechanism of action, administration, contraindications, as well as the impact of various factors on the adsorption process. In addition, we also discussed numerous medical applications of activated charcoal.
Collapse
|
13
|
Wang QQ, Mao LH, Wang DX, Ma YM, Shi XL, Tian XH. Construction of two new polyoxometalate complexes and their recyclability in photodegradation of cephalexin and ceftiofur. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Negi T, Kumar Y, Sirohi R, Singh S, Tarafdar A, Pareek S, Kumar Awasthi M, Alok Sagar N. Advances in bioconversion of spent tea leaves to value-added products. BIORESOURCE TECHNOLOGY 2022; 346:126409. [PMID: 34838972 DOI: 10.1016/j.biortech.2021.126409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Spent tea leaves (STL) are generated after the extraction of liquor from processed tea leaves and are regarded as an underutilized waste. STL are rich in essential amino acids, ω-6 and ω-3 fatty acids, alkaloids (theobromine and caffeine), polyphenols (catechin, theaflavins and rutin) and minerals (Ca, P, K, Mg, Mn) that could be utilized for the production of industrially important products. Vermicomposting, anaerobic digestion, silage preparation and fermentation are currently used as low cost methods for the bioconversion of STL to a usable form. Structural, morphological and chemical modification of STL after suitable bioconversion enables its application in the development of biopolymers, biofuels, catechin derivatives, biochar, absorbents for dye, and for removal of Cd, Hg, Cr(IV), As(V) and aspirin. This review discusses the composition, characterization, bioconversion and value added product generation from STL while highlighting prospective applications of STL in developing battery electrodes, nanocatalysts, insulation materials and edible bioactive peptides.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, G. B. Pant University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, 148 106, Punjab, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| | - Shikhangi Singh
- Department of Post Harvest Process and Food Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar 263 145, Uttarakhand, India
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India; Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
15
|
Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126720. [PMID: 34343883 DOI: 10.1016/j.jhazmat.2021.126720] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/24/2023]
Abstract
An emerging global necessity for alternative resources combined with maximum catalytic efficiency, low cost, and eco-friendly composite remains a hotspot in the scientific society. Hereby, a novel protocol is approached to design a heterostructure of Zinc MOF decorated on the surface of 2D activated carbon (AC) through a simplistic approach. To begin with, analytical, morphological and spectroscopical studies were performed to identify the functional moieties, cruciate-flower like morphology and oxidative state of atoms present in the composite Zn-MOF @AC. The photocatalytic material aids in degrading both cationic and anionic dye in a UV (254 nm) irradiated environment at a rate of 86.4% and 77.5% within 90 mins. Subsequently, the hybrid materials are coated on the carbon substrate to evaluate the catalytic activity using oxygen evolution and reduction reaction process. The mechanical insight for the catalytic activity relies on the electronic transitions of atoms on the edges of the sheets ascribing to d-d energy levels between the interfacial electron movement. Our composite exhibits an overpotential of 0.7 V and a Tafel slope of 70 mV/dec for the oxygen reduction reaction. This study proposes an alternate approach for developing MOF decorated carbon-based composites for photocatalytic degradability and energy necessity.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | | | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
17
|
Zhao X, Guo L, Xu T, Zheng R, Wang H. Preparation of Keggin-type monosubstituted polyoxometalate ionic liquid catalysts and their application in catalyzing the coupling reaction of ethylene carbonate and dimethyl succinate to synthesize poly(ethylene succinate). NEW J CHEM 2022. [DOI: 10.1039/d2nj03094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Keggin-type monosubstituted polyoxometalate-ionic liquids catalysts (POM-ILs) were synthesized. The chemical structure, crystal structure, catalyst morphology, elemental and thermal stability properties of POM-ILs were characterized and analyzed. And...
Collapse
|
18
|
Jonnalagadda M, Ibrahim SM, Shair OHM, Mutyala S. Porous carbon supported calcium oxide for CO 2 adsorption and separation of CO 2/CH 4. ENVIRONMENTAL TECHNOLOGY 2022; 43:460-468. [PMID: 32619389 DOI: 10.1080/09593330.2020.1791973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Calcium oxide incorporated porous carbon materials were synthesized by the impregnation method to study CO2 adsorption and separation of CO2/CH4. The X-ray diffraction, Raman analysis, N2 isotherms at 77 K, and SEM with EDX analysis were used to characterize synthesized materials. XRD and N2 isotherm results have confirmed that synthesized carbon has porosity, and EDX analysis has reported that the presence of CaO on porous carbon. 10CaO/porous carbon has shown 31 cm3 g-1 of CO2 adsorption which was higher than bare porous carbon CO2 adsorption 17.5 cm3 g-1 at 298 K, 1 bar. It was attributed to electrostatic interaction between CaO and CO2. However, CH4 adsorption was decreased by a decrease in surface area. The selectivity of CO2/CH4 was higher for 10CaO/porous carbon and the heat of CO2 adsorption was 36 KJ/mol at high adsorption of CO2. Moreover, CO2 adsorption was the same in each adsorption cycle.
Collapse
Affiliation(s)
- Madhavi Jonnalagadda
- Department of Chemistry, Government Degree College for Women, Affiliated to Satavahana University, Karimnagar, India
- Department of Chemistry, Sri Ramachandra Arts & Science College, Affiliated to Kakatiya University, Karimnagar, India
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Analytical Chemistry and Control, Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo, Egypt
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Suresh Mutyala
- Department of Applied and Environmental Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
19
|
Development of a Novel Adsorbent Prepared from Dredging Sediment for Effective Removal of Dye in Aqueous Solutions. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study proposed a novel and low-cost adsorbent prepared from dredging sediment (DSD) for effective removal of dye in aqueous solutions. The adsorption efficiency and behavior of the DSD adsorbent toward the crystal violet (CV), a cationic dye, were investigated via batch experiments. The results showed that DSD samples contain mainly clay minerals (illite and kaolinite) and other mineral phases. In addition, DSD is a mesoporous material (Vmesopore = 94.4%), and it exhibits a relatively high surface area (~39.1 m2/g). Adsorption experiments showed that the solution’s pH slightly affects the adsorption process, and a pH of 11 gave a maximum capacity of 27.2 mg/g. The kinetic data of CV dye adsorption is well described by the pseudo–second-order and the Avrami models. The Langmuir and Liu isotherm models provide the best fit for the adsorption equilibrium data. The monolayer adsorption capacity of Langmuir reached 183.6, 198.0, and 243.6 mg/g at 293, 308, and 323 K, respectively. It was also found that the adsorption process was spontaneous (−ΔG°), exothermic (−∆H°), and increased the randomness (+∆S°) during the adsorption operation. The primary mechanisms in CV dye adsorption were ion exchange and pore filling, whereas electrostatic attraction was a minor contribution. In addition, three steps involving intraparticle diffusion occur at the same time to control the adsorption process. The results of this study highlight the excellent efficiency of DSD material as an ecofriendly sorbent for toxic dyes from water media.
Collapse
|
20
|
Inbaraj BS, Sridhar K, Chen BH. Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125701. [PMID: 34088189 DOI: 10.1016/j.jhazmat.2021.125701] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
This study aims to synthesize a magnetic activated carbon nanocomposite from green tea leaf waste (MNPs-GTAC) for evaluation of adsorption efficiency of 4 priority polycyclic aromatic hydrocarbons (PAHs). MNPs-GTAC contained spherically-shaped MNPs with cubic spinel structure, surface area at 118.8 m2/g, particle size at 8.6 nm and saturation magnetization at 34.2 emu/g. PAH adsorption reached a plateau at an MNPs-GTAC dose of 50 or 60 mg/L, pH of 2-4 and ionic strength of 0.1-10%, with PAH reduction in the presence of humic acid being compensated by addition of 0.1% sodium chloride. Kinetics was rapid attaining 80% removal within 5 min and the pseudo-second-order rate decreased in this order: Benzo[a]anthracene>Chrysene>Benzo[b]fluoranthene>Benzo[a]pyrene. Isotherm modeling revealed a Langmuir type-2 shape with the maximum adsorption capacity being 28.08, 22.75, 19.14 and 15.86 mg/g for Benzo[b]fluoranthene, Benzo[a]pyrene, Chrysene and Benzo[a]anthracene, respectively. Temperature study showed the PAH adsorption to be an endothermic and spontaneous process with increased randomness at solid-solution interface. Acetonitrile could completely recover the adsorbed PAH and MNPs-GTAC was successfully recycled 5 times with a minimum loss. Application to mineral water showed 86-98% and 72-89% removal for PAHs spiked respectively at 0.1 and 1 mg/L, while a complete removal was attained in tap and river waters.
Collapse
Affiliation(s)
| | - Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
21
|
Moradpour N, Sedaghat S, Aberoomand Azar P, Behzad K. Synthesis of chitosan and amine functionalized MCM‐41 nanocomposite for the removal of acetylsalicylic acid from water using central composite design. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nina Moradpour
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Sajjad Sedaghat
- Department of Chemistry Islamic Azad University, Shahr‐e‐Qods Branch Shahr‐e‐Qods Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch Islamic Azad University Tehran Iran
| | - Kasra Behzad
- Department of Physics Islamic Azad University, Shahr‐e‐Qods Branch Shahr‐e‐Qods Iran
| |
Collapse
|
22
|
Dada AO, Adekola FA, Odebunmi EO, Dada FE, Bello OM, Akinyemi BA, Bello OS, Umukoro OG. Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1524-1537. [PMID: 32657133 DOI: 10.1080/15226514.2020.1785389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the quest for a sustainable environment and clean water resources, the efficacy of Ocimum gratissimum leave (OGL) for indigo carmine (IC) dye biosorption was studied in a batch technique. The physicochemical properties of OGL supported its suitability for biosorption studies. Of 92.6% removal efficiency was achieved at optimum conditions of pH 2, contact time 120 min, initial IC concentration 500 ppm, temperature 298 K, and 100 mg OGL dose. Kinetic data were best fitted to pseudo second-order (PSO) and the mechanism was pore diffusion governed as validated by sum of square error (SSE) and non-linear chi-square (χ 2). Freundlich isotherm model gave the best description at 298 K as supported by Halsey, Redlich-Peterson, and Fowler-Guggenheim confirming the heterogeneous nature of OGL and multilayer biosorption process. Langmuir Q max (77.52 mg g-1) surpassed those previously reported. SEM and EDX confirmed the reality of the biosorption process. Thermodynamic parameters (ΔH°, ΔS°, ΔG°, and Ea) affirm a feasible, spontaneous, exothermic, and randomness of the process. Results revealed that OGL is a potential and efficient environmentally benign, low cost, and sustainable biosorbents. It is therefore recommended as a bi-functional biosorbent for wastewater treatment.
Collapse
Affiliation(s)
- Adewumi O Dada
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Nigeria
| | - Folahan A Adekola
- Department of Industrial Chemistry, University of Ilorin, Ilorin, Nigeria
| | | | | | - Oluwasesan M Bello
- Department of Applied Chemistry, Federal University, Dutsin-Ma, Nigeria
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, USA
| | - Banjo A Akinyemi
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu-Aran, Nigeria
| | - Olugbenga S Bello
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oghenerukevwe G Umukoro
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
23
|
Cimirro NFGM, Lima EC, Cunha MR, Dias SLP, Thue PS, Mazzocato AC, Dotto GL, Gelesky MA, Pavan FA. Removal of pharmaceutical compounds from aqueous solution by novel activated carbon synthesized from lovegrass (Poaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21442-21454. [PMID: 32277415 DOI: 10.1007/s11356-020-08617-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
In this work, lovegrass (Cpa), an abundant grass of the Poaceae family, was employed as feedstock for the production of activated carbon in a conventional furnace using ZnCl2 as a chemical activator. The prepared material (Cpa-AC) was characterized by pH of the point of zero charges (pHpzc), Boehm's titration method, CHN/O elemental analysis, ATR-FTIR, N2 adsorption/desorption curves, and SEM. This carbon material was used for adsorption of acetylsalicylic acid (ASA) and sodium diclofenac (DFC). FTIR analysis identified the presence of O-H, N-H, O-C=O), C-O, and aromatic ring bulk and surface of (Cpa-AC) adsorbent. The quantification of the surface functional groups showed the presence of a large amount of acidic functional groups on the surface of the carbon material. The isotherms of adsorption and desorption of N2 confirm that the Cpa-AC adsorbent is mesopore material with a large surface area of 1040 m2 g-1. SEM results showed that the surface of Cpa-AC is rugous. The kinetic study indicates that the system followed the pseudo-second-order model (pH 4.0). The equilibrium time was achieved at 45 (ASA) and 60 min (DCF). The Liu isotherm model best fitted the experimental data. The maxima sorption capacities (Qmax) for ASA and DFC at 25 °C were 221.7 mg g-1 and 312.4 mg g-1, respectively. The primary mechanism of ASA and DFC adsorption was justified considering electrostatic interactions and π-π interactions between the Cpa-AC and the adsorbate from the solution.
Collapse
Affiliation(s)
- Nilton F G M Cimirro
- Postgraduate Program in Engineering, Federal University of Pampa (UNIPAMPA), Bagé, RS, 96412-420, Brazil
| | - Eder C Lima
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariene R Cunha
- Postgraduate Program in Engineering, Federal University of Pampa (UNIPAMPA), Bagé, RS, 96412-420, Brazil
| | - Silvio L P Dias
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Pascal Silas Thue
- Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana C Mazzocato
- Brazilian Agricultural Research Corporation (EMBRAPA-CPPSul), Bagé, RS, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Marcos A Gelesky
- School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Flávio André Pavan
- Postgraduate Program in Engineering, Federal University of Pampa (UNIPAMPA), Bagé, RS, 96412-420, Brazil.
| |
Collapse
|
24
|
Wong S, Ghafar NA, Ngadi N, Razmi FA, Inuwa IM, Mat R, Amin NAS. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci Rep 2020; 10:2928. [PMID: 32076087 PMCID: PMC7031400 DOI: 10.1038/s41598-020-60021-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 02/06/2020] [Indexed: 11/11/2022] Open
Abstract
Adsorption of Reactive Black 5 and Congo Red from aqueous solution by coffee waste modified with polyethylenimine was investigated. The removal percentages of both dyes increased with amount of polyethyleneimine in the modified adsorbent. Characterization revealed that polyethyleneimine modification improved the adsorbent surface chemistry, while slight improvement of adsorbent textural properties was also observed. The adsorbent's excellent performance was demonstrated by high removal percentages towards the anionic dyes in most experimental runs. The modelling result showed that anionic dyes adsorption occurred via monolayer adsorption, and chemisorption was the rate-controlling step. The adsorbent possesses higher maximum adsorption capacity towards Reactive Black 5 (77.52 mg/g) than Congo Red (34.36 mg/g), due to the higher number of functional groups in Reactive Black 5 that interact with the adsorbent. This study reveals the potential of adsorbent derived from coffee waste in textile wastewater treatment. Furthermore, surface chemistry modification is proven as an effective strategy to enhance the performance of biowaste-derived adsorbents.
Collapse
Affiliation(s)
- Syieluing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nawal Abd Ghafar
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Fatin Amirah Razmi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Ramli Mat
- Department of Industrial Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Nor Aishah Saidina Amin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
25
|
Activation mechanisms on potassium hydroxide enhanced microstructures development of coke powder. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Bó LG, Almeida RM, Cardoso CMM, Zavarize DG, Brum SS, Mendonça ARV. Acetylsalicylic acid biosorption onto fungal-bacterial biofilm supported on activated carbons: an investigation via batch and fixed-bed experiments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28962-28976. [PMID: 31388951 DOI: 10.1007/s11356-019-06075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
This study reports on acetylsalicylic acid (ASA) biosorption onto fungal-bacterial biofilm supported on two types of activated carbons (one commercial type made of coconut fibers, CAC, and one other manufactured from fruit rinds of Hymenaea stigonocarpa Mart., HYAC, which after biofilm inoculation, they were named CAC-b and HYAC-b), via batch and fixed-bed experiments. These materials were characterized by BET Specific Surface Area and Scanning Electronic Microscopy (SEM). Biosorption onto HYAC-b was 57.2% higher than HYAC. Despite presenting the highest biosorption capacity over time (qt = 85.4 ± 0.82 mg g-1), CAC-b had a lower increase in efficiency (32.4%) compared to CAC. Kinetic data from the biosorption experiments responded well to the pseudo-first-order model thus suggests the predominance of physisorption, while without biofilm presence, there was a better agreement with the pseudo-second-order model, suggesting chemisorption. The possible interaction mechanism of ASA to biofilm was attributed to ionic forces between the drug in anionic form and eventual presence of cationic by-products of the biologically active surface metabolism. Biosorption equilibrium data responded better to the Sips model and CAC-b presented the highest biosorption capacity (qe = 292.4 ± 2.01 mg g-1). A combination of faster volumetric flow rates, higher inlet concentrations and shorter beds accelerated the breakthrough time of ASA biosorption in the fixed-bed experiments. These operational conditions affected C/Co ratio in the following magnitude order: volumetric flow rate < inlet concentration < bed height. Breakthrough data responded better to the modified dose-response model compared to Thomas and Yoon-Nelson models.
Collapse
Affiliation(s)
- Luma Gomes Bó
- Chemistry Institute, University of Brasilia, Brasilia, 70910-900, Brazil
| | | | | | - Danilo Gualberto Zavarize
- Department of Environmental Engineering, Federal University of Tocantins, Palmas, 77001-090, Brazil.
| | - Sarah Silva Brum
- Chemistry Institute, University of Brasilia, Brasilia, 70910-900, Brazil
| | | |
Collapse
|
27
|
Ouasfi N, Zbair M, Bouzikri S, Anfar Z, Bensitel M, Ait Ahsaine H, Sabbar E, Khamliche L. Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights. RSC Adv 2019; 9:9792-9808. [PMID: 35520732 PMCID: PMC9062196 DOI: 10.1039/c9ra01086f] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/14/2019] [Indexed: 11/28/2022] Open
Abstract
Porous carbon from Laminaria digitata algae activated using NaOH (PCLD@NaOH) was prepared by a chemical activation approach and has been tested for the adsorption of ketoprofen and aspirin molecules. The prepared PCLD@NaOH was characterized using XPS, FTIR, Raman, N2-physisorption, SEM, acidic/basic character (Boehm), and pHPZC. The batch adsorption of ketoprofen and aspirin was investigated under different parameters. The adsorption kinetics on PCLD@NaOH were well described by the Avrami-fractional kinetic model and the equilibrium data by Liu isotherm model. The adsorption capacity of aspirin (970.88 mg g-1 at 25 °C) was higher than ketoprofen (443.45 mg g-1 at 25 °C). The thermodynamic values indicate that the adsorption of ketoprofen and aspirin is exothermic and spontaneous. These results were in good agreement with DFT calculation that shows that the aspirin molecule presents high reactivity, electrophilicity, and softness compared to the ketoprofen molecule. Finally, the response surface methodology was used to optimize the removal efficiency of ketoprofen and aspirin.
Collapse
Affiliation(s)
- N Ouasfi
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Science, University Chouaib Doukkali El Jadida Morocco
- Laboratory of Physico-Chemistry of Materials (LPCM), ChemistryDepartment, Faculty of Sciences, University of Chouaïb Doukkali El Jadida Morocco
| | - M Zbair
- Laboratory of Catalysis and Corrosion of Materials (LCCM), Department of Chemistry, Faculty of Sciences of El Jadida, University of Chouaïb Doukkali BP 20 24000 El Jadida Morocco
| | - S Bouzikri
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Science, University Chouaib Doukkali El Jadida Morocco
| | - Z Anfar
- Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr BP 8106, Cité Dakhla Agadir Morocco
| | - M Bensitel
- Laboratory of Catalysis and Corrosion of Materials (LCCM), Department of Chemistry, Faculty of Sciences of El Jadida, University of Chouaïb Doukkali BP 20 24000 El Jadida Morocco
| | - H Ait Ahsaine
- Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr BP 8106, Cité Dakhla Agadir Morocco
| | - E Sabbar
- Laboratory of Physico-Chemistry of Materials (LPCM), ChemistryDepartment, Faculty of Sciences, University of Chouaïb Doukkali El Jadida Morocco
| | - L Khamliche
- Laboratory of Organic Chemistry, Bioorganic and Environment, Chemistry Department, Faculty of Science, University Chouaib Doukkali El Jadida Morocco
| |
Collapse
|
28
|
Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-018-01528-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.075] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
One Step Hydrothermal Synthesis of Magnesium Silicate Impregnated Palm Shell Waste Activated Carbon for Copper Ion Removal. METALS 2018. [DOI: 10.3390/met8100741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium silicate impregnated onto palm-shell waste activated carbon (PPAC) underwent mild hydrothermal treatment under one-pot synthesis, designated as PPAC-MC. Various impregnation ratios from 25 to 300% of MgSiO3 onto PPAC were tested. High levels of MgSiO3 led to high Cu(II) adsorption capacity. A ratio of 1:1 (PPAC-MS 100) was considered optimum because of its chemical stability in solution. The maximum adsorption capacity of PPAC-MS 100 for Cu(II) obtained by isotherm experiments was 369 mg g−1. The kinetic adsorption data fitted to pseudo-second-order model revealed as chemisorption. Increasing ionic strength reduced Cu(II) adsorption capacity due to the competition effect between Na+ and Cu2+. In addition, PPAC-MS 100 showed sufficient adsorption capacity for the removal of Zn(II), Al(III), Fe(II), Mn(II), and As(V), with adsorption capacities of 373 mg g−1, 244 mg g−1, 234 mg g−1, 562 mg g−1, 191 mg g−1, respectively. Three regeneration studies were also conducted. PPAC-MS was characterized using Fourier Transformed Infrared (FTIR), X-Ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Field Emission Scanning Electron Microscope (FESEM). Overall, PPAC-MS 100 is a competitive adsorbent due to its high sorption capacity and sufficient regeneration rate, while remaining economical through the reuse of palm-shell waste materials.
Collapse
|