1
|
Gohain MB, Karki S, Ingole PG. Cellulose acetate, a source from discarded cigarette butts for the development of mixed matrix loose nanofiltration membranes for selective separation. Int J Biol Macromol 2024; 271:132197. [PMID: 38821793 DOI: 10.1016/j.ijbiomac.2024.132197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
This study presents an environmentally friendly method for extracting cellulose acetate (CA) from discarded cigarette filters, which is then utilized in the fabrication of cellulose-based membranes designed for high flux and rejection rates. CA membranes are likeable to separate dyes and ions, but their separation efficiency is exposed when the contaminant concentration is very low. So, we have integrated graphene oxide (GO) and carboxylated titanium dioxide (COOH-TiO2) in CA to develop mixed matrix membranes (MMMs) and studied them against dyes and most used salts. The CA has been extracted from these butts and added GO and COOH-TiO2 nanoparticles to develop MMMs. The present work administers the effective separation of five dyes (methyl orange, methyl violet, methylene blue, cresol red, and malachite green) and salts (NaCl and Na2SO4) along with the high efficiency of water flux by prepared CA membranes. The prepared membranes rejected up to 94.94 % methyl violet, 91.28 % methyl orange, 88.28 % methylene blue, 89.91 % cresol red, and 91.70 % malachite green dye. Along with the dyes, the membranes showed ∼40.40 % and ∼ 42.97 % rejection of NaCl and Na2SO4 salts, respectively. Additionally, these membranes have tensile strength up to 1.54 MPa. Various characterization techniques were performed on all prepared CA membranes to comprehend their behaviour. The antibacterial activity of MMMs was investigated using the Muller-Hinton-Disk diffusion method against the gram-positive bacterium Staphylococcus aureus (S. aureus) and the gram-negative bacterium Escherichia coli (E. coli). We believe the present work is an approach to utilizing waste materials into valuable products for environmental care.
Collapse
Affiliation(s)
- Moucham Borpatra Gohain
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sachin Karki
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
2
|
Round-the-clock water harvesting from dry air using a metal−organic framework. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
4
|
Zhang X. Selective separation membranes for fractionating organics and salts for industrial wastewater treatment: Design strategies and process assessment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Liu G, Guo Y, Meng B, Wang Z, Liu G, Jin W. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Optimization of interfacial polymerization to fabricate thin-film composite hollow fiber membranes in modules for brackish water reverse osmosis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Investigation of novel molecularly tunable thin-film nanocomposite nanofiltration hollow fiber membranes for boron removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Yang Z, Sun PF, Li X, Gan B, Wang L, Song X, Park HD, Tang CY. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15563-15583. [PMID: 33213143 DOI: 10.1021/acs.est.0c05377] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The separation properties of polyamide reverse osmosis and nanofiltration membranes, widely applied for desalination and water reuse, are constrained by the permeability-selectivity upper bound. Although thin-film nanocomposite (TFN) membranes incorporating nanomaterials exhibit enhanced water permeance, their rejection is only moderately improved or even impaired due to agglomeration of nanomaterials and formation of defects. A novel type of TFN membranes featuring an interlayer of nanomaterials (TFNi) has emerged in recent years. These novel TFNi membranes show extraordinary improvement in water flux (e.g., up to an order of magnitude enhancement) along with better selectivity. Such enhancements can be achieved by a wide selection of nanomaterials, ranging from nanoparticles, one-/two-dimensional materials, to interfacial coatings. The use of nanostructured interlayers not only improves the formation of polyamide rejection layers but also provides an optimized water transport path, which enables TFNi membranes to potentially overcome the longstanding trade-off between membrane permeability and selectivity. Furthermore, TFNi membranes can potentially enhance the removal of heavy metals and micropollutants, which is critical for many environmental applications. This review critically examines the recent developments of TFNi membranes and discusses the underlying mechanisms and design criteria. Their potential environmental applications are also highlighted.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Li Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, SAR, P. R. China
| |
Collapse
|
9
|
Zhao DL, Yeung WS, Zhao Q, Chung TS. Thin-film nanocomposite membranes incorporated with UiO-66-NH2 nanoparticles for brackish water and seawater desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118039] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhao DL, Japip S, Zhang Y, Weber M, Maletzko C, Chung TS. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. WATER RESEARCH 2020; 173:115557. [PMID: 32028249 DOI: 10.1016/j.watres.2020.115557] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Thin-film composite (TFC) membranes are the heart of reverse osmosis (RO) processes for desalination and water reuse. In recent years, nanomaterials with high permeability, selectivity and chemical resistance, and low fouling tendency have begun to emerge and be applied in many other fields. This has stimulated the research on novel RO membranes consisting of nanomaterials (non-porous and porous) in their selective layers. Encouraging results have been demonstrated. Herein, the state-of-the-art developments of polyamide thin-film nanocomposite (TFN) membranes for RO processes are summarized since the concept of TFN was introduced in 2007. While it is obvious that nanomaterials could impart exclusive properties, it should also be noted that significant challenges still exist for research and commercialization of TFN membranes, such as selection of proper nanomaterials, prevention of leaching of nanoparticles, and performance and cost analysis before large-scale RO membrane manufacturing. Future research directions are outlined to offer insights for the fabrication of much advanced TFN membranes with optimal interface morphology and separation performance.
Collapse
Affiliation(s)
- Die Ling Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Susilo Japip
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yu Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Martin Weber
- Advanced Materials and Systems Research, BASF SE, RAP/OUB - B1, 67056, Ludwigshafen, Germany
| | - Christian Maletzko
- Performance Materials, BASF SE, G-PMFSU-F206, 67056, Ludwigshafen, Germany
| | - Tai-Shung Chung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
11
|
Bali Eslami A, Peyravi M, Jahanshahi M, Hosseinpour H. Polysulfonamide coating layer polymerized by1,3-disulfonyl chloride and polyethylenimine to achieve acid resistant TFC membranes. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development. ENERGIES 2020. [DOI: 10.3390/en13020481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Forward osmosis (FO) and pressure-retarded osmosis (PRO) have gained attention recently as potential processes to solve water and energy scarcity problems with advantages over pressure-driven membrane processes. These processes can be designed to produce bioenergy and clean water at the same time (i.e., wastewater treatment with power generation). Despite having significant technological advancement, these bioenergy processes are yet to be implemented in full scale and commercialized due to its relatively low performance. Hence, massive and extensive research has been carried out to evaluate the variables in FO and PRO processes such as osmotic membrane, feed solutions, draw solutions, and operating conditions in order to maximize the outcomes, which include water flux and power density. However, these research findings have not been summarized and properly reviewed. The key parts of this review are to discuss the factors influencing the performance of FO and PRO with respective resulting effects and to determine the research gaps in their optimization with the aim of further improving these bioenergy processes and commercializing them in various industrial applications.
Collapse
|