1
|
Hu Z, Wu T, Zhou Z, Zhang Y, Chen Q, Yao H, Ji M, Shen G, Dong C, Shi C, Huang Z, Jiang N, Han N, Tian X. Asiaticoside Attenuates Blood-Spinal Cord Barrier Disruption by Inhibiting Endoplasmic Reticulum Stress in Pericytes After Spinal Cord Injury. Mol Neurobiol 2024; 61:678-692. [PMID: 37653222 DOI: 10.1007/s12035-023-03605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
The blood-spinal cord barrier (BSCB) plays a vital role in the recovery of spinal cord function after spinal cord injury (SCI). Pericytes, pluripotent members of the neurovascular unit (NVU), receive signals from neighboring cells and are critical for maintaining CNS function. Therapeutic targets for the BSCB include endothelial cells (ECs) and glial cells, but few drugs target pericytes. This study was designed to explore whether asiaticoside has a positively effect on pericytes and the integrity of the BSCB. In this study, we found that asiaticoside could inhibit the loss of junction proteins just 1 day after SCI in vivo, but our in vitro study showed no significant differences in the expression of endothelial junction proteins between the control and asiaticoside treatment groups. We also found that asiaticoside could inhibit endoplasmic reticulum (ER) stress and pericyte apoptosis, which might be associated with the inhibition of junction protein reduction in ECs. Thus, we investigated the interactions between pericytes and ECs. Our results showed that asiaticoside could decrease the release of matrix metalloproteinase (MMP)-9 in pericytes and therefore upregulate the expression of junction proteins in ECs. Furthermore, the protective effect of asiaticoside on pericytes is related to the inhibition of ER stress via the MAPK signaling pathway. Taken together, our results demonstrate that asiaticoside treatment inhibits BSCB disruption and enhances functional recovery after SCI.
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Tingting Wu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziheng Zhou
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315302, China
| | - Qiyue Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbing Yao
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mengchu Ji
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ge Shen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenling Dong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chengge Shi
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhixian Huang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nizhou Jiang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Nan Han
- Department of Ultrasonography, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
2
|
Zhang L, Yin Y, Guo J, Jin L, Hou Z. Chronic intermittent hypobaric hypoxia ameliorates osteoporosis after spinal cord injury through balancing osteoblast and osteoclast activities in rats. Front Endocrinol (Lausanne) 2023; 14:1035186. [PMID: 37229453 PMCID: PMC10203702 DOI: 10.3389/fendo.2023.1035186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction As a common complication of spinal cord injury (SCI), most SCI patients suffer from osteoporosis. In our previous study, chronic intermittent hypobaric hypoxia (CIHH) could promote bone fracture healing. We speculated that it may act a role in the progression of osteoporosis. The current study purposed to explore the role of CIHH in the osteoporosis triggered by SCI in rats. Methods A SCI-induced SCI model was established by completed transection at T9-T10 spinal cord of Wistar rats. One week after SCI, the rats were conducted to CIHH treatment (PB = 404 mmHg, Po2 = 84 mmHg) 6 hours a day for continuously 7 weeks. Results The results of X-radiography and Micro-CT assessment demonstrated that compared with sham rats, the areal bone mineral density (BMD), bone volume to tissue volume, volumetric BMD, trabecular thickness, trabecular number, and trabecular connectivity were decreased. Trabecular bone pattern factor, trabecular separation, as well as structure model index were increased at the distal femur and proximal tibia of SCI rats, which were effectively reversed by CIHH treatment. Histomorphometry showed that CIHH treatment increased bone formation of SCI rats, as evidenced by the increased osteoid formation, the decreased number and surface of TRAP-positive osteoclasts. Furthermore, ELISA and real time PCR results showed that the osteoblastogenesis-related biomarkers, such as procollagen type 1 N-terminal propeptide, osteocalcin in serum, as well as ALP and OPG mRNAs in bone tissue were decreased, while the osteoclastogenesis-related biomarkers, including scleorostin in serum and RANKL and TRAP mRNAs in bone tissue were increased in SCI rats. Importantly, the deviations of aforementioned biomarkers were improved by CIHH treatment. Mechanically, the protective effects of CIHH might be at least partly mediated by hypoxia-inducible factor-1 alpha (HIF-1α) signaling pathway. Conclusion The present study testified that CIHH treatment ameliorates osteoporosis after SCI by balancing osteoblast and osteoclast activities in rats.
Collapse
|
3
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
4
|
Long HQ, Ren ZX, Xu JH, Cheng X, Xu GX. Pathophysiological mechanisms of chronic compressive spinal cord injury due to vascular events. Neural Regen Res 2023; 18:790-796. [DOI: 10.4103/1673-5374.353485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Huang JH, He H, Chen YN, Liu Z, Romani MD, Xu ZY, Xu Y, Lin FY. Exosomes derived from M2 Macrophages Improve Angiogenesis and Functional Recovery after Spinal Cord Injury through HIF-1α/VEGF Axis. Brain Sci 2022; 12:brainsci12101322. [PMID: 36291255 PMCID: PMC9599527 DOI: 10.3390/brainsci12101322] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Exosomes are nano-sized vesicles that contain a variety of mRNAs, miRNAs, and proteins. They are capable of being released by a variety of cells and are essential for cell–cell communication. The exosomes produced by cells have shown protective benefits against spinal cord damage (SCI). Recently, it was discovered that M2 macrophages aid in the angiogenesis of numerous illnesses. However, the functional role of M2 macrophage-derived exosomes on SCI is unclear. Here, we investigate the pro-angiogenesis of M2 macrophage-derived exosomes on SCI. We founded that M2 macrophage exosomes alleviated tissue damage and enhanced functional recovery post-SCI. We discovered that M2 macrophage exosome administration increased angiogenesis after SCI in vivo using immunohistochemistry, immunofluorescence labeling, and Western blot analysis. Additionally, the expression of the pro-angiogenesis factors, HIF-1α and VEGF, were enhanced with the treatment of the M2 macrophage exosomes. Furthermore, we found that M2 macrophage exosomes enhanced neurogenesis after SCI in vivo. In vitro, we found that M2 macrophage exosomes can be taken up by the brain endothelial cell line (bEnd.3) and that they enhanced the tube formation, migration, and proliferation of bEnd.3 cells. Furthermore, by using special siRNA to inhibit HIF-1α expression, we observed that the expression of VEGF decreased, and the tube formation, migration, and proliferation of bEnd.3 cells were attenuated with the treatment of HIF-1α-siRNA. In conclusion, our findings reveal that M2 macrophage exosomes improve neurological functional recovery and angiogenesis post-SCI, and this process is partially associated with the activation of the HIF-1/VEGF signaling pathway.
Collapse
Affiliation(s)
- Jiang-Hu Huang
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Hang He
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Yong-Neng Chen
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Zhen Liu
- Department of Social Economy and Business Administration, Woosuk University, Wanju-gun 55338, Korea
| | - Manini Daudi Romani
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhao-Yi Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Yang Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Fei-Yue Lin
- Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, 350001, China
- Correspondence: ; Tel.: +86-133-5822-8767; Fax: +86-591-88217190
| |
Collapse
|
6
|
Stoica SI, Bleotu C, Ciobanu V, Ionescu AM, Albadi I, Onose G, Munteanu C. Considerations about Hypoxic Changes in Neuraxis Tissue Injuries and Recovery. Biomedicines 2022; 10:481. [PMID: 35203690 PMCID: PMC8962344 DOI: 10.3390/biomedicines10020481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia represents the temporary or longer-term decrease or deprivation of oxygen in organs, tissues, and cells after oxygen supply drops or its excessive consumption. Hypoxia can be (para)-physiological-adaptive-or pathological. Thereby, the mechanisms of hypoxia have many implications, such as in adaptive processes of normal cells, but to the survival of neoplastic ones, too. Ischemia differs from hypoxia as it means a transient or permanent interruption or reduction of the blood supply in a given region or tissue and consequently a poor provision with oxygen and energetic substratum-inflammation and oxidative stress damages generating factors. Considering the implications of hypoxia on nerve tissue cells that go through different ischemic processes, in this paper, we will detail the molecular mechanisms by which such structures feel and adapt to hypoxia. We will present the hypoxic mechanisms and changes in the CNS. Also, we aimed to evaluate acute, subacute, and chronic central nervous hypoxic-ischemic changes, hoping to understand better and systematize some neuro-muscular recovery methods necessary to regain individual independence. To establish the link between CNS hypoxia, ischemic-lesional mechanisms, and neuro-motor and related recovery, we performed a systematic literature review following the" Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA") filtering method by interrogating five international medical renown databases, using, contextually, specific keywords combinations/"syntaxes", with supplementation of the afferent documentation through an amount of freely discovered, also contributive, bibliographic resources. As a result, 45 papers were eligible according to the PRISMA-inspired selection approach, thus covering information on both: intimate/molecular path-physiological specific mechanisms and, respectively, consequent clinical conditions. Such a systematic process is meant to help us construct an article structure skeleton giving a primary objective input about the assembly of the literature background to be approached, summarised, and synthesized. The afferent contextual search (by keywords combination/syntaxes) we have fulfilled considerably reduced the number of obtained articles. We consider this systematic literature review is warranted as hypoxia's mechanisms have opened new perspectives for understanding ischemic changes in the CNS neuraxis tissue/cells, starting at the intracellular level and continuing with experimental research to recover the consequent clinical-functional deficits better.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania;
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest (PUB), 060042 Bucharest, Romania;
| | - Anca Mirela Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
| | - Irina Albadi
- Teaching Emergency County Hospital “Sf. Apostol Andrei”, 900591 Constanta, Romania;
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania; (S.I.S.); (A.M.I.)
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Department of Research, Romanian Association of Balneology, 022251 Bucharest, Romania
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
| |
Collapse
|
7
|
Yu Z, Cheng X, Chen J, Huang Z, He S, Hu H, Lin S, Zou Z, Huang F, Chen B, Wan Y, Peng X, Zou X. Spinal Cord Parenchyma Vascular Redistribution Underlies Hemodynamic and Neurophysiological Changes at Dynamic Neck Positions in Cervical Spondylotic Myelopathy. Front Neuroanat 2021; 15:729482. [PMID: 34887731 PMCID: PMC8650056 DOI: 10.3389/fnana.2021.729482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Cervical spondylotic myelopathy (CSM) is a degenerative condition of the spine that caused by static and dynamic compression of the spinal cord. However, the mechanisms of motor and somatosensory conduction, as well as pathophysiological changes at dynamic neck positions remain unclear. This study aims to investigate the interplay between neurophysiological and hemodynamic responses at dynamic neck positions in the CSM condition, and the pathological basis behind. We first demonstrated that CSM patients had more severe dynamic motor evoked potentials (DMEPs) deteriorations upon neck flexion than upon extension, while their dynamic somatosensory evoked potentials (DSSEPs) deteriorated to a similar degree upon extension and flexion. We therefore generated a CSM rat model which developed similar neurophysiological characteristics within a 4-week compression period. At 4 weeks-post-injury, these rats presented decreased spinal cord blood flow (SCBF) and oxygen saturation (SO2) at the compression site, especially upon cervical flexion. The dynamic change of DMEPs was significantly correlated with the change in SCBF from neutral to flexion, suggesting they were more sensitive to ischemia compared to DSSEPs. We further demonstrated significant vascular redistribution in the spinal cord parenchyma, caused by angiogenesis mainly concentrated in the anterior part of the compressed site. In addition, the comparative ratio of vascular densities at the anterior and posterior parts of the cord was significantly correlated with the perfusion decrease at neck flexion. This exploratory study revealed that the motor and somatosensory conductive functions of the cervical cord changed differently at dynamic neck positions in CSM conditions. Compared with somatosensory conduction, the motor conductive function of the cervical cord suffered more severe deteriorations upon cervical flexion, which could partly be attributed to its higher susceptibility to spinal cord ischemia. The uneven angiogenesis and vascular distribution in the spinal cord parenchyma might underlie the transient ischemia of the cord at flexion.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Cheng
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiacheng Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany
| | - Shaofu He
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Hu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sixiong Lin
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyuan Zou
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangli Huang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bolin Chen
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Wan
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinsheng Peng
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Cheng X, Yu Z, Xu J, Quan D, Long H. Pathophysiological Changes and the Role of Notch-1 Activation After Decompression in a Compressive Spinal Cord Injury Rat Model. Front Neurosci 2021; 15:579431. [PMID: 33584186 PMCID: PMC7876297 DOI: 10.3389/fnins.2021.579431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Surgical decompression is the primary treatment for cervical spondylotic myelopathy (CSM) patients with compressive spinal cord injury (CSCI). However, the prognosis of patients with CSCI varies, and the pathophysiological changes following decompression remain poor. This study aimed to investigate the pathophysiological changes and the role of Notch-1 activation after decompression in a rat CSCI model. Surgical decompression was conducted at 1 week post-injury (wpi). DAPT was intraperitoneally injected to down-regulate Notch-1 expression. Basso, Beattie, and Bresnahan scores and an inclined plane test were used to evaluate the motor function recovery. Hematoxylin and eosin staining was performed to assess pathophysiological changes, while hypoxia-inducible factor 1 alpha, vascular endothelial growth factor (VEGF), von Willebrand factor (vWF), matrix metalloproteinase (MMP)-9, MMP-2, Notch-1, and Hes-1 expression in the spinal cord were examined by immunohistochemical analysis or quantitative PCR. The results show that early decompression can partially promote motor function recovery. Improvements in structural and cellular damage and hypoxic levels were also observed in the decompressed spinal cord. Moreover, decompression resulted in increased VEGF and vWF expression, but decreased MMP-9 and MMP-2 expression at 3 wpi. Expression levels of Notch-1 and its downstream gene Hes-1 were increased after decompression, and the inhibition of Notch-1 significantly reduced the decompression-induced motor function recovery. This exploratory study revealed preliminary pathophysiological changes in the compressed and decompressed rat spinal cord. Furthermore, we confirmed that early surgical decompression partially promotes motor function recovery may via activation of the Notch-1 signaling pathway after CSCI. These results could provide new insights for the development of drug therapy to enhance recovery following surgery.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Yu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Sun X, Liu XZ, Wang J, Tao HR, Zhu T, Jin WJ, Shen KP. Changes in neurological and pathological outcomes in a modified rat spinal cord injury model with closed canal. Neural Regen Res 2020; 15:697-704. [PMID: 31638094 PMCID: PMC6975156 DOI: 10.4103/1673-5374.266919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most animal spinal cord injury models involve a laminectomy, such as the weight drop model or the transection model. However, in clinical practice, many patients undergo spinal cord injury while maintaining a relatively complete spinal canal. Thus, open spinal cord injury models often do not simulate real injuries, and few previous studies have investigated whether having a closed spinal canal after a primary spinal cord injury may influence secondary processes. Therefore, we aimed to assess the differences in neurological dysfunction and pathological changes between rat spinal cord injury models with closed and open spinal canals. Sprague-Dawley rats were randomly divided into three groups. In the sham group, the tunnel was expanded only, without inserting a screw into the spinal canal. In the spinal cord injury with open canal group, a screw was inserted into the spinal canal to cause spinal cord injury for 5 minutes, and then the screw was pulled out, leaving a hole in the vertebral plate. In the spinal cord injury with closed canal group, after inserting a screw into the spinal canal for 5 minutes, the screw was pulled out by approximately 1.5 mm and the flat end of the screw remained in the hole in the vertebral plate so that the spinal canal remained closed; this group was the modified model, which used a screw both to compress the spinal cord and to seal the spinal canal. At 7 days post-operation, the Basso-Beattie-Bresnahan scale was used to measure changes in neurological outcomes. Hematoxylin-eosin staining was used to assess histopathology. To evaluate the degree of local secondary hypoxia, immunohistochemical staining and western blot assays were applied to detect the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Compared with the spinal cord injury with open canal group, in the closed canal group the Basso-Beattie-Bresnahan scores were lower, cell morphology was more irregular, the percentage of morphologically normal neurons was lower, the percentages of HIF-1α- and VEGF-immunoreactive cells were higher, and HIF-1α and VEGF protein expression was also higher. In conclusion, we successfully established a rat spinal cord injury model with closed canal. This model could result in more serious neurological dysfunction and histopathological changes than in open canal models. All experimental procedures were approved by the Institutional Animal Care Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, China (approval No. HKDL201810) on January 30, 2018.
Collapse
Affiliation(s)
- Xin Sun
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Zhen Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Wang
- Department of Pathology, Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Rong Tao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Jie Jin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang-Ping Shen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Cheng X, Long H, Chen W, Xu J, Wang X, Li F. The correlation between hypoxia-inducible factor-1α, matrix metalloproteinase-9 and functional recovery following chronic spinal cord compression. Brain Res 2019; 1718:75-82. [PMID: 31054885 DOI: 10.1016/j.brainres.2019.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms underlying cervical spondylotic myelopathy (CSM) are poorly understood. To assess the correlation between HIF-1α, MMP-9 and functional recovery following chronic cervical spinal cord compression (CSCI). Rats in the sham group underwent C5 semi-laminectomy, while a water-absorbable polyurethane polymer was implanted into the C6 epidural space in the chronic CSCI group. Basso, Beattie and Bresnahan score and somatosensory evoked potentials were used to evaluate neurological function. Hematoxylin and eosin staining was performed to assess pathological changes in the spinal cord, while immunohistochemical analysis was used to examine HIF-1α and MMP-9 expression on days 7, 28, 42 and 70 post-surgery. Normal rats were only used for HE staining. The BBB score was significantly reduced on day 28 following CSCI, while SEPs exhibited decreased amplitude and increased latency. In chronic CSCI group, the BBB score and SEPs significantly improved on day 70 compared with day 28. HE staining revealed different level of spinal cord edema after chronic CSCI. Compared with the sham group, immunohistochemical analyses revealed that HIF-1α- and MMP-9-positive cells were increased on day 7 and peaked on day 28. HIF-1α and MMP-9 expression were demonstrated to be significantly positively correlated, whereas HIF-1α expression and BBB score were significantly negatively correlated, as well MMP-9 expression and BBB score. HIF-1α and MMP-9 expression are increased following chronic spinal cord compression and are positively correlated with one another. Decreased expression of HIF-1α and MMP-9 may contribute to functional recovery following CSCI. This expression pattern of HIF-1α and MMP-9 may give a new perspective on the molecular mechanisms of CSM.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Houqing Long
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China.
| | - Wenli Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Jinghui Xu
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xiaobo Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Fobao Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
11
|
Li Z, Wang S, Li W, Yuan H. Ferulic Acid Improves Functional Recovery after Acute Spinal Cord Injury in Rats by Inducing Hypoxia to Inhibit microRNA-590 and Elevate Vascular Endothelial Growth Factor Expressions. Front Mol Neurosci 2017. [PMID: 28642684 PMCID: PMC5462975 DOI: 10.3389/fnmol.2017.00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is the leading cause of paralysis, disability and even death in severe cases, and neural stem cells (NSCs) transplant has been employed for repairing SCI. Ferulic acid (FA) is able to promote neurogenesis in various stem cell therapies. We aimed to investigate the effect of FA on NSC transplant therapy, and the underlying mechanism, in improving functional recovery in SCI rat model. A rat model of SCI was established, which then received transplant of NSCs with or without FA pre-treatment. Functional recovery of the SCI rats was then evaluated, in terms of spinal cord water content, myeloperoxidase activity and behavioral assessments. Effect of FA in inducing hypoxia in NSCs was also assessed, followed by identifying the hypoxic regulated microRNA and the subsequent target gene. Transplant of FA pre-treated NSCs improved functional recovery of SCI rats to a more significant extent than NSCs without FA pre-treatment. The beneficial effects of FA in repairing SCI was mediated by inducing hypoxia in NSCs, which in turn inhibited microRNA-590 to elevate vascular endothelial growth factor expression. Our findings support the clinical potential of FA in improving efficacy of NSC transplant therapy for treatment of SCI.
Collapse
Affiliation(s)
- Zhenjie Li
- Department of Anesthesiology, Shanghai Changzheng Hospital, The Second Military Medical UniversityShanghai, China
| | - Shengyun Wang
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, The Second Military Medical UniversityShanghai, China
| | - Wenfang Li
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, The Second Military Medical UniversityShanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Shanghai Changzheng Hospital, The Second Military Medical UniversityShanghai, China
| |
Collapse
|
12
|
Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediators Inflamm 2016; 2016:9476020. [PMID: 27418745 PMCID: PMC4935915 DOI: 10.1155/2016/9476020] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury results in a life-disrupting series of deleterious interconnected mechanisms encompassed by the primary and secondary injury. These events are mediated by the upregulation of genes with roles in inflammation, transcription, and signaling proteins. In particular, cytokines and growth factors are signaling proteins that have important roles in the pathophysiology of SCI. The balance between the proinflammatory and anti-inflammatory effects of these molecules plays a critical role in the progression and outcome of the lesion. The excessive inflammatory Th1 and Th17 phenotypes observed after SCI tilt the scale towards a proinflammatory environment, which exacerbates the deleterious mechanisms present after the injury. These mechanisms include the disruption of the spinal cord blood barrier, edema and ion imbalance, in particular intracellular calcium and sodium concentrations, glutamate excitotoxicity, free radicals, and the inflammatory response contributing to the neurodegenerative process which is characterized by demyelination and apoptosis of neuronal tissue.
Collapse
|