1
|
Liu ZY, Liu RT, Cheng WH, Zhang BY, Zhang XY, Zhou Y, Ye XQ, Zhou CY, Wang XJ, Sun Q, Ji J. Neratinib derivative 7A induces apoptosis in colon cancer cells via the p53 pathway. Bioorg Med Chem Lett 2025; 117:130069. [PMID: 39674380 DOI: 10.1016/j.bmcl.2024.130069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Colorectal cancer remains a significant health threat, with its incidence continuously rising, underscoring the urgent need for the development of new therapeutic agents. In our previous research, we identified 7A, a derivative of Neratinib, as having pronounced antitumor activity. However, its specific effects and mechanisms in colorectal cancer have not been thoroughly investigated. Therefore, this study employed in vivo and in vitro experiments, utilizing techniques such as RNA sequencing, Western blotting, and PCR, to provide a comprehensive analysis of 7A's mechanism of action in colorectal cancer. The results indicate that 7A induces DNA damage and activates the P53 pathway, thereby promoting apoptosis in colorectal cancer cells. Additionally, 7A treatment significantly reduced angiogenesis and tumor weight. Our findings suggest that 7A, a Neratinib derivative, holds promise as a novel candidate for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhi-Yu Liu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Ruo-Tong Liu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Wen-Hao Cheng
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Bo-Yu Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xing-Yu Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Ying Zhou
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xiao-Qing Ye
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Chun-Yun Zhou
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xiu-Jun Wang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China.
| | - Qian Sun
- The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University. Lianyungang 222000, China.
| | - Jing Ji
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, China; College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou, 225 300, China.
| |
Collapse
|
2
|
Pinto-Fraga J, García-Chico C, Lista S, Lacal PM, Carpenzano G, Salvati M, Santos-Lozano A, Graziani G, Ceci C. Protein kinase inhibitors as targeted therapy for glioblastoma: a meta-analysis of randomized controlled clinical trials. Pharmacol Res 2025; 212:107528. [PMID: 39637954 DOI: 10.1016/j.phrs.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor. The standard treatment for newly diagnosed GBM includes surgical resection, when feasible, followed by radiotherapy and temozolomide-based chemotherapy. Upon disease progression, the anti-vascular endothelial growth factor-A (VEGF-A) monoclonal antibody bevacizumab, can be considered. Given the limited efficacy of pharmacological treatments, particularly for the recurrent disease, several molecularly targeted interventions have been explored, such as small-molecule protein kinase inhibitors (PKIs), inhibiting tyrosine kinase growth factor receptors and downstream signaling pathways involved in GBM angiogenesis and infiltrative behavior. This meta-analysis, based on searches in PubMed and Web Of Science, evaluated 12 randomized controlled trials (RCTs) examining PKIs in patients with newly diagnosed or recurrent GBM. Pooled analysis of shared clinical outcomes - progression-free survival (PFS) and overall survival (OS) - revealed a lack of significant improvements with the use of PKIs. In newly diagnosed GBM, no significant differences were observed in median [-1.02 months, 95 % confidence interval (CI), -2.37-0.32, p = 0.14] and pooled [hazard ratio (HR) = 1.13, 95 % CI, 0.95-1.35, p = 0.17) OS, or in median (0.34 months, 95 % CI, -0.9-1.58, p = 0.60) and pooled (HR = 0.98, 95 % CI, 0.76-1.27, p = 0.89) PFS, when comparing PKI addition to standard chemo-radiotherapy versus chemo-radiotherapy alone. In recurrent GBM, three different analyses were conducted: PKI versus other treatments, PKI combined with other treatments versus those treatments alone, PKI versus PKI combined with other treatments. Also, across these analyses, no significant clinical benefits were found. For instance, when comparing PKI treatment with other treatments, median OS and PFS showed no significant difference (-0.78 months, 95 % CI, -2.12-0.55, p = 0.25; -0.23 months, 95 % CI, -0.79-0.34, p = 0.43, respectively), and similar non-significant results were observed in the pooled analyses (OS: HR = 0.89, 95 % CI, 0.59-1.32, p = 0.55; PFS: HR = 0.83, 95 % CI, 0.63-1.11, p = 0.21). Despite these overall negative findings, some data indicate improved clinical outcomes in a subset of GBM patients treated with certain PKIs (i.e., regorafenib) and encourage further research to identify PKIs with better blood-brain barrier penetration and lower risk for resistance development.
Collapse
Affiliation(s)
- José Pinto-Fraga
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Celia García-Chico
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | | | - Giuseppe Carpenzano
- Department of Neurosurgery, Policlinico Tor Vergata, University of Rome Tor Vergata. Rome 00133, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, Policlinico Tor Vergata, University of Rome Tor Vergata. Rome 00133, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain; Research Institute of the Hospital 12 de Octubre ('Imas12' [PaHerg Group]), Madrid 28041, Spain
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
3
|
Mehmood A, Li D, Li J, Kaushik AC, Wei DQ. Supervised Screening of EGFR Inhibitors Validated through Computational Structural Biology Approaches. ACS Med Chem Lett 2024; 15:2190-2200. [PMID: 39691517 PMCID: PMC11647682 DOI: 10.1021/acsmedchemlett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
One of the prominent challenges in breast cancer (BC) treatment is human epidermal growth factor receptor (EGFR) overexpression, which facilitates tumor proliferation and presents a viable target for anticancer therapies. This study integrates multiomics data to pinpoint promising therapeutic compounds and employs a machine learning (ML)-based similarity search to identify effective alternatives. We used BC cell line data from the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases and single-cell RNA sequencing (scRNA-seq) information that established afatinib as an efficacious candidate demonstrating superior IC50 values. Next, ML models, including support vector machine (SVM), artificial neural networks (ANN), and random forest (RF), were trained on ChEMBL data to classify compounds with similar activity to the reference drug as active or inactive. The promising candidates underwent computational structural biology assessments for their molecular interactions and conformational dynamics. Our findings indicate that compounds ChEMBL233324, ChEMBL233325, ChEMBL234580, and ChEMBL372692 exhibit potent repressive action against EGFR, underscoring their potential as active antibreast cancer agents.
Collapse
Affiliation(s)
- Aamir Mehmood
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic & Developmental Sciences and School of
Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200030, P. R. China
| | - Daixi Li
- School
of Health Science and Engineering, University
of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Jiayi Li
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic & Developmental Sciences and School of
Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200030, P. R. China
| | - Aman Chandra Kaushik
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic & Developmental Sciences and School of
Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200030, P. R. China
| | - Dong-Qing Wei
- State
Key Laboratory of Microbial Metabolism, Joint International Research
Laboratory of Metabolic & Developmental Sciences and School of
Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200030, P. R. China
- Zhongjing
Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park Meixi, Nanyang, Henan 473006, P. R. China
| |
Collapse
|
4
|
Bisceglia L, Morani F, Guerrieri L, Santoni-Rugiu E, Çakılkaya P, Scatena C, Scarpitta R, Engelholm LH, Behrendt N, Gemignani F, Landi S. BAG2, MAD2L1, and MDK are cancer-driver genes and candidate targets for novel therapies in malignant pleural mesothelioma. Cancer Gene Ther 2024; 31:1708-1720. [PMID: 39300217 PMCID: PMC11567880 DOI: 10.1038/s41417-024-00805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with a poor prognosis and the identification of novel druggable targets is urgently needed. In previous work, we identified 15 deregulated genes highly expressed in MPM tissues and correlated with a poor prognosis. Here, we validated these findings on an independent dataset of 211 MPM patients (EGA, EGAD00001001915) and on a panel of MPM cell lines. Furthermore, we carried out in vitro gene silencing followed by proliferation, cytotoxicity, caspase, and migration assays to define whether these targets could be cancer-driver genes. We ended up with three novel candidates (i.e., BAG2, MAD2L1, and MDK), whose encoded proteins could be exploited as druggable targets. Moreover, of novelty, immunohistochemistry analysis on tissues revealed that the overexpression of BAG2 and MAD2L1 could differentiate MPM from RMP patients. Furthermore, when we tested Neratinib (an inhibitor of MAD2L1) and iMDK (an inhibitor of MDK) we found that they are effective on MPM cells, in part phenocopying the effects of MAD2L1 and MDK gene silencing. In summary, in the present work, we report that BAG2, MAD2L1, and MDK are bona fide cancer-driver genes for MPM worth of further studies.
Collapse
Affiliation(s)
| | | | | | - Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Pınar Çakılkaya
- Finsen Laboratory, Rigshospitalet/Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Cristian Scatena
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
- UO Anatomia Patologica 1 Universitaria, DAI - Medicina di Laboratorio, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Rosa Scarpitta
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
- UO Anatomia Patologica 1 Universitaria, DAI - Medicina di Laboratorio, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Lars H Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Fan Y, Wu T, Xu P, Yang C, An J, Zhang H, Abbas M, Dong X. Neratinib safety evaluation: real-world adverse event analysis from the FAERS database. Front Pharmacol 2024; 15:1425171. [PMID: 39346561 PMCID: PMC11427278 DOI: 10.3389/fphar.2024.1425171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Aims Neratinib has emerged as significant theraputic option for breast cancer treatment. However, despite its approval, numerous adverse drug events (ADEs) associated to it remain unrecognized and unreported. This study aims to mine and analyze the signals of ADEs related to neratinib from the US Food and Drug Administration Adverse Event Reporting System (FAERS) database, providing insights for safe and rational clinical use of drug. Methods All the neratinib-related ADEs data were collected from FAERS database from the third quarter (Q3) of 2017 to the fourth quarter (Q4) of 2023. After standardizing the data, 4 disproportionality methods were used to assess the correlation between neratinib and ADEs. Results Of the 1,544 ADEs implicating neratinib as the primary suspected drug, a combined total of 48 preferred terms (PTs) and 10 system organ classes (SOCs) showed significant disproportionality accross all four algorithms simultaneously. These SOCs included gastrointestinal disorders (n = 2,564, ROR 7.14), general disorders and administration site conditions (n = 958, ROR 0.77) and injury poisoning and procedural complications (n = 474, ROR 0.58) among others. Upon comparison with the neratinib manual, 34 ADEs not documented in the manual were found at the PT level. Conclusion Our study provide new real-world evidence for drug safety information of neratinib. While the majority of our findings were aligned with the information provided in the manual. We identified additional ADEs not previously documented. Consequently, further studies are needed to validate unreported ADEs to ensure the efficacy and safety of neratinib for patients.
Collapse
Affiliation(s)
- Yunhe Fan
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Teng Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Pengyang Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chuanli Yang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Jie An
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haijia Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Mureed Abbas
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, Shanxi, China
| | - Xiushan Dong
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
6
|
Jeising S, Nickel AC, Trübel J, Felsberg J, Picard D, Leprivier G, Wolter M, Huynh MK, Olivera MB, Kaulich K, Häberle L, Esposito I, Klau GW, Steinmann J, Beez T, Rapp M, Sabel M, Dietrich S, Remke M, Cornelius JF, Reifenberger G, Qin N. A clinically compatible in vitro drug-screening platform identifies therapeutic vulnerabilities in primary cultures of brain metastases. J Neurooncol 2024; 169:613-623. [PMID: 38985431 PMCID: PMC11341655 DOI: 10.1007/s11060-024-04763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Brain metastases represent the most common intracranial tumors in adults and are associated with a poor prognosis. We used a personalized in vitro drug screening approach to characterize individual therapeutic vulnerabilities in brain metastases. METHODS Short-term cultures of cancer cells isolated from brain metastasis patients were molecularly characterized using next-generation sequencing and functionally evaluated using high-throughput in vitro drug screening to characterize pharmacological treatment sensitivities. RESULTS Next-generation sequencing identified matched genetic alterations in brain metastasis tissue samples and corresponding short-term cultures, suggesting that short-term cultures of brain metastases are suitable models for recapitulating the genetic profile of brain metastases that may determine their sensitivity to anti-cancer drugs. Employing a high-throughput in vitro drug screening platform, we successfully screened the cultures of five brain metastases for response to 267 anticancer compounds and related drug response to genetic data. Among others, we found that targeted treatment with JAK3, HER2, or FGFR3 inhibitors showed anti-cancer effects in individual brain metastasis cultures. CONCLUSION Our preclinical study provides a proof-of-concept for combining molecular profiling with in vitro drug screening for predictive evaluation of therapeutic vulnerabilities in brain metastasis patients. This approach could advance the use of patient-derived cancer cells in clinical practice and might eventually facilitate decision-making for personalized drug treatment.
Collapse
Affiliation(s)
- Sebastian Jeising
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ann-Christin Nickel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Johanna Trübel
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Felsberg
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gabriel Leprivier
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - My Ky Huynh
- Department of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marlene B Olivera
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kerstin Kaulich
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gunnar W Klau
- Department of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Steinmann
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Thomas Beez
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center of Saarland, Homburg/Saar, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Nan Qin
- Department of Hematology, Oncology, and Clinical Immunology, Medical Faculty, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany.
- Spatial & Functional Screening Core Facility, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University, and University Hospital Düsseldorf, Düsseldorf, Germany.
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Düsseldorf, Germany.
| |
Collapse
|
7
|
Kook E, Chun KS, Kim DH. Emerging Roles of YES1 in Cancer: The Putative Target in Drug Resistance. Int J Mol Sci 2024; 25:1450. [PMID: 38338729 PMCID: PMC10855972 DOI: 10.3390/ijms25031450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.
Collapse
Affiliation(s)
- Eunjin Kook
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Republic of Korea;
| | - Do-Hee Kim
- Department of Chemistry, Kyonggi University, Suwon 16227, Republic of Korea;
| |
Collapse
|
8
|
Sun K, Wang X, Zhang H, Lin G, Jiang R. Management and Mechanisms of Diarrhea Induced by Tyrosine Kinase Inhibitors in Human Epidermal Growth Factor Receptor-2-Positive Breast Cancer. Cancer Control 2024; 31:10732748241278039. [PMID: 39159918 PMCID: PMC11334140 DOI: 10.1177/10732748241278039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Breast cancer has the highest incidence among female malignancies, significantly impacting women's health. Recently, numerous HER2-targeted therapies have achieved excellent clinical outcomes. Currently, anti-HER2 drugs are divided into three main categories: monoclonal antibodies, small-molecule tyrosine kinase inhibitors, and antibody-coupled drugs (ADCs). The main toxic side effects of small molecule TKI-based therapy are diarrhea, hand-foot syndrome, rash, nausea, and vomiting. Diarrhea is a potential predictor of tumor response, affecting up to 95% of cancer patients treated with TKIs. Severe gastrointestinal toxicity can result in the need for dose reductions and treatment interruptions. This not only compromises the efficacy of TKIs but also deteriorates human nutrition and quality of life. The majority of individuals develop diarrhea within 7 days of starting treatment, with approximately 30% developing grade 3 or higher diarrhea within 2-3 days of starting treatment. The severity of diarrhea typically correlates with the dosage of most TKIs. Current prevention and management strategies are primarily empirical, focusing on symptom alleviation rather than addressing the toxicological mechanisms underlying TKI-induced diarrhea. Consequently, anti-diarrheal drugs are often less effective in managing this condition in cancer patients receiving TKIs. Moreover, our understanding of the toxicological mechanisms responsible for such diarrhea remains limited, underscoring the urgent need to identify these mechanisms in order to develop effective anti-diarrheal medications tailored to this specific context. This review aims to elucidate management approaches and mechanisms for diarrhea induced by TKIs during HER2-positive breast cance.
Collapse
Affiliation(s)
- Kena Sun
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojia Wang
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Huanping Zhang
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guang Lin
- Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Ruiyuan Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
9
|
Rakshit G, Biswas A, Jayaprakash V. In Silico Drug Repurposing Studies for the Discovery of Novel Salicyl-AMP Ligase (MbtA)Inhibitors. Pathogens 2023; 12:1433. [PMID: 38133316 PMCID: PMC10745912 DOI: 10.3390/pathogens12121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Tuberculosis (TB) continues to pose a global health challenge, exacerbated by the rise of drug-resistant strains. The development of new TB therapies is an arduous and time-consuming process. To expedite the discovery of effective treatments, computational structure-based drug repurposing has emerged as a promising strategy. From this perspective, conditionally essential targets present a valuable opportunity, and the mycobactin biosynthesis pathway stands out as a prime example highlighting the intricate response of Mycobacterium tuberculosis (Mtb) to changes in iron availability. This study focuses on the repurposing and revival of FDA-approved drugs (library) as potential inhibitors of MbtA, a crucial enzyme in mycobactin biosynthesis in Mtb conserved among all species of mycobacteria. The literature suggests this pathway to be associated with drug efflux pumps, which potentially contribute to drug resistance. This makes it a potential target for antitubercular drug discovery. Herein, we utilized cheminformatics and structure-based drug repurposing approaches, viz., molecular docking, dynamics, and PCA analysis, to decode the intermolecular interactions and binding affinity of the FDA-reported molecules against MbtA. Virtual screening revealed ten molecules with significant binding affinities and interactions with MbtA. These drugs, originally designed for different therapeutic indications (four antiviral, three anticancer, one CYP450 inhibitor, one ACE inhibitor, and one leukotriene antagonist), were repurposed as potential MbtA inhibitors. Furthermore, our study explores the binding modes and interactions between these drugs and MbtA, shedding light on the structural basis of their inhibitory potential. Principal component analysis highlighted significant motions in MbtA-bound ligands, emphasizing the stability of the top protein-ligand complexes (PLCs). This computational approach provides a swift and cost-effective method for identifying new MbtA inhibitors, which can subsequently undergo validation through experimental assays. This streamlined process is facilitated by the fact that these compounds are already FDA-approved and have established safety and efficacy profiles. This study has the potential to lay the groundwork for addressing the urgent global health challenge at hand, specifically in the context of combating antimicrobial resistance (AMR) and tuberculosis (TB).
Collapse
Affiliation(s)
| | | | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India; (G.R.); (A.B.)
| |
Collapse
|
10
|
Son S, Elkamhawy A, Gul AR, Al-Karmalawy AA, Alnajjar R, Abdeen A, Ibrahim SF, Alshammari SO, Alshammari QA, Choi WJ, Park TJ, Lee K. Development of new TAK-285 derivatives as potent EGFR/HER2 inhibitors possessing antiproliferative effects against 22RV1 and PC3 prostate carcinoma cell lines. J Enzyme Inhib Med Chem 2023; 38:2202358. [PMID: 37096560 PMCID: PMC10132233 DOI: 10.1080/14756366.2023.2202358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.
Collapse
Affiliation(s)
- Seohyun Son
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Ahmed Elkamhawy
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Anam Rana Gul
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
- Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saud O Alshammari
- Department of Plant Chemistry and Natural Products, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - Won Jun Choi
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, BK21 FOUR Team and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
11
|
Schultz DF, Billadeau DD, Jois SD. EGFR trafficking: effect of dimerization, dynamics, and mutation. Front Oncol 2023; 13:1258371. [PMID: 37752992 PMCID: PMC10518470 DOI: 10.3389/fonc.2023.1258371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Spontaneous dimerization of EGF receptors (EGFR) and dysregulation of EGFR signaling has been associated with the development of different cancers. Under normal physiological conditions and to maintain homeostatic cell growth, once EGFR signaling occurs, it needs to be attenuated. Activated EGFRs are rapidly internalized, sorted through early endosomes, and ultimately degraded in lysosomes by a process generally known as receptor down-regulation. Through alterations to EGFR trafficking, tumors develop resistance to current treatment strategies, thus highlighting the necessity for combination treatment strategies that target EGFR trafficking. This review covers EGFR structure, trafficking, and altered surface expression of EGFR receptors in cancer, with a focus on how therapy targeting EGFR trafficking may aid tyrosine kinase inhibitor treatment of cancer.
Collapse
Affiliation(s)
| | - Daniel D. Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Seetharama D. Jois
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
12
|
Xuemei Z, Wuguo T. Analysis of ferroptosis-related genes in HER2-positive breast cancer and establishment of the nomogram. Asian J Surg 2023; 46:4083-4084. [PMID: 37100659 DOI: 10.1016/j.asjsur.2023.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Affiliation(s)
- Zhang Xuemei
- Department of Respiratory and Critical Care, Chongqing People's Hospital, Chongqing, 400013, China
| | - Tian Wuguo
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
13
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
14
|
Mandó P, Waisberg F, Pasquinelli R, Rivero S, Ostinelli A, Perazzo F. HER2-Directed Therapy in Advanced Breast Cancer: Benefits and Risks. Onco Targets Ther 2023; 16:115-132. [PMID: 36844609 PMCID: PMC9948634 DOI: 10.2147/ott.s335934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/20/2023] Open
Abstract
Around 20% of breast cancers are associated with amplification or overexpression of human epidermal growth factor receptor 2 (HER2). In this setting, anti-HER2-targeted agents are the cornerstone of cancer therapeutic strategies. This includes monoclonal antibodies, tyrosine kinase inhibitors (TKIs) and, recently, antibody-drug conjugates (ADCs). With the advent of these new alternatives, the decision-making process has become more complex, especially with regard to the treatment sequence possibilities. In spite of the fact that overall survival has significantly improved accordingly, resistance to treatment remains a challenge in HER2-positive breast cancer. The introduction of new agents has created awareness regarding new potential specific adverse events, and consequently, their increasing application pose major challenges in daily patient care. This review describes the therapeutic landscape for HER2-positive advanced breast cancer (ABC) and evaluates its benefits and risks in the clinical setting.
Collapse
Affiliation(s)
- Pablo Mandó
- Clinical Oncology Department, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Waisberg
- Clinical Oncology Department, Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rosario Pasquinelli
- Clinical Oncology Department, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Rivero
- Clinical Oncology Department, Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alexis Ostinelli
- Clinical Oncology Department, Instituto Alexander Fleming, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Perazzo
- Clinical Oncology Department, Centro de Educación Médica e Investigaciones Clínicas “Norberto Quirno” (CEMIC), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
Qi D, Dou Y, Zhang W, Wang M, Li Y, Zhang M, Qin J, Cao J, Fang D, Ma J, Yang W, Xie S, Sun H. The influence of verapamil on the pharmacokinetics of the pan-HER tyrosine kinase inhibitor neratinib in rats: the role of P-glycoprotein-mediated efflux. Invest New Drugs 2023; 41:13-24. [PMID: 36331675 DOI: 10.1007/s10637-022-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Neratinib, an irreversible pan-HER tyrosine kinase inhibitor, has been approved for the treatment of HER2-positive (HER2+) early-stage and brain metastatic breast cancer. Thus far, the pharmacology effects and pharmacodynamics of neratinib have been well studied. However, the disposition of neratinib and its influencing factors in vivo remain unclear. P-glycoprotein (P-gp), one of the most extensively studied transporters, substantially restricts penetration of drugs into the body or deeper compartments (i.e., blood-brain barrier, BBB), regarding drug resistance and drug-drug interactions. Thereby, the aim of this study was to investigate the influence of verapamil (a P-gp inhibitor) on the pharmacokinetics of neratinib in rats. Here, we have established a high specific, selective and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify plasma concentrations of neratinib in rats. Pharmacokinetic results showed that verapamil significantly increased the system exposure of neratinib, as Cmax increased by 2.09-fold and AUC0-t increased by 1.64-fold, respectively. Additionally, the in vitro transport of neratinib was evaluated using Madin-Darby canine kidney II (MDCK II) and human MDR1 gene overexpressed MDCK (MDCK-MDR1) cell line models. As a result, the net flux ratio was over than 2 and decreased over 50% by verapamil, suggesting that neratinib was a substrate of P-gp. Hence, our findings have highlighted the important role of P-gp in the system exposure of neratinib in vivo, and drug-drug interaction should be considered when coadministration of P-gp inhibitors with neratinib. These findings may support the further clinical development and application of neratinib.
Collapse
Affiliation(s)
- Defei Qi
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Yuanyuan Dou
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Wenke Zhang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Mengqing Wang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Yingying Li
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Mingzhu Zhang
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jia Qin
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jinlan Cao
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Dong Fang
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Jing Ma
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research), Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd, Guangzhou, 510980, Guangdong, China
| | - Songqiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
| | - Hua Sun
- School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, N. Jinming Ave, Kaifeng, 475004, Henan, China.
| |
Collapse
|
16
|
Design, Synthesis, Biological Evaluation, and Molecular Dynamics Studies of Novel Lapatinib Derivatives. Pharmaceuticals (Basel) 2022; 16:ph16010043. [PMID: 36678540 PMCID: PMC9862743 DOI: 10.3390/ph16010043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Co-expression of the epidermal growth factor receptor (EGFR, also known as ErbB1) and human epidermal growth factor receptor 2 (HER2) has been identified as a diagnostic or prognostic sign in various tumors. Despite the fact that lapatinib (EGFR/HER2 dual inhibitor) has shown to be successful, many patients do not respond to it or develop resistance for a variety of reasons that are still unclear. As a result, new approaches and inhibitory small molecules are still needed for EGFR/HER2 inhibition. Herein, novel lapatinib derivatives possessing 4-anilinoquinazoline and imidazole scaffolds (6a-l) were developed and screened as EGFR/HER2 dual inhibitors. In vitro and in silico investigations revealed that compound 6j has a high affinity for the ATP-binding regions of EGFR and HER2. All of the designed candidates were predicted to not penetrate the BBB, raising the expectation for the absence of CNS side effects. At 10 µM, derivatives possessing 3-chloro-4-(pyridin-2-ylmethoxy)aniline moiety (6i-l) demonstrated outstanding ranges of percentage inhibition against EGFR (97.65-99.03%) and HER2 (87.16-96.73%). Compound 6j showed nanomolar IC50 values over both kinases (1.8 nM over EGFR and 87.8 nM over HER2). Over EGFR, compound 6j was found to be 50-fold more potent than staurosporine and 6-fold more potent than lapatinib. A kinase selectivity panel of compound 6j showed poor to weak inhibitory activity over CDK2/cyclin A, c-MET, FGFR1, KDR/VEGFR2, and P38a/MAPK14, respectively. Structure-activity relationship (SAR) that were obtained with different substitutions were justified. Additionally, molecular docking and molecular dynamics studies revealed insights into the binding mode of the target compounds. Thus, compound 6j was identified as a highly effective and dual EGFR/HER2 inhibitor worthy of further investigation.
Collapse
|
17
|
Sharma V, Gupta M. Designing of kinase hinge binders: A medicinal chemistry perspective. Chem Biol Drug Des 2022; 100:968-980. [PMID: 35112799 DOI: 10.1111/cbdd.14024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 01/25/2023]
Abstract
Protein kinases are key regulators of cellular signaling and play a critical role in oncogenesis. Inhibitors of protein kinases are pursued by both industry and academia as a promising target for cancer therapy. Within the protein kinases, the ATP site has produced more than 40 FDA-approved drugs. The ATP site is broadly composed of a hinge region, gatekeeper residues, DFG-loop, ribose pocket, and other hydrophobic regions. The hinge region in the ATP site can be used for designing potent inhibitors. In this review, we discuss some representative studies that will highlight the interactions of heterocyclic compounds with hinge regions of different kinases like BRAF kinase, EGRF kinase, MAP kinase, and Mps1 kinase.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon, USA.,GreenLight Biosciences, Woburn, MA, United States
| |
Collapse
|
18
|
Lee MX, Wong ALA, Ow S, Sundar R, Tan DSP, Soo RA, Chee CE, Lim JSJ, Yong WP, Lim SE, Goh BC, Wang L, Lee SC. Phase Ib Dose-Finding Study of Varlitinib Combined with Weekly Paclitaxel With or Without Carboplatin ± Trastuzumab in Advanced Solid Tumors. Target Oncol 2022; 17:141-151. [PMID: 35195837 PMCID: PMC8995271 DOI: 10.1007/s11523-022-00867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Background Varlitinib is a highly potent, small-molecule, pan-HER inhibitor targeting HER1, HER2, and HER4. It has demonstrated activity in gastric, biliary tract, and breast cancers. Objective We conducted a phase Ib dose confirmation study to determine safety and early efficacy signals of varlitinib in combination with chemotherapy (paclitaxel ± carboplatin) ± subcutaneous trastuzumab. Methods Eligible patients had advanced or metastatic solid tumors. A 3+3 dose de-escalation study design was used and pharmacokinetic analyses of varlitinib and paclitaxel were performed. Results Thirty-seven patients were enrolled into eight cohorts with median 4 (0–14) prior lines of palliative systemic therapies. Carboplatin area under the curve 1.5 and paclitaxel 80 mg/m2 weekly with varlitinib 500 mg twice daily continuously was de-escalated over four dose levels to 300 mg twice daily intermittently (4 days on, 3 days off) due to dose-limiting toxicities, most commonly neutropenia, febrile neutropenia, and electrolyte disturbances, with the triplet combination deemed intolerable and unable to be developed further. Varlitinib was then combined with paclitaxel alone; the recommended phase II dose of varlitinib was 300 mg twice daily intermittently. The addition of subcutaneous trastuzumab 600 mg was safe with no dose-limiting toxicities. Thirty-one patients were evaluable for response: 35.5% partial response, 41.9% stable disease. Twenty patients had HER2+ metastatic breast cancer with a median of 4 (0–14) treatment lines, 8/20 continued on single-agent varlitinib after completing chemotherapy for a median of 5.1 (range 2.0–13.3) months. A pharmacokinetic analysis showed that plasma exposure of varlitinib was dose dependent. Varlitinib administration did not significantly affect the maximum concentration or area under the curve of paclitaxel. Conclusions The recommended phase II dose of varlitinib with paclitaxel is 300 mg twice daily intermittently dosed. This is active in HER2+ metastatic breast cancer. Subcutaneous trastuzumab can be added safely to varlitinib and paclitaxel. This combination is currently being evaluated as neoadjuvant therapy in HER2+ breast cancer (NCT02396108). Clinical Trial Registration: NCT02396108, date of registration: 25 March, 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00867-0.
Collapse
Affiliation(s)
- Matilda Xinwei Lee
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Andrea L A Wong
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Samuel Ow
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Joline S J Lim
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Level 7, NUHS Tower Block, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
19
|
Bayya C, Dokala A, Manda S. Novel 6, 7-disubstituted 7H-purine analogues as potential EGFR/HER2 dual kinase inhibitors overcome lapatinib resistance: Design, synthesis,in-vitroandin-vivoevaluation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Kolarov Bjelobrk I, Radic J, Trifunovic J, Pesic J, Vidovic V, Vranjkovic B, Petrovic N, Andrejic Visnjic B. The efficacy of lapatinib in patients with metastatic HER2 positive breast cancer who received prior therapy with monoclonal antibodies and antibody-drug conjugate: a single institutional experience. J Chemother 2021; 34:264-271. [PMID: 34844517 DOI: 10.1080/1120009x.2021.2009722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The choice of the anti-HER2 agent depends on country-specific availability, the specific, previously administered anti-HER2 therapy and the relapse-free interval, although there is not much published data on the use of lapatinib after progression on pertuzumab and/or T-DM1. The aim of this research is to determine efficacy of lapatinib in this setting. This research included 111 patients with metastatic HER2 positive breast cancer who received lapatinib with capecitabine at The Oncology Institute of Vojvodina. Lapatinib was given to 83 patients after trastuzumab without prior exposure to pertuzumab or T-DM1 while 28 patients received lapatinib after prior exposure to trastuzumab, pertuzumab and/or T-DM1. In order to determine efficacy of lapatinib in both groups, we measured progression free survival (PFS) and overall survival (OS), as well as by subsets: hormonal status (ER-positive and/or PR-positive tumours versus ER-negative and PR-negative tumours), the number of positive axillary lymph nodes (four or more positive axillary lymph nodes versus less than four positive axillary lymph nodes), marker of proliferation (Ki-67 ≥ 30 versus Ki-67 < 30), disease free interval (metastatic recurrence ≤ 1 year after initial diagnosis versus metastatic recurrence > 1 year after initial diagnosis or de novo metastatic disease. Median PFS was 5.6 months (95% CI 4.6-6.6) in the group of patients who received lapatinib after prior exposure to trastuzumab, pertuzumab and/or T-DM 1 and 7.4 months (95% CI 6.1-10.2) in the group of patients who received lapatinib after trastuzumab (HR, 0.79; 95% CI 0.61-0.98; P = 0.09). The patients with negative prognostic factors such as hormone receptor negativity, more than four positive axillary lymph nodes, marker of proliferation Ki 67 ≥ 30 and metastatic recurrence ≤ 1 year after initial diagnosis, had a similar PFS, regardless of receiving lapatinib after prior exposure to trastuzumab, pertuzumab and/or T-DM1 or without prior exposure. Median OS was 10.1 months (95% CI 8.6-NR) in the group that received lapatinib after exposure to trastuzumab, pertuzumab and/or T-DM1 and 16.3 months (95% CI 14.4-20.2) in the group of patients who received lapatinib after trastuzumab (HR, 0.76; 95% CI, 0.59-0.94; P = 0.04). Patients with negative prognostic factors such as hormone receptor negativity, more than four positive axillary lymph nodes and marker of proliferation Ki 67 ≥ 30, had no distinctly worse OS, regardless of receiving lapatinib after prior exposure to trastuzumab, pertuzumab and/or T-DM1 or without prior exposure. Lapatinib with capecitabine is an effective therapeutic option, especially in patients with negative prognostic factors, who have received prior chemotherapy, trastuzumab, pertuzumab, T-DM1 and remains an acceptable option for HER2 positive metastatic breast cancer until the novel drugs are approved in developing countries.
Collapse
Affiliation(s)
- Ivana Kolarov Bjelobrk
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia.,Medical faculty, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Radic
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia.,Medical faculty, University of Novi Sad, Novi Sad, Serbia
| | - Jasna Trifunovic
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia.,Medical faculty, University of Novi Sad, Novi Sad, Serbia
| | - Jasna Pesic
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Vladimir Vidovic
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Bojana Vranjkovic
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
| | - Nemanja Petrovic
- Department of Medical Oncology, Oncology Institute of Vojvodina, Sremska Kamenica, Serbia.,Medical faculty, University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
21
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
22
|
Li HT, Zhu X. Quinoline-based Compounds with Potential Activity against Drugresistant Cancers. Curr Top Med Chem 2021; 21:426-437. [PMID: 32552650 DOI: 10.2174/1568026620666200618113957] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major cause of the failure of cancer chemotherapy, so one of the most important features in developing effective cancer therapeutic strategies is to overcome drug resistance. Quinoline moiety has become one of the most privileged structural motifs in anticancer agent discovery since its derivatives possess potent activity against various cancers including drug-resistant cancers. Several quinoline-based compounds which are represented by Anlotinib, Bosutinib, Lenvatinib, and Neratinib have already been applied in clinical practice to fight against cancers, so quinoline-based compounds are potential anticancer agents. The present short review article provides an overview of the recent advances of quinoline-based compounds with potential activity against drug-resistant cancers. The structure-activity relationship and mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Huan-Ting Li
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Xiaoyong Zhu
- Department of Oncology, Zhuji Affiliated Hospital of Shaoxing University, Zhejiang Province 311800, China
| |
Collapse
|
23
|
Discovery of first-in-class imidazothiazole-based potent and selective ErbB4 (HER4) kinase inhibitors. Eur J Med Chem 2021; 224:113674. [PMID: 34237622 DOI: 10.1016/j.ejmech.2021.113674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
This article reports on novel imidazothiazole derivatives as first-in-class potent and selective ErbB4 (HER4) inhibitors. There are no other reported selective inhibitors of this kinase in the literature, that's why they are considered as first-in-class. In addition, none of the reported non-selective ErbB4 inhibitors possesses imidazothiazole nucleus in its structure. Therefore, there is novelty in this work in both kinase selectivity and chemical structure. Compounds Ik and IIa are the most potent ErbB4 kinase inhibitor (IC50 = 15.24 and 17.70 nM, respectively). Compound Ik showed promising antiproliferative activity. It is selective towards cancer cell lines than normal cells. Its ability to penetrate T-47D cell membrane and inhibit ErbB4 kinase inside the cells has been confirmed. Moreover, both compound Ik and IIa have additional merits such as weak potency against hERG ion channels and against CYP 3A4 and 2D6. Molecular docking and dynamic simulation studies were carried out to explain binding interactions.
Collapse
|
24
|
Yuan Y, Lee JS, Yost SE, Stiller T, Blanchard MS, Padam S, Katheria V, Kim H, Sun C, Tang A, Martinez N, Patel ND, Sedrak MS, Waisman J, Li D, Sanani S, Presant CA, Mortimer J. Phase II study of neratinib in older adults with HER2 amplified or HER2/3 mutated metastatic breast cancer. J Geriatr Oncol 2021; 12:752-758. [PMID: 33663941 PMCID: PMC8580161 DOI: 10.1016/j.jgo.2021.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The tolerability and efficacy of targeted therapy in older adults with cancer has not been adequately studied. Neratinib is a novel HER1, HER2, HER4 tyrosine kinase inhibitor that has recently been granted FDA approval for treatment of breast cancer. The major toxicity of neratinib is diarrhea, which affects up to 90% of patients. This phase II trial evaluates the safety and tolerability of neratinib in adults ≥60. METHODS Patients aged 60 or older with histologically proven metastatic breast cancer and HER2 amplification (defined by ASCO/CAP guideline) or HER2/HER3 activating mutation were enrolled to receive neratinib at 240 mg daily in 28-day cycles. The association between tolerability, defined as dose reduction and number of completed courses, and log2 Cancer and Aging Research Group (CARG) toxicity risk score was assessed using a Student's t-test and linear regression, respectively. Response rate, progression free survival, and overall survival were also evaluated. RESULTS 25 patients were enrolled with median age of 66 (range 60-79). Seventy-six percent of patients were white, 16% Asian, and 8% African-American. Seventy-six percent were patients with hormone receptor (HR) positive metastatic breast cancer (MBC) and 24% were patients with HR negative MBC. Median number of prior lines of metastatic therapy were 3 (range 0-11). 20/25 (80%) had worst grade toxicities ≥2. A total of 9/25 (36%) had grade 3 toxicities including 5/20 (20%) diarrhea, 2/20 (8%) vomiting, and 2/20 (8%) abdominal pain. There were no grade 4 or 5 toxicities. A total of 9/25 (36%) had dose reduction, and 2/25 (8%) discontinued therapy due to toxicity. The association between dose reductions and CARG toxicity score reached borderline statistical significance suggesting a trend with participants with higher CARG toxicity risk scores being more likely to require a dose modification (p = 0.054). 1/25 (4%) had a partial response, 11/25 (44%) had stable disease, 12/25 (48%) had progression of disease, and 1/25 (4%) was not assessed. Median progression free survival (PFS) was 2.6 months (95% CI [2.56-5.26]), and median overall survival (OS) was 17.4 months (95% CI [10.3, NA]). CONCLUSIONS Neratinib was safe in this population of older adults with HER2 amplified or HER2/3 mutated metastatic breast cancer (BC). Higher CARG toxicity risk score may be associated with greater need for dose adjustments. Future studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America.
| | - Jin Sun Lee
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Susan E Yost
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Tracey Stiller
- Department of Biostatistics, City of Hope National Medical Center, Duarte, CA, United States of America
| | - M Suzette Blanchard
- Department of Biostatistics, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Simran Padam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Vani Katheria
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Heeyoung Kim
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Canlan Sun
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Aileen Tang
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Norma Martinez
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Niki Dipesh Patel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Mina S Sedrak
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - James Waisman
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Daneng Li
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| | - Shamel Sanani
- City of Hope National Medical Center, Mission Hills, CA, United States of America
| | - Cary A Presant
- City of Hope National Medical Center, West Covina, CA, United States of America
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States of America
| |
Collapse
|
25
|
Liang X, Yang Q, Wu P, He C, Yin L, Xu F, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015-2020. Bioorg Chem 2021; 113:105011. [PMID: 34091289 DOI: 10.1016/j.bioorg.2021.105011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023]
Abstract
In the 21st century, cancer is the major public health problem worldwide. Based on the important roles of protein tyrosine kinase, the accelerated hunt for potent small-molecule tyrosine kinase inhibitors has led to the success of 30 newly inhibitors in this family for the cancer therapy in last five years. In this review, we updated their synthesis methods, and compared the original research routes with the optimized routes for each PTK inhibitor against different target, in order to make an outlook on the future synthesis of potential PTK inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Qian Yang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Pan Wu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Funeng Xu
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of veterinary medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| |
Collapse
|
26
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
27
|
Wong CW, Yost SE, Lee JS, Gillece JD, Folkerts M, Reining L, Highlander SK, Eftekhari Z, Mortimer J, Yuan Y. Analysis of Gut Microbiome Using Explainable Machine Learning Predicts Risk of Diarrhea Associated With Tyrosine Kinase Inhibitor Neratinib: A Pilot Study. Front Oncol 2021; 11:604584. [PMID: 33796451 PMCID: PMC8008168 DOI: 10.3389/fonc.2021.604584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
Neratinib has great efficacy in treating HER2+ breast cancer but is associated with significant gastrointestinal toxicity. The objective of this pilot study was to understand the association of gut microbiome and neratinib-induced diarrhea. Twenty-five patients (age ≥ 60) were enrolled in a phase II trial evaluating safety and tolerability of neratinib in older adults with HER2+ breast cancer (NCT02673398). Fifty stool samples were collected from 11 patients at baseline and during treatment. 16S rRNA analysis was performed and relative abundance data were generated. Shannon's diversity was calculated to examine gut microbiome dysbiosis. An explainable tree-based approach was utilized to classify patients who might experience neratinib-related diarrhea (grade ≥ 1) based on pre-treatment baseline microbial relative abundance data. The hold-out Area Under Receiver Operating Characteristic and Area Under Precision-Recall Curves of the model were 0.88 and 0.95, respectively. Model explanations showed that patients with a larger relative abundance of Ruminiclostridium 9 and Bacteroides sp. HPS0048 may have reduced risk of neratinib-related diarrhea and was confirmed by Kruskal-Wallis test (p ≤ 0.05, uncorrected). Our machine learning model identified microbiota associated with reduced risk of neratinib-induced diarrhea and the result from this pilot study will be further verified in a larger study. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT02673398.
Collapse
Affiliation(s)
- Chi Wah Wong
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Susan E. Yost
- Department of Medical Oncology & Therapeutic Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Jin Sun Lee
- Department of Medical Oncology & Therapeutic Research, City of Hope National Medical Center, Duarte, CA, United States
| | - John D. Gillece
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, United States
| | - Megan Folkerts
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, United States
| | - Lauren Reining
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, United States
| | - Sarah K. Highlander
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, AZ, United States
| | - Zahra Eftekhari
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, United States
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutic Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Yuan Yuan
- Department of Medical Oncology & Therapeutic Research, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
28
|
Gameiro A, Almeida F, Nascimento C, Correia J, Ferreira F. Tyrosine Kinase Inhibitors Are Promising Therapeutic Tools for Cats with HER2-Positive Mammary Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13030346. [PMID: 33800900 PMCID: PMC8002158 DOI: 10.3390/pharmaceutics13030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common neoplasia in cat, being HER2-positive the most prevalent subtype. In woman’s breast cancer, tyrosine kinase inhibitors (TKi) are used as a therapeutic option, by blocking the phosphorylation of the HER2 tyrosine kinase domain. Moreover, clinical trials demonstrated that TKi produce synergistic antiproliferative effects in combination with mTOR inhibitors, overcoming resistance to therapy. Thus, to uncover new chemotherapeutic strategies for cats, the antiproliferative effects of two TKi (lapatinib and neratinib), and their combination with a mTOR inhibitor (rapamycin), were evaluated in FMC cell lines (CAT-M, FMCp and FMCm) and compared with a human breast cancer cell line (SkBR-3). Results revealed that both TKi induced antiproliferative effects in all feline cell lines, by blocking the phosphorylation of EGFR members and its downstream effectors. Furthermore, combined treatments with rapamycin presented synergetic antiproliferative effects. Additionally, the DNA sequence of the her2 TK domain (exons 18 to 20) was determined in 40 FMC tissue samples, and despite several mutations were found none of them were described as inducing resistance to therapy. Altogether, our results demonstrated that TKi and combined protocols may be useful in the treatment of cats with mammary carcinomas, and that TKi-resistant FMC are rare.
Collapse
Affiliation(s)
- Andreia Gameiro
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
| | - Filipe Almeida
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
- Antiviral Resistance Laboratory, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Catarina Nascimento
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
| | - Jorge Correia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
| | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (F.A.); (C.N.); (J.C.)
- Correspondence: ; Tel.: +351-21-365-2800 (ext. 431234)
| |
Collapse
|
29
|
Prabhavathi H, Dasegowda KR, Renukananda KH, Karunakar P, Lingaraju K, Raja Naika H. Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents. J Biomol Struct Dyn 2020; 40:4713-4724. [PMID: 33345701 DOI: 10.1080/07391102.2020.1861982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is the most prevalent cancer in women worldwide. To treat human breast cancer by inhibiting EGFR and HER2 targets is an important therapeutic option. Phytochemicals are found to have beneficial health effects in treating various diseases. An effort has been made to virtually screen phytochemical inhibitor by molecular docking and dynamic simulation in the current studies. The docking scores analysis resulted in a common hit Panaxadiol ligand with a low dock score for EGFR and HER2 targets. The inhibitory action of the phytocompounds was also validated by comparing it with the reference compounds Erlotinib for EGFR and Neratinib for HER2. Molecular dynamic simulation of EGFR and HER2 lead complexes ensure the ligand's appropriate refinement in the dynamic system. The target and ligand complex interaction motif established a high affinity of lead candidates in a dynamic system similar to molecular docking results. This study reveals that Panaxadiol hit molecule can be developed as a novel multi-target EGFR and HER2 target inhibitor with greater potential and low toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- H Prabhavathi
- Department of Studies & Research in Biotechnology, Tumkur University, Tumakuru, Karnataka, India
| | - K R Dasegowda
- Department of Biotechnology & Genetics, Ramaiah College of Arts, Science and Commerce, Bangalore, Karnataka, India
| | - K H Renukananda
- Department of Mechanical Engineering, RV Institute of Technology and Management, Bangalore, Karnataka, India
| | | | - K Lingaraju
- Department of Studies & Research in Biotechnology, Tumkur University, Tumakuru, Karnataka, India
| | - H Raja Naika
- Department of Studies & Research in Biotechnology, Tumkur University, Tumakuru, Karnataka, India
| |
Collapse
|
30
|
Ardestani A, Li S, Annamalai K, Lupse B, Geravandi S, Dobrowolski A, Yu S, Zhu S, Baguley TD, Surakattula M, Oetjen J, Hauberg-Lotte L, Herranz R, Awal S, Altenhofen D, Nguyen-Tran V, Joseph S, Schultz PG, Chatterjee AK, Rogers N, Tremblay MS, Shen W, Maedler K. Neratinib protects pancreatic beta cells in diabetes. Nat Commun 2019; 10:5015. [PMID: 31676778 PMCID: PMC6825211 DOI: 10.1038/s41467-019-12880-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023] Open
Abstract
The loss of functional insulin-producing β-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic β-cell death and dysfunction; its deficiency restores functional β-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a β-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves β-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves β-cell function, survival and β-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential β-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes. Type 1 as well as type 2 diabetes are characterized by a loss of insulin-producing β-cells. Here the authors show that the FDA-approved drug neratinib has beneficial effects on β-cell survival, insulin secretion, and glycemic control in mouse models of diabetes.
Collapse
Affiliation(s)
- Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| | - Sijia Li
- Calibr at Scripps Research, La Jolla, CA, USA
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Shan Yu
- Calibr at Scripps Research, La Jolla, CA, USA
| | - Siying Zhu
- Calibr at Scripps Research, La Jolla, CA, USA
| | | | | | - Janina Oetjen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Center for Industrial Mathematics, University of Bremen, Bremen, Germany.,MALDI Imaging Lab, University of Bremen, Bremen, Germany
| | - Lena Hauberg-Lotte
- Center for Industrial Mathematics, University of Bremen, Bremen, Germany
| | - Raquel Herranz
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Sushil Awal
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Delsi Altenhofen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Sean Joseph
- Calibr at Scripps Research, La Jolla, CA, USA
| | | | | | | | | | - Weijun Shen
- Calibr at Scripps Research, La Jolla, CA, USA.
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| |
Collapse
|
31
|
Lysyy T, Lalani AS, Olek EA, Diala I, Geibel JP. The calcium-sensing receptor: A novel target for treatment and prophylaxis of neratinib-induced diarrhea. Pharmacol Res Perspect 2019; 7:e00521. [PMID: 31523434 PMCID: PMC6743423 DOI: 10.1002/prp2.521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 11/08/2022] Open
Abstract
Diarrhea is one of the most commonly reported adverse effect of hemotherapy and targeted cancer therapies, such as tyrosine kinase inhibitors (TKI), which often significantly impact patient quality of life, morbidity, and mortality. Neratinib is an oral, irreversible pan-HER tyrosine kinase inhibitor, which is clinically active in HER2-positive breast cancer. Diarrhea is the most common side effect of this potent anticancer drug and the reasons for this adverse effect are still largely unclear. We have recently shown that activation of the calcium-sensing Receptor (CaSR) can inhibit secretagogue-induced diarrhea in the colon, therefore we hypothesized that CaSR activation may also mitigate neratinib-induced diarrhea. Using an established ex vivo model of isolated intestinal segments, we investigated neratinib-induced fluid secretion and the ability of CaSR activation to abate the secretion. In our study, individual segments of the rat intestine (proximal, middle, distal small intestine, and colon) were procured and perfused intraluminally with various concentrations of neratinib (10, 50, 100 nmol L-1). In a second set of comparison experiments, intraluminal calcium concentration was modulated (from 1.0 to 5.0 or 7.0 mmol L-1), both pre- and during neratinib exposure. In a separate series of experiments R-568, a known calcimimetic was used CaSR activation and effect was compared to elevated Ca2+ concentration (5.0 and 7.0 mmol L-1). As a result, CaSR activation with elevated Ca2+ concentration (5.0 and 7.0 mmol L-1) or R-568 markedly reduced neratinib-induced fluid secretion in a dose-dependent manner. Pre-exposure to elevated luminal calcium solutions (5.0 and 7.0 mmol L-1) also prevented neratinib-induced fluid secretion. In conclusion, exposure to luminal neratinib resulted in a pronounced elevation in fluid secretion in the rat intestine. Increasing luminal calcium inhibits the neratinib-associated fluid secretion in a dose-dependent manner. These results suggest that CaSR activation may be a potent therapeutic target to reduce chemotherapy-associated diarrhea.
Collapse
Affiliation(s)
- Taras Lysyy
- Department of SurgeryYale University School of MedicineNew HavenCTUSA
| | | | | | | | - John P. Geibel
- Department of SurgeryYale University School of MedicineNew HavenCTUSA
- Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
32
|
Ye L, Zhao T, Du W, Li A, Gao W, Li J, Wang L, Chen W. Discovery of aminopyridine-containing spiro derivatives as EGFR mutations inhibitors. J Enzyme Inhib Med Chem 2019; 34:1233-1246. [PMID: 31286784 PMCID: PMC6691816 DOI: 10.1080/14756366.2019.1634704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neratinib is an oral pan HER inhibitor, that irreversibly inhibits EGFR and HER2 and was proven to be effective against multiple EGFR mutations. In previous study, we reported spiro [indoline-3, 4′-piperidine]-2-ones as anticancer agents. In this study, we designed aminopyridine-containing spiro [indoline-3,4′-piperidine] derivatives A1-A4 using Neratinib and spiro [indoline-3, 4′-piperidine]-2-one compound patented as lead structure, then replaced piperidine with cyclopropane to obtain B1-B7 and replaced indoline with benzmorpholine to get C1-C4 and D1-D2. We synthesized these compounds and evaluated their residual activities under 0.5 M drug concentration on EGFR and ERBB2. Most of compounds showed stronger inhibition on EGFR-wt and ERBB2, in which A1-A4 showed excellent inhibitory activity with inhibition percentage on EGFR-wt kinase of 7%, 6%, 19%, 27%, respectively and 9%, 5%, 12%, 34% on ERBB2 kinase compared with 2% and 6% of Neratinib.
Collapse
Affiliation(s)
- Lianbao Ye
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | - Tao Zhao
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | - Wenjun Du
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | - Anhu Li
- b Esa Biotech Co., LTD. , Guangzhou , China
| | - Wei Gao
- a School of Pharmacy , Guangdong Pharmaceutical University , Guangzhou , China
| | | | - Ling Wang
- d Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering , South China University of Technology , Guangzhou , China
| | - Weiqiang Chen
- c School of Basic Courses , Guangdong Pharmaceutical University , Guangzhou , China
| |
Collapse
|
33
|
Li J, Xiao Q, Bao Y, Wang W, Goh J, Wang P, Yu Q. HER2-L755S mutation induces hyperactive MAPK and PI3K-mTOR signaling, leading to resistance to HER2 tyrosine kinase inhibitor treatment. Cell Cycle 2019; 18:1513-1522. [PMID: 31135266 DOI: 10.1080/15384101.2019.1624113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
L755S, a HER2 kinase domain mutation, is the most common HER2 mutation in breast cancer associated with resistance to anti-HER2 trastuzumab treatment. Here, we showed that HER2-L755S confers hyperactivation of MAPK and PI3K/AKT/mTOR pathways and resistance to both reversible and irreversible HER2 tyrosine kinase inhibitors. We further demonstrated that the HER2 TKIs in combination with MEK inhibitor, AZD6244, or PI3K inhibitor, GDC0941, yield robust killing in HER2-L755S cancer cells, indicating a novel targeted strategy to overcome HER2-L755S resistance to anti-HER2 treatment.
Collapse
Affiliation(s)
- Jiayao Li
- a School of Pharmacy , Jinan University , Guangzhou , China.,b Cancer Research Institute , Jinan University , Guangzhou , China
| | - Qian Xiao
- a School of Pharmacy , Jinan University , Guangzhou , China.,b Cancer Research Institute , Jinan University , Guangzhou , China
| | - Yi Bao
- c Cancer Therapeutics and Stratified Oncology , Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research) , Biopolis , Singapore
| | - Wenyu Wang
- c Cancer Therapeutics and Stratified Oncology , Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research) , Biopolis , Singapore
| | - Jianyuan Goh
- c Cancer Therapeutics and Stratified Oncology , Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research) , Biopolis , Singapore
| | - Panpan Wang
- a School of Pharmacy , Jinan University , Guangzhou , China.,b Cancer Research Institute , Jinan University , Guangzhou , China
| | - Qiang Yu
- b Cancer Research Institute , Jinan University , Guangzhou , China.,c Cancer Therapeutics and Stratified Oncology , Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research) , Biopolis , Singapore
| |
Collapse
|
34
|
Kotecki N, Gombos A, Awada A. Adjuvant therapeutic approaches of HER2-positive breast cancer with a focus on neratinib maleate. Expert Rev Anticancer Ther 2019; 19:447-454. [DOI: 10.1080/14737140.2019.1613892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- N. Kotecki
- Oncology Medicine Department, Jules Bordet Institute, Université Libre de Bruxelles
| | - A. Gombos
- Oncology Medicine Department, Jules Bordet Institute, Université Libre de Bruxelles
| | - A. Awada
- Oncology Medicine Department, Jules Bordet Institute, Université Libre de Bruxelles
| |
Collapse
|
35
|
Koshkin VS, O’Donnell P, Yu EY, Grivas P. Systematic Review: Targeting HER2 in Bladder Cancer. Bladder Cancer 2019. [DOI: 10.3233/blc-180196] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vadim S. Koshkin
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, CA, USA
| | - Peter O’Donnell
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Evan Y. Yu
- Department of Medicine, Division of Oncology, Clinical Research Director, Fred Hutchinson Cancer Research Center, University of Washington, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Petros Grivas
- Department of Medicine, Division of Oncology, University of Washington, Seattle Cancer Care Alliance, Seattle, WA, USA
| |
Collapse
|
36
|
Jin S, Sun X, Liu D, Xie H, Rao Y. Design, synthesis and biological study of potent and covalent HER-2 tyrosine kinase inhibitors with low cytotoxicity in vitro. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00686-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Systemic Treatment Drugs and Regimens. Breast Cancer 2019. [DOI: 10.1007/978-3-319-96947-3_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
La Salvia A, Lopez-Gomez V, Garcia-Carbonero R. HER2-targeted therapy: an emerging strategy in advanced colorectal cancer. Expert Opin Investig Drugs 2018; 28:29-38. [PMID: 30513002 DOI: 10.1080/13543784.2019.1555583] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most common malignant tumors; it is a focus of research globally, but the identification of clinically actionable oncogenic drivers remains elusive. Human epidermal growth factor receptor 2 (HER2) activation is present in approximately 5% of CRC and has acquired resistance to epidermal growth factor receptor (EGFR)-targeted therapy. Early clinical trials suggest an emerging role for personalized HER2-targeted therapy in a subset of metastatic CRC. AREAS COVERED This manuscript reviews the relevance of HER2 activation in CRC and its potential role as a target for therapy. A literature search was conducted in June 2018 of MEDLINE and EMBASE databases for published preclinical and clinical studies; abstracts of international cancer meetings (AACR, ASCO, and ESMO) were also reviewed. EXPERT OPINION HER2 is activated in a small but relevant proportion of CRC patients (particularly left-side, RAS wild-type, anti-EGFR resistant tumors). Dual HER2 blockade with monoclonal antibodies (mAbs) (trastuzumab and pertuzumab) or the combination of mAbs with tyrosine kinase inhibitors (trastuzumab and lapatinib) induces durable tumor responses in about one-third of HER2-positive CRC refractory to standard systemic therapy. Although immature, these results are remarkable and anticipate an expanding role for HER2 as a therapeutic target in CRC.
Collapse
Affiliation(s)
- Anna La Salvia
- a Oncology Department , Hospital Universitario 12 de Octubre , Madrid , Spain.,b Oncology Department , San Luigi Gonzaga Hospital , Orbassano , Italy
| | | | - Rocio Garcia-Carbonero
- a Oncology Department , Hospital Universitario 12 de Octubre , Madrid , Spain.,c Oncology Department , Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12), CNIO, CIBERONC, UCM , Madrid , Spain
| |
Collapse
|
39
|
Abstract
Neratinib is a tyrosine kinase inhibitor that was FDA-approved for extended adjuvant treatment in adults with human epidermal growth factor receptors-2 (HER-2) positive breast cancer in 2017. Due to the novelty of the drug, there are no current reports in the literature of adverse cutaneous effects associated with neratinib therapy. We present a case of a woman on neratinib for HER-2 positive infiltrating ductal carcinoma of the right breast who presented to the dermatology clinic with changes to the fingernails, acne, and a rash on the face. Physical examination revealed erythema, induration, and some serum crust along the lateral nail folds of the right fourth and left third digits as well as monomorphic acneiform papules and pustules on the face. The timeline of the patient's paronychia and acneiform rash were consistent with a diagnosis of neratinib-associated skin changes. The patient was prescribed doxycycline to control the acneiform eruption. For the nails, she used mupirocin ointment as well as Listerine soaks. She experienced great improvement on this regimen at her 3-month follow-up visit. This case highlights similar cutaneous side effects to epidermal growth factor receptor (EGFR) inhibitors with a newer agent, neratinib, that have not been documented in the literature.
Collapse
Affiliation(s)
- Ramiz N Hamid
- a Department of Dermatology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Christine S Ahn
- a Department of Dermatology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - William W Huang
- a Department of Dermatology , Wake Forest School of Medicine , Winston-Salem , NC , USA
| |
Collapse
|
40
|
Phase 1b Study of Trebananib Plus Paclitaxel and Trastuzumab in Patients With HER2-Positive Locally Recurrent or Metastatic Breast Cancer. Clin Breast Cancer 2018; 19:47-57. [PMID: 30420181 DOI: 10.1016/j.clbc.2018.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Trebananib, a peptide-Fc fusion protein, blocks angiogenesis by inhibiting binding of angiopoietin-1/2 to the receptor tyrosine kinase Tie2. Trebananib plus trastuzumab and paclitaxel was evaluated in human epidermal growth factor receptor 2-positive breast cancer in an open-label phase 1b clinical study. PATIENTS AND METHODS Women with human epidermal growth factor receptor 2-positive breast cancer received weekly paclitaxel (80 mg/m2), trastuzumab (8 mg/m2 then 6 mg/kg every 3 weeks), and intravenous trebananib (10 mg/kg or 30 mg/kg weekly) beginning week 2. The primary end point was the incidence of dose-limiting toxicities. Secondary end points included incidence of adverse events (AEs), pharmacokinetics, and tumor response (objective response and duration of response). RESULTS Forty women were enrolled; 2 experienced dose-limiting toxicities (grade 3 ocular transient ischemic attack [10 mg/kg cohort] and grade 3 elevation in γ-glutamyl transferase [30 mg/kg cohort]). The most common treatment-emergent AEs were peripheral edema (n = 28), diarrhea (n = 27), alopecia (n = 26), fatigue (n = 24), and nausea (n = 24). Maximum observed concentration and area under the concentration-time curve increased proportionally with the trebananib dose. Objective response was confirmed in 31 patients. In the 10 mg/kg cohort, 16 patients (80%) experienced partial response, and none experienced complete response. In the 30 mg/kg cohort, 12 patients (71%) experienced partial response and 3 (18%) experienced complete response. Median (95% confidence interval) duration of response in the 10 and 30 mg/kg cohorts was 12.6 (4.3-20.2) and 16.6 (8.2-not estimable) months, respectively. CONCLUSION This phase 1b study showed that trebananib was tolerated with manageable AEs at a dose up to 30 mg/kg weekly. Trebananib demonstrated anticancer activity, as indicated by objective response and duration of response.
Collapse
|
41
|
Karakas B, Ozmay Y, Basaga H, Gul O, Kutuk O. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1073-1087. [PMID: 29733883 DOI: 10.1016/j.bbamcr.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/25/2023]
Abstract
Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells.
Collapse
Affiliation(s)
- Bahriye Karakas
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Yeliz Ozmay
- Baskent University School of Medicine, Dept. of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey
| | - Huveyda Basaga
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey
| | - Ozgur Gul
- Bilgi University, Dept. of Genetics and Bioengineering, Istanbul, Turkey
| | - Ozgur Kutuk
- Baskent University School of Medicine, Dept. of Medical Genetics, Adana Dr. Turgut Noyan Medical and Research Center, Adana, Turkey.
| |
Collapse
|
42
|
Watson SS, Dane M, Chin K, Tatarova Z, Liu M, Liby T, Thompson W, Smith R, Nederlof M, Bucher E, Kilburn D, Whitman M, Sudar D, Mills GB, Heiser LM, Jonas O, Gray JW, Korkola JE. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes. Cell Syst 2018; 6:329-342.e6. [PMID: 29550255 PMCID: PMC5927625 DOI: 10.1016/j.cels.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/16/2017] [Accepted: 02/02/2018] [Indexed: 01/19/2023]
Abstract
Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ~2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Cell Line, Tumor
- Databases, Genetic
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, erbB-2/drug effects
- Genes, erbB-2/genetics
- Genes, erbB-2/physiology
- High-Throughput Screening Assays/methods
- Humans
- Lapatinib/pharmacology
- MCF-7 Cells
- Mice
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Quinazolines/pharmacology
- Quinolines/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-3/antagonists & inhibitors
- Signal Transduction/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/physiology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mark Dane
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Koei Chin
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Zuzana Tatarova
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Moqing Liu
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Tiera Liby
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wallace Thompson
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michel Nederlof
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Quantitative Imaging Systems LLC, 1410 NW Kearney Street, #1114, Portland, OR 97209, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - David Kilburn
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Matthew Whitman
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Damir Sudar
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Quantitative Imaging Systems LLC, 1410 NW Kearney Street, #1114, Portland, OR 97209, USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Oliver Jonas
- Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - James E Korkola
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
43
|
Aguilar-Company J, Fernández-Ruiz M, García-Campelo R, Garrido-Castro AC, Ruiz-Camps I. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Cell surface receptors and associated signaling pathways). Clin Microbiol Infect 2018; 24 Suppl 2:S41-S52. [PMID: 29426804 DOI: 10.1016/j.cmi.2017.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The present review is part of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) consensus document on the safety of targeted and biologic therapies. AIMS To review, from an infectious diseases perspective, the safety profile of therapies targeting cell surface receptors and associated signaling pathways among cancer patients and to suggest preventive recommendations. SOURCES Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Vascular endothelial growth factor (VEGF)-targeted agents (bevacizumab and aflibercept) are associated with a meaningful increase in the risk of infection, likely due to drug-induced neutropaenia, although no clear benefit is expected from the universal use of anti-infective prophylaxis. VEGF tyrosine kinase inhibitors (i.e. sorafenib or sunitinib) do not seem to significantly affect host's susceptibility to infection, and universal anti-infective prophylaxis is not recommended either. Anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab or panitumumab) induce neutropaenia and secondary skin and soft tissue infection in cases of severe papulopustular rash. Systemic antibiotics (doxycycline or minocycline) should be administered to prevent the latter complication, whereas no recommendation can be established on the benefit from antiviral, antifungal or anti-Pneumocystis prophylaxis. A lower risk of infection is reported for anti-ErbB2/HER2 monoclonal antibodies (trastuzumab and pertuzumab) and ErbB receptor tyrosine kinase inhibitors (including dual-EGFR/ErbB2 inhibitors such as lapatinib or neratinib) compared to conventional chemotherapy, presumably as a result of the decreased occurrence of drug-induced neutropaenia. IMPLICATIONS With the exception of VEGF-targeted agents, the overall risk of infection associated with the reviewed therapies seems to be low.
Collapse
Affiliation(s)
- J Aguilar-Company
- Departments of Infectious Diseases and Oncology, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i + 12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - R García-Campelo
- Department of Medical Oncology, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - A C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - I Ruiz-Camps
- Department of Infectious Diseases, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
44
|
Hibler BP, Yan BY, Marchetti MA, Momtahen S, Busam KJ, Rossi AM. Facial swelling and foreign body granulomatous reaction to hyaluronic acid filler in the setting of tyrosine kinase inhibitor therapy. J Eur Acad Dermatol Venereol 2018; 32:e225-e227. [PMID: 29224214 DOI: 10.1111/jdv.14749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B P Hibler
- Dermatology Service, Memorial Sloan Kettering Cancer Center, 16 E. 60th Street, 4th Floor Dermatology, New York, NY, 10022, USA
| | - B Y Yan
- Dermatology Service, Memorial Sloan Kettering Cancer Center, 16 E. 60th Street, 4th Floor Dermatology, New York, NY, 10022, USA
| | - M A Marchetti
- Dermatology Service, Memorial Sloan Kettering Cancer Center, 16 E. 60th Street, 4th Floor Dermatology, New York, NY, 10022, USA
| | - S Momtahen
- Department of Pathology, Dartmouth Hitchcock Medical Center, 1 Medical Drive, Lebanon, NH, 03766, USA
| | - K J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - A M Rossi
- Dermatology Service, Memorial Sloan Kettering Cancer Center, 16 E. 60th Street, 4th Floor Dermatology, New York, NY, 10022, USA
| |
Collapse
|
45
|
Xiang L, Jiang W, Ye S, He T, Pei X, Li J, Chan DW, Ngan HYS, Li F, Tao P, Shen X, Zhou X, Wu X, Yang G, Yang H. ERBB2 mutation: A promising target in non-squamous cervical cancer. Gynecol Oncol 2017; 148:311-316. [PMID: 29279289 DOI: 10.1016/j.ygyno.2017.12.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE ERBB2 mutations have been found in a subset of invasive cervical cancer (ICC). Nevertheless, the prevalence, mutation spectrum, clinicopathological relevance, human papillomavirus (HPV)-genotype association and prognostic significance of ERBB2-mutated ICCs have not been well established. METHODS In this study, ICC samples (N=1015) were assessed for mutations in ERBB2, KRAS, and PIK3CA by cDNA-based Sanger sequencing. RESULTS Somatic ERBB2 mutations were detected in 3.15% patients. The ERBB2 mutation rate was significantly higher in adenocarcinoma (4.52%, 7/155), adenosquamous carcinoma (7.59%, 6/79) and neuroendocrine carcinoma (10.34%, 3/29) than that in squamous carcinoma (2.14%, 16/749) (P=0.004, Fisher exact test). In addition, 18.75% of the patients carrying ERBB2 mutations concomitantly harbored PIK3CA or KRAS mutations. Patients with ERBB2-mutated ICCs tended to have a worse prognosis than those with wild-type or PIK3CA-mutated ICCs but a better prognosis than those with KRAS-mutated ICCs. CONCLUSIONS This study provided a promising rationale for the clinical investigation of tyrosine kinase inhibitors for the treatment of cervical cancer with ERBB2 mutations. Patients with non-squamous cell carcinomas have priority as candidates for ERBB2-targeted therapy. Concurrent PIK3CA/RAS mutations should be considered in the design of clinical trials.
Collapse
Affiliation(s)
- Libing Xiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shuang Ye
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tiancong He
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuan Pei
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiajia Li
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - David Wai Chan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, L747 Laboratory Block, 21 Sassoon Road, Hong Kong, China
| | - Hextan Yuen Sheung Ngan
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, L747 Laboratory Block, 21 Sassoon Road, Hong Kong, China.
| | - Fang Li
- Department of Gynecology, Maternal and Child Health Hospital of Jiading District, Shanghai 201821, China
| | - Pingping Tao
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area People's Hospital, Shanghai 201299, China
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Fudan University Shanghai Medical College, Shanghai 200032, China; Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China.
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
46
|
Bieg-Bourne CC, Millis SZ, Piccioni DE, Fanta PT, Goldberg ME, Chmielecki J, Parker BA, Kurzrock R. Next-Generation Sequencing in the Clinical Setting Clarifies Patient Characteristics and Potential Actionability. Cancer Res 2017; 77:6313-6320. [PMID: 28939679 PMCID: PMC5690871 DOI: 10.1158/0008-5472.can-17-1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/22/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
Abstract
Enhancements in clinical-grade next-generation sequencing (NGS) have fueled the advancement of precision medicine in the clinical oncology field. Here, we survey the molecular profiles of 1,113 patients with diverse malignancies who successfully underwent clinical-grade NGS (236-404 genes) in an academic tertiary cancer center. Among the individual tumors examined, the majority showed at least one detectable alteration (97.2%). Among 2,045 molecular aberrations was the involvement of 302 distinct genes. The most commonly altered genes were TP53 (47.0%), CDKN2A (18.0%), TERT (17.0%), and KRAS (16.0%), and the majority of patients had tumors that harbored multiple alterations. Tumors displayed a median of four alterations (range, 0-29). Most individuals had at least one potentially actionable alteration (94.7%), with the median number of potentially actionable alterations per patient being 2 (range, 0-13). A total of 1,048 (94.2%) patients exhibited a unique molecular profile, with either genes altered or loci within the gene(s) altered being distinct. Approximately 13% of patients displayed a genomic profile identical to at least one other patient; although genes altered were the same, the affected loci may have differed. Overall, our results underscore the complex heterogeneity of malignancies and argue that customized combination therapies will be essential to optimize cancer treatment regimens. Cancer Res; 77(22); 6313-20. ©2017 AACR.
Collapse
Affiliation(s)
- Cheyennedra C Bieg-Bourne
- San Diego State University, San Diego, California.
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, California
| | | | - David E Piccioni
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, California
| | - Paul T Fanta
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, California
| | | | | | - Barbara A Parker
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, La Jolla, California
| |
Collapse
|
47
|
Halle MK, Ojesina AI, Engerud H, Woie K, Tangen IL, Holst F, Høivik E, Kusonmano K, Haldorsen IS, Vintermyr OK, Trovik J, Bertelsen BI, Salvesen HB, Krakstad C. Clinicopathologic and molecular markers in cervical carcinoma: a prospective cohort study. Am J Obstet Gynecol 2017; 217:432.e1-432.e17. [PMID: 28599900 DOI: 10.1016/j.ajog.2017.05.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cervical cancer is a major health problem worldwide. Identification of effective clinicopathologic and molecular markers is vital to improve treatment stratification. OBJECTIVES The purpose of this study was to validate a set of well-defined clinicopathologic features in a large population-based, prospectively collected cervical cancer cohort to support their use in the clinic. Further, we explored p53 and human epidermal growth factor receptor 2 as potential prognostic markers in cervical cancer. STUDY DESIGN Tissue was collected from 401 patients with cervical cancer. Clinical data that included follow-up evaluations were collected from patient journals. Histopathologic data were evaluated and revised by an expert pathologist. The prognostic impact of selected clinicopathologic variables was analyzed in the whole cohort. Tissue microarrays were prepared from 292 carcinomas, and p53 and human epidermal growth factor receptor 2 protein levels were evaluated by immunohistochemistry. Fresh frozen samples from overlapping cervical carcinomas previously were subjected to human papilloma virus typing (n=94), whole exome (n=100) and RNA (n=79) sequencing; the results were available for our analyses. RESULTS Among the clinicopathologic variables, vascular space invasion, histologic type, and tumor size were verified as strong independent prognostic markers. High p53 protein levels were associated significantly with markers for aggressive phenotype and survival, also in multivariate survival analysis, but did not reflect TP53 mutational status. High human epidermal growth factor receptor 2 protein levels were identified in 21% of all tumors. ERBB2 amplification was associated with poor outcome (P=.003); human epidermal growth factor receptor 2 protein level was not. CONCLUSIONS Our findings support that the Féderation Internationale de Gynécologie et d'Obstétrique s guidelines should include vascular space invasion and tumor size 2-4 cm and that careful selection of histologic type is essential for stratification of patient risk groups. High p53 levels independently predict poor survival yet do not reflect mutational status in cervical cancer. Amplified ERBB2 significantly links to poor survival, while HercepTest does not. With optimal stratification, human epidermal growth factor receptor 2-based therapy may improve cervical cancer treatment.
Collapse
|
48
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
49
|
Kourie HR, El Rassy E, Clatot F, de Azambuja E, Lambertini M. Emerging treatments for HER2-positive early-stage breast cancer: focus on neratinib. Onco Targets Ther 2017; 10:3363-3372. [PMID: 28744140 PMCID: PMC5513878 DOI: 10.2147/ott.s122397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over the last decades, a better understanding of breast cancer heterogeneity provided tools for a biologically based personalization of anticancer treatments. In particular, the overexpression of the human epidermal growth factor receptor 2 (HER2) by tumor cells provided a specific target in these HER2-positive tumors. The development of the monoclonal antibody trastuzumab, and its approval in 1998 for the treatment of patients with metastatic disease, radically changed the natural history of this aggressive subtype of breast cancer. These findings provided strong support for the continuous research in targeting the HER2 pathway and implementing the development of new anti-HER2 targeted agents. Besides trastuzumab, a series of other anti-HER2 agents have been developed and are currently being explored for the treatment of breast cancer patients, including those diagnosed with early-stage disease. Among these agents, neratinib, an oral tyrosine kinase inhibitor that irreversibly inhibits HER1, HER2, and HER4 at the intracellular level, has shown promising results, including when administered to patients previously exposed to trastuzumab-based treatment. This article aims to review the available data on the role of the HER2 pathway in breast cancer and on the different targeted agents that have been studied or are currently under development for the treatment of patients with early-stage HER2-positive disease with a particular focus on neratinib.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Department of Oncology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie El Rassy
- Department of Oncology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Florian Clatot
- Department of Medical Oncology and IRON/U1245, Centre Henri Becquerel, Rouen, France.,Breast Cancer Translational Research Laboratory
| | - Evandro de Azambuja
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Matteo Lambertini
- Breast Cancer Translational Research Laboratory.,Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|