1
|
Gupta S, Jones JE, Smith-Graziani D. Disparities in Hereditary Genetic Testing in Patients with Triple Negative Breast Cancer. Clin Breast Cancer 2025; 25:12-18.e1. [PMID: 39477723 DOI: 10.1016/j.clbc.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 12/24/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that disproportionately affects younger females, non-Hispanic Black women, Hispanic women, and women with the BRCA1 gene mutation. Hereditary genetic testing is particularly important in this population to assess preventative and treatment strategies, however access to genetic testing is variable. A qualitative review was performed to evaluate barriers to genetic testing for patients with TNBC. Mutations common in breast cancer are reviewed along with updated guidelines on management strategies, including the ability to include PARP inhibitors as a treatment strategy. Barriers to genetic testing are multifactorial, with non-Hispanic Black women being tested less often than other groups. The disparity is even further represented by the limited number of non-Hispanic Black patients with TNBC who receive risk-reducing surgery or targeted systemic therapy. Eliminating barriers to genetic testing can allow us to support guideline-directed care for patients with TNBC at higher risk for genetic mutations.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jade E Jones
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| | - Demetria Smith-Graziani
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA.
| |
Collapse
|
2
|
Giri D, Dey SK, Manna S, Das Chaudhuri A, Mahata R, Pradhan A, Roy T, Jana K, Das S, Roy S, Maiti Choudhury S. Nanoconjugate Carrying pH-Responsive Transferrin Receptor-Targeted Hesperetin Triggers Triple-Negative Breast Cancer Cell Death through Oxidative Attack and Assemblage of Pro-Apoptotic Proteins. ACS APPLIED BIO MATERIALS 2024; 7:7556-7573. [PMID: 39504304 DOI: 10.1021/acsabm.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is recognized as a major aggressive subtype of breast cancer due to its expeditious worsening growth, extensive metastatic capability, and recalcitrance to standard current treatments. Hesperetin (HSP), a natural bioflavonoid from citrus fruits, demonstrates pronounced anticancer efficacy, but its hydrophobicity limits its clinical development. The present study reports the fabrication of a biocompatible and pH-responsive transferrin (TF) receptor-targeted HSP-loaded poly(lactic-co-glycolic acid) (PLGA) nanobioconjugate (PLGA-HSP-TF NPs) and the exploration of its in vitro and in vivo antineoplastic potential. PLGA nanoparticles (NPs), PLGA-HSP NPs, and PLGA-HSP-TF NPs were synthesized and characterized by DLS, FTIR, FE-SEM, and 1H NMR spectroscopy. The stability and in vitro release profile of nanoparticles were inspected, and anticancer efficacy was scrutinized in terms of in vitro cytotoxicity, oxidative stress and apoptosis biomarkers, and cell cycle arrest. In vivo tumor regression and host survival studies were executed in Ehrlich ascites carcinoma (EAC) cell-bearing Swiss albino mice. The drug uptake of highly stable PLGA-HSP-TF NPs was accomplished effectively in MDA-MB-231 cells and showed the pH-dependent intracellular release of HSP, which generated excessive intracellular reactive oxygen species (ROS) that led to oxidative assault to the TNBC cells. This elevated ROS dropped the mitochondrial membrane potential and triggered apoptosis-mediated cell death by arresting the cell cycle at the G0/G1 phase. Furthermore, PLGA-HSP-TF NPs unveiled significant in vivo Ehrlich ascites carcinoma regression and host survival compared to free HSP with minimum toxicity at a minimum dose of 20 mg/kg body weight. The study divulges that PLGA-HSP-TF NPs may be an astounding anticancer nanocandidate for aggressive triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Dibyendu Giri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
- Department of Physiology, Ghatal Rabindra Satabarsiki Mahavidyalaya, Ghatal, Paschim Medinipur, West Bengal, India, 721212
| | - Surya Kanta Dey
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sounik Manna
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Angsuman Das Chaudhuri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Rumi Mahata
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Ananya Pradhan
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Tamanna Roy
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 CIT scheme VIIM, Kolkata, West Bengal, India, 700054
| | - Subhasis Das
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sumita Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sujata Maiti Choudhury
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| |
Collapse
|
3
|
Jain PV, Molina M, Moh M, Bishop E, Rader JS, Jorns JM. Immunohistochemistry in the Differential Diagnosis of Triple Negative Breast Carcinoma and High-grade Serous Carcinoma: Old and New Markers. Appl Immunohistochem Mol Morphol 2024; 32:456-461. [PMID: 39506288 DOI: 10.1097/pai.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Distinction of metastasis to the breast from a breast primary, particularly high-grade triple-negative breast cancer (TNBC), can be challenging due to nonspecific morphology and immunohistochemical (IHC) profiles. Among metastases to the breast, high-grade serous carcinoma (HGSC) of müllerian origin is most likely to be misdiagnosed as TNBC. We assessed breast and müllerian markers on TNBC and HGSC, including keratin 7, keratin 20, GATA3, GCDFP15, mammaglobin, p53, PAX8 (MRQ50 and BC12 clones), TRPS1, SOX10, and WT1. Of 151 TNBC cases, TRPS1 had the highest sensitivity, showing expression in 149 (98.7%) cases, followed by SOX10 (110/151; 72.8%), GATA3 (102/151; 67.5%), GCDFP15 (29/151; 19.2%), and mammaglobin (27/151; 17.9%). PAX8 positivity was seen in 40.4% (61/151) of TNBC via the MRQ50 clone but was negative in all via the BC12 clone. Of 185 HGSC cases, PAX8 via the MRQ50 clone was the most sensitive (179/185; 96.8%), followed by WT1 (171/185; 92.4%) and PAX8 via the BC12 clone (164/185; 88.6%). In addition, TRPS1 positivity was seen in 75 HGSC cases (40.5%). Aberrant p53 patterns were seen in 64.9% (98/151) of TNBC and 94.1% (174/185) of HGSC. TRPS1 positivity in HGSC and PAX8 positivity via the MRQ50 clone in TNBC represent potential pitfalls in assessing high-grade carcinoma for which the differential diagnosis includes TNBC and HGSC. However, with this knowledge, utilization of a panel of breast and müllerian markers, including preferential use of the PAX8 BC12 clone, can facilitate accurate diagnosis.
Collapse
Affiliation(s)
| | | | - Michelle Moh
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Erin Bishop
- Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI
| | - Janet S Rader
- Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
4
|
Tofolo MV, Berti FCB, Nunes-Souza E, Ruthes MO, Berti LF, Fonseca AS, Rosolen D, Cavalli LR. Non-coding RNAs as modulators of radioresponse in triple-negative breast cancer: a systematic review. J Biomed Sci 2024; 31:93. [PMID: 39354523 PMCID: PMC11445946 DOI: 10.1186/s12929-024-01081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by high invasiveness, is associated with poor prognosis and elevated mortality rates. Despite the development of effective therapeutic targets for TNBC, systemic chemotherapy and radiotherapy (RdT) remain prevalent treatment modalities. One notable challenge of RdT is the acquisition of radioresistance, which poses a significant obstacle in achieving optimal treatment response. Compelling evidence implicates non-coding RNAs (ncRNAs), gene expression regulators, in the development of radioresistance. This systematic review focuses on describing the role, association, and/or involvement of ncRNAs in modulating radioresponse in TNBC. In adhrence to the PRISMA guidelines, an extensive and comprehensive search was conducted across four databases using carefully selected entry terms. Following the evaluation of the studies based on predefined inclusion and exclusion criteria, a refined selection of 37 original research articles published up to October 2023 was obtained. In total, 33 different ncRNAs, including lncRNAs, miRNAs, and circRNAs, were identified to be associated with radiation response impacting diverse molecular mechanisms, primarily the regulation of cell death and DNA damage repair. The findings highlighted in this review demonstrate the critical roles and the intricate network of ncRNAs that significantly modulates TNBC's responsiveness to radiation. The understanding of these underlying mechanisms offers potential for the early identification of non-responders and patients prone to radioresistance during RdT, ultimately improving TNBC survival outcomes.
Collapse
Affiliation(s)
- Maria Vitoria Tofolo
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Fernanda Costa Brandão Berti
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Emanuelle Nunes-Souza
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Mayara Oliveira Ruthes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Lucas Freitas Berti
- Department of Mechanical Engineering, Postgraduate Program in Mechanical and Materials Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, 81280-340, Brazil
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Daiane Rosolen
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil
| | - Luciane Regina Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, 80250-060, Brazil.
- Department of Oncology, Lombardi Comprenhensive Cancer Center, Washington, DC, 20007, USA.
| |
Collapse
|
5
|
Chen A, Kim BJ, Mitra A, Vollert CT, Lei JT, Fandino D, Anurag M, Holt MV, Gou X, Pilcher JB, Goetz MP, Northfelt DW, Hilsenbeck SG, Marshall CG, Hyer ML, Papp R, Yin SY, De Angelis C, Schiff R, Fuqua SAW, Ma CX, Foulds CE, Ellis MJ. PKMYT1 Is a Marker of Treatment Response and a Therapeutic Target for CDK4/6 Inhibitor-Resistance in ER+ Breast Cancer. Mol Cancer Ther 2024; 23:1494-1510. [PMID: 38781103 PMCID: PMC11443213 DOI: 10.1158/1535-7163.mct-23-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Endocrine therapies (ET) with cyclin-dependent kinase 4/6 (CDK4/6) inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of patient-derived xenografts (PDXs) from patients with 22 ER+ breast cancer demonstrated that protein kinase, membrane-associated tyrosine/threonine one (PKMYT1), a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX-derived organoids and PDXs, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.
Collapse
Affiliation(s)
- Anran Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas
- Repare Therapeutics, Cambridge, Massachusetts
| | - Beom-Jun Kim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aparna Mitra
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Craig T Vollert
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Employee of Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | - Diana Fandino
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew V Holt
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xuxu Gou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Jacob B Pilcher
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | | | - Donald W Northfelt
- Division of Hematology and Medical Oncology at Mayo Clinic, Phoenix, Arizona
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | | | - Marc L Hyer
- Repare Therapeutics, Cambridge, Massachusetts
| | - Robert Papp
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Shou-Yun Yin
- Repare Therapeutics, Saint-Laurent, Quebec, Canada
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Suzanne A W Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Charles E Foulds
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
6
|
El Kaddissi A, Vernerey D, Falcoz A, Mansi L, Bazan F, Chaigneau L, Dobi E, Goujon M, Meneveau N, Paillard MJ, Selmani Z, Viot J, Molimard C, Monnien F, Woronoff AS, Curtit E, Borg C, Meynard G. Prognostic Factors for Long-Term Eribulin Response in a Cohort of Patients With HER2-Negative Metastatic Breast Cancer. Clin Breast Cancer 2024; 24:e622-e632.e5. [PMID: 38972830 DOI: 10.1016/j.clbc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
CONTEXT AND AIMS Eribulin is used in taxane and anthracycline refractory HER2-negative metastatic breast cancers (MBC). Patients treated in pivotal clinical trials achieved low survival rates, therefore, the identification of prognostic criteria for long progression-free survival (PFS) is still an unmet medical need. In this study, we sought to determine potential prognostic criteria for long-term eribulin response in HER2-negative MBC. METHODS Our retrospective cohort includes female patients with HER2-negative MBC treated with eribulin in Franche-Comté, France. We defined a long-term response as at least 6 months of eribulin treatment. The primary endpoint was the analysis of criteria that differ according to the progression-free survival. Secondary outcomes concerned overall survival and response rate. RESULTS From January 2011 to April 2020, 431 patients treated with eribulin were screened. Of them, 374 patients were included. Median PFS was 3.2 months (2.8-3.7). Eighty-eight patients (23.5%) had a long-term response to eribulin. Four discriminant criteria allowed to separate PFS in 2 arms (PFS < 3 months or > 6 months) with a 78% positive predictive value: histological grade, absence of meningeal metastasis, response to prior chemotherapy, and OMS status. We have developed a nomogram combining these 4 criteria. Median overall survival was 8.5 months (7.0-9.5). CONCLUSION Eribulin response in MBC can be driven by clinical and biological factors. Application of our nomogram could assist in the prescription of eribulin.
Collapse
Affiliation(s)
- Antoine El Kaddissi
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France.
| | - Dewi Vernerey
- Methodology and Quality of Life Unit in Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France; INSERM, Besançon 25020, France
| | - Antoine Falcoz
- Methodology and Quality of Life Unit in Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France; INSERM, Besançon 25020, France
| | - Laura Mansi
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Fernando Bazan
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Loïc Chaigneau
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Erion Dobi
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Morgan Goujon
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Nathalie Meneveau
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Marie-Justine Paillard
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Zohair Selmani
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Julien Viot
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France; Methodology and Quality of Life Unit in Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France; INSERM, Besançon 25020, France
| | - Chloé Molimard
- Department of Pathology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Anne-Sophie Woronoff
- Cancer Registry of Doubs, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| | - Elsa Curtit
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France; INSERM, Besançon 25020, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France; INSERM, Besançon 25020, France
| | - Guillaume Meynard
- Department of Medical Oncology, University Hospital of Besançon Jean-Minjoz, Besançon 25030, France
| |
Collapse
|
7
|
Yu B, Xing Z, Tian X, Feng R. A Prognostic Risk Signature of Two Autophagy-Related Genes for Predicting Triple-Negative Breast Cancer Outcomes. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:529-544. [PMID: 39246674 PMCID: PMC11379032 DOI: 10.2147/bctt.s475007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
Background Triple-negative breast cancer (TNBC) is recognized as the most aggressive molecular subtype of breast cancer. Recent studies have highlighted the complex role of autophagy in the pathogenesis of TNBC. Methods In this study, we evaluated 18,330 genes, including 1111 autophagy-related genes, (ARGs), across 579 TNBC samples from online databases. Differentially expressed ARGs in TNBC were identified using high-throughput RNA-seq data from the Cancer Genome Atlas (TCGA). Prognostic factors were examined through Cox regression and multivariate Cox analyses, with predictive efficacy assessed using receiver operating characteristic (ROC) curves. A nomogram integrating the risk signature with clinicopathological factors, such as TNM stage, was developed. Immunohistochemical analysis of clinical samples was also conducted. Results EIF4EBP1 and NPAS3 were significantly correlated with prognostic outcomes in patients with TNBC. Multivariate Cox regression analysis demonstrated that the expression levels of these two genes were accurate predictors of disease progression in TNBC samples from TCGA and the GSE31519 dataset. The efficacy of this predictive model was validated using ROC curve analysis and calibration plots, confirming its ability to accurately estimate the 1-, 2-, and 3-year survival rates for individuals with TNBC. Additionally, EIF4EBP1 and NPAS3 expression influenced drug sensitivity in TNBC cell lines, with notably lower NPAS3 expression in TNBC tissues, particularly in Stage III cases. This study is the first to report NPAS3 expression in patients with TNBC. Conclusion The autophagy-related genes EIF4EBP1 and NPAS3 may serve as independent prognostic factors for individuals with TNBC.
Collapse
Affiliation(s)
- Bing Yu
- Department of Breast Surgery, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| | - Zhimei Xing
- State Key Laboratory of Component‑Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Xiaoxuan Tian
- State Key Laboratory of Component‑Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Rui Feng
- Department of Breast Surgery, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, 300100, People's Republic of China
| |
Collapse
|
8
|
Qureshi Z, Jamil A, Altaf F, Siddique R, Fatima E, Dost S, Zelkowitz RS, Shah S. Revolutionizing triple-negative metastatic breast cancer treatment: sacituzumab Govitecan's role in advancing chemotherapy. Ann Med Surg (Lond) 2024; 86:5314-5319. [PMID: 39238964 PMCID: PMC11374285 DOI: 10.1097/ms9.0000000000002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/07/2024] Open
Abstract
Purpose This review aims to discuss the role and efficacy of Sacituzumab Govitecan in the management of breast cancer. Summary Breast cancer is the most prevalent type of cancer among women worldwide. This comprehensive review delves into the advancements brought about by Sacituzumab Govitecan in the treatment of metastatic triple-negative breast cancer (TNBC). With a focus on its mode of action, efficacious role, clinical trials, and comparative advantages over conventional chemotherapy, the review highlights the therapy's precision in targeting cancer cells through monoclonal antibodies. Sacituzumab Govitecan's ability to deliver a chemotherapeutic payload specifically to cancer cells with the Trop-2 receptor sets it apart from traditional chemotherapy, minimizing collateral damage and reducing severe side effects. The impact of Sacituzumab Govitecan on improving progression-free survival, tumor response rates, and, significantly, the quality of life for patients is discussed. This article also sheds light on ongoing trials, FDA recognition, and the therapy's potential to transform breast cancer treatment. Conclusion In conclusion, Sacituzumab Govitecan shows potential as an innovative therapeutic option for breast cancer, particularly in metastatic breast cancer and triple-negative breast cancer, but it warrants additional research.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY, USA
| | | | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Sara Dost
- Department of Hematology/Oncology, St. Vincent Medical Center, Bridgeport, CT
| | | | - Shivendra Shah
- Department of Medicine, Nepalgunj Medical College, Chisapani, Nepal
| |
Collapse
|
9
|
Jin S, He Z, Du Y, Jin G, Wang K, Yang F, Zhang J. An overview of cyclopropenone derivatives as promising bioactive molecules. Bioorg Med Chem Lett 2024; 109:129845. [PMID: 38852789 DOI: 10.1016/j.bmcl.2024.129845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Cyclopropenone is a valuable electrophilic reagent that can react with electrophilic reagents, nucleophilic reagents, free radicals, organic metals, etc. Furthermore, cyclopropenone derivatives have shown significant biological activity in various diseases, such as triple-negative breast cancer (TNBC), melanoma, and alopecia areata (AA). The cyclopropenone analogue diphenylcyclopropenone (DPCP) has been approved for the treatment of AA. Given the potential therapeutic benefits of cyclopropenone derivatives, this review aims to systematically summarize the structures, synthesis routes, and potential pharmacological functions of cyclopropenone analogues in the hope of offering novel insights for further rational design of more drugs based on the cyclopropenone skeleton for the treatment of human diseases.
Collapse
Affiliation(s)
- Sasa Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Zhangxu He
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Yuanbing Du
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Gang Jin
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Kaiyue Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China
| | - Feifei Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| | - Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046 Zhengzhou, PR China.
| |
Collapse
|
10
|
Wu Y, Quan Y, Zhou D, Li Y, Wen X, Liu J, Long W. Overexpression of cytoplasmic poly(A)-binding protein 1 as a biomarker for the prognosis and selection of postoperative regimen in breast cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03663-6. [PMID: 39172332 DOI: 10.1007/s12094-024-03663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE The dysregulation of the cytoplasmic poly(A)-binding protein 1 (PABPC1) is involved in a variety of tumors but little is known about its role in human breast cancer. Therefore, the effect of PABPC1 in the prognosis and regimen selection in breast cancer patients was evaluated. METHODS A total of 791 cases of invasive breast cancer were included in this study, although only 416 were involved in subsequent analyses after the propensity score matching (PSM) test. PABPC1 expression was detected by immunohistochemistry. The relationship between PABPC1 expression and clinicopathological factors, postoperative regimens, and outcomes was determined. RESULTS In the total 791 cases, 583 cases were positive for PABPC1, but only 212 (26.8%) showed high PABPC1 expression (PABPC1-HE). The overall survival (OS) and disease-free survival (DFS) of PABPC1-HE patients after PSM were significantly worse than those in patients with PABPC1 low expression (PABPC1-LE), regardless of age, molecular type, tumor size, nodal status, or pStage. Postoperative chemotherapy (CT) increased the OS of PABPC1-HE patients but not that of PABPC1-LE patients. Among patients receiving endocrine therapy, those in the PABPC-LE group had an extended OS, while CT or chemoradiotherapy (CT/CRT) only significantly extended the OS time of PABPC-HE patients. CT/CRT did not significantly extend the survival of PABPC1-LE HER2-positive patients but extended the OS of PABPC1-HE HER2-positive patients. However, the OS of patients treated with CT/CRT + trastuzumab therapy was significantly longer than that of other patients under other therapies in the PABPC1-HE group, suggesting that PABPC1-HE might be sensitive to trastuzumab-based therapy. The multivariate analysis revealed that PABPC1-HE was an independent prognostic factor for both poor OS and DFS in breast cancer except luminal A type. CONCLUSIONS Our results revealed that PABPC1 might be considered as a biomarker to help in subtyping, as well as in the prognosis and regimen selection of breast cancer patients.
Collapse
Affiliation(s)
- Yunqiu Wu
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yi Quan
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yixian Li
- Department of Breast Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xue Wen
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Taiping Street No. 25, Luzhou, China
| | - Jun Liu
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Taiping Street No. 25, Luzhou, China
| | - Wenbo Long
- Department of Pathology, The Affiliated Hospital, Southwest Medical University, Jiangyang District, Taiping Street No. 25, Luzhou, China.
- Luzhou Key Laboratory of Precision Pathology Diagnosis for Serious Diseases, Luzhou, China.
| |
Collapse
|
11
|
Subhan MA, Torchilin VP. Advances in siRNA Drug Delivery Strategies for Targeted TNBC Therapy. Bioengineering (Basel) 2024; 11:830. [PMID: 39199788 PMCID: PMC11351222 DOI: 10.3390/bioengineering11080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Among breast cancers, triple-negative breast cancer (TNBC) has been recognized as the most aggressive type with a poor prognosis and low survival rate. Targeted therapy for TNBC is challenging because it lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Chemotherapy, radiation therapy, and surgery are the common therapies for TNBC. Although TNBC is prone to chemotherapy, drug resistance and recurrence are commonly associated with treatment failure. Combination therapy approaches using chemotherapy, mAbs, ADC, and antibody-siRNA conjugates may be effective in TNBC. Recent advances with siRNA-based therapy approaches are promising for TNBC therapy with better prognosis and reduced mortality. This review discusses advances in nanomaterial- and nanobiomaterial-based siRNA delivery platforms for TNBC therapy exploring targeted therapy approaches for major genes, proteins, and TFs upregulated in TNBC tumors, which engage in molecular pathways associated with low TNBC prognosis. Bioengineered siRNA drugs targeting one or several genes simultaneously can downregulate desired genes, significantly reducing disease progression.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Division of Nephrology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
12
|
Tang Q, Li H, Zhao XT, Li ZY, Ma CX, Zhou SQ, Chen DD. Opportunities and Challenges in the Development of Antibody-Drug Conjugate for Triple-Negative Breast Cancer: The Diverse Choices and Changing Needs. World J Oncol 2024; 15:527-542. [PMID: 38993251 PMCID: PMC11236369 DOI: 10.14740/wjon1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype, which is also characterized by the aggressive phenotype, high recurrence rate, and poor prognosis. Antibody-drug conjugate (ADC) is a monoclonal antibody with a cytotoxic payload connected by a linker. ADC is gaining more and more attention as a targeted anti-cancer agent. Clinical studies of emerging ADC drugs such as sacituzumab govitecan and trastuzumab deruxtecan in patients with metastatic breast cancer (including TNBC) are progressing rapidly. In view of its excellent clinical efficacy and good tolerability, Sacituzumab govitecan gained accelerated approval by the FDA for the treatment of advanced metastatic TNBC in 2020. This review discusses the treatment status and challenges in TNBC, with an emphasis on the current status of ADC development and clinical trials in TNBC and metastatic breast cancer. We also summarize the clinical experience and future exploration directions of ADC development for TNBC patients.
Collapse
Affiliation(s)
- Qi Tang
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Hui Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Xin Tong Zhao
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
- These authors contributed equally to this article
| | - Ze Ying Li
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Chun Xiao Ma
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - Shao Qiang Zhou
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| | - De Dian Chen
- Department of Breast Surgery, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, Yunnan, China
| |
Collapse
|
13
|
Lapcik P, Synkova K, Janacova L, Bouchalova P, Potesil D, Nenutil R, Bouchal P. A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer. Sci Data 2024; 11:794. [PMID: 39025866 PMCID: PMC11258311 DOI: 10.1038/s41597-024-03632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and deeper proteome coverage is needed for its molecular characterization. We present comprehensive library of targeted mass spectrometry assays specific for TNBC and demonstrate its applicability. Proteins were extracted from 105 TNBC tissues and digested. Aliquots were pooled, fractionated using hydrophilic chromatography and analyzed by LC-MS/MS in data-dependent acquisition (DDA) parallel accumulation-serial fragmentation (PASEF) mode on timsTOF Pro LC-MS system. 16 individual lysates were analyzed in data-independent acquisition (DIA)-PASEF mode. Hybrid library was generated in Spectronaut software and covers 244,464 precursors, 168,006 peptides and 11,564 protein groups (FDR = 1%). Application of our library for pilot quantitative analysis of 16 tissues increased identification numbers in Spectronaut 18.5 and DIA-NN 1.8.1 software compared to library-free setting, with Spectronaut achieving the best results represented by 190,310 precursors, 140,566 peptides, and 10,463 protein groups. In conclusion, we introduce assay library that offers the deepest coverage of TNBC proteome to date. The TNBC library is available via PRIDE repository (PXD047793).
Collapse
Grants
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU22-08-00230 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- CZ.02.1.01/0.0/0.0/18_046/0015974 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- LM2023033 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Collapse
Affiliation(s)
- Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Klara Synkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Rudolf Nenutil
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
14
|
OWAKI K, MURAKAMI M, KATO K, HIRATA A, SAKAI H. Reduction of phosphorylated signal transducer and activator of transcription-5 expression in feline mammary carcinoma. J Vet Med Sci 2024; 86:816-823. [PMID: 38777776 PMCID: PMC11251807 DOI: 10.1292/jvms.23-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in various normal physiological cellular processes. Moreover, STATs have been recently identified as novel therapeutic targets for various human tumors. STAT3, STAT5a, and STAT6 have been suggested to be involved in tumorigenesis in human breast cancer. Owing to the similarity between feline mammary carcinomas (FMCs) and human breast cancers, these factors may play an important role in FMCs. However, studies on the expression of STATs in animal tumors are limited. Therefore, in this study, we aimed to characterize the expression of total STAT5 (tSTAT5) and phosphorylated STAT5 (pSTAT5) in FMCs, feline mammary adenomas, non-neoplastic proliferative mammary gland lesions, and normal feline mammary glands using immunohistochemistry. High expression of tSTAT5 was observed in the cytoplasm of all the samples assessed in this study. Moreover, high expression of tSTAT5 was observed in the nucleus; however, its levels varied depending on the lesion. The percentage of pSTAT5-nuclear positive cells varied among normal feline mammary glands (40.1 ± 25.1%), and non-neoplastic lesions, including mammary hyperplasia (43.2 ± 28.6%) and fibroadenomatous changes (18.0 ± 13.6%). Moreover, the percentage of pSTAT5-nuclear-positive cells in feline mammary adenomas was 24.5 ± 19.2%, which was significantly reduced in feline mammary carcinomas (2.4 ± 5.6%), regardless of histopathological subtype. This study suggests that decreased STAT5 activity may be involved in the development and malignant progression of feline mammary carcinomas.
Collapse
Affiliation(s)
- Keishi OWAKI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Mami MURAKAMI
- Laboratory of Veterinary Clinical Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kana KATO
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Akihiro HIRATA
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hiroki SAKAI
- Laboratory of Veterinary Pathology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
15
|
Tinterri C, Gentile D, Caruso F, Cortesi L, De Laurentiis M, Fortunato L, Santini D, Turchetti D, Ferrari A, Zambelli A. BRCA Testing for Patients Treated in Italy: A National Survey of Breast Centers Associated with Senonetwork. Curr Oncol 2024; 31:3815-3825. [PMID: 39057154 PMCID: PMC11276301 DOI: 10.3390/curroncol31070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Breast units (BUs) provide breast cancer (BC) care, including prevention, treatment, and genetic assessment. Genetic research has highlighted BRCA1/2 mutations as key hereditary BC risk factors. BRCA testing is crucial for personalized treatment and prevention strategies. However, the integration of BRCA testing in Italian BUs faces multiple challenges. This study, by Senonetwork Italia, aimed to evaluate genetic testing practices and identify obstacles within Italian BUs. METHODS Senonetwork Italia conducted a 16-question web-based survey involving 153 BUs. The survey assessed aspects of BRCA testing, including timing, urgency, counseling, patient selection, and multi-gene panels. RESULTS Of the 153 BUs, 109 (71.2%) responded. Testing before surgery was performed by 70.6% of centers, with urgent cases acknowledged by 87.2%. Most centers (56.0%) arranged urgent pre-test counseling within a week. BRCA mutation status influenced treatment decisions in 99.1% of cases. Multi-gene panels were used by 33.0% of centers for all genetic counseling cases, while 56.0% followed standard referral criteria. The main challenges included cost, reimbursement, and reporting timelines. CONCLUSIONS This survey highlights significant variations in BRCA testing practices across Italian BUs and identifies key logistical and financial challenges. There is a need for standardized practices of genetic testing to ensure personalized and effective BC management in Italy.
Collapse
Affiliation(s)
- Corrado Tinterri
- Breast Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy;
| | - Damiano Gentile
- Breast Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy;
| | - Francesco Caruso
- HICC Humanitas Istituto Clinico Catanese, 95045 Misterbianco, Italy;
| | - Laura Cortesi
- Azienda Ospedaliera-Universitaria di Modena, Università degli Studi di Modena e Reggio Emilia, 41121 Modena, Italy;
| | - Michelino De Laurentiis
- Dipartimento di Oncologia Senologica, Istituto Nazionale Tumori “Fondazione PASCALE”, 80131 Napoli, Italy;
| | - Lucio Fortunato
- Breast Centre, Azienda Ospedaliera San Giovanni-Addolorata, 00184 Rome, Italy;
| | - Donatella Santini
- IRCCS Azienda Ospedaliero, Universitaria di Bologna Policlinico di Sant’Orsola, 40138 Bologna, Italy;
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alberta Ferrari
- Fondazione IRCCS Policlinico San Matteo di Pavia, 27100 Pavia, Italy;
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy;
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | | |
Collapse
|
16
|
Mokhtarpour K, Razi S, Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 2024:10.1007/s10549-024-07387-7. [PMID: 38874688 DOI: 10.1007/s10549-024-07387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Triple negative breast cancer (TNBC) is a challenging subtype characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Standard treatment options are limited, and approximately 45% of patients develop distant metastasis. Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation and oxidative stress, has emerged as a potential targeted therapy for TNBC. METHODS This study utilizes a multifaceted approach to investigate the induction of ferroptosis as a therapeutic strategy for TNBC. It explores metabolic alterations, redox imbalance, and oncogenic signaling pathways to understand their roles in inducing ferroptosis, characterized by lipid peroxidation, reactive oxygen species (ROS) generation, and altered cellular morphology. Critical pathways such as Xc-/GSH/GPX4, ACSL4/LPCAT3, and nuclear factor erythroid 2-related factor 2 (NRF2) are examined for their regulatory roles in ferroptosis and their potential dysregulation contributing to cancer cell survival and resistance. RESULTS Inducing ferroptosis has been shown to inhibit tumor growth, enhance the efficacy of conventional therapies, and overcome drug resistance in TNBC. Lipophilic antioxidants, GPX4 inhibitors, and inhibitors of the Xc- system have been demonstrated to be potential ferroptosis inducers. Additionally, targeting the NRF2 pathway and exploring other ferroptosis regulators, such as ferroptosis suppressor protein 1 (FSP1), and the PERK-eIF2α-ATF4-CHOP pathway, may offer novel therapeutic avenues. CONCLUSION Further research is needed to understand the mechanisms, optimize therapeutic strategies, and evaluate the safety and efficacy of ferroptosis-targeted therapies in TNBC treatment. Overall, targeting ferroptosis represents a promising approach to improving treatment outcomes and overcoming the challenges posed by TNBC.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Nima Rezaei
- Research Center for Imunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
17
|
Sharaf SS, Jaganath Krishna KM, Lekshmi A, Sujathan. Subcellular expression of MTA1, HIF1A and p53 in primary tumor predicts aggressive triple negative breast cancers: a meta-analysis based study. J Mol Histol 2024; 55:303-315. [PMID: 38613589 DOI: 10.1007/s10735-024-10190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The prevalence of TNBC in India is higher compared to western countries. There is a multitude of biomarkers associated with different clinical outcomes of TNBC with contradictory reports. Identification of a set of specific biomarkers from the very many number of proteins reported in the literature to predict prognosis of TNBC is an urgent clinical need. METHODOLOGY A systematic review of key molecular biomarkers in cohort studies that have been investigated for their role in breast cancer prognosis was conducted. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was followed. A meta-analysis was used to evaluate their pooled hazard ratio (HR) and the corresponding 95% confidence interval (95% CI) statistically. Immunohistochemical characterization of the meta-analyzed markers were performed in a cohort of 200 retrospective TNBC and 100 non TNBC patient tissues. Kaplan-Meier plot were used to evaluate disease free survival (DFS), and overall survival (OS). Cox regression models were used to evaluate predictors of DFS and OS. RESULTS Using a meta-analytical approach, we consolidated the biomarker signatures associated with survival outcomes in breast cancers. The promising markers that emerged for the prediction of DFS and OS included E-Cadherin, Survivin, p53, MTA1, HIF1A, CD133, Vimentin and CK5/6. Evaluation of these markers in tumor tissue revealed that subcellular localization of p53, MTA1 and HIF1A had a significant association in predicting TNBC prognosis. Kaplan Meier plot revealed that p53 (OS p = 0.007, DFS p = 0.004), HIF 1 A (OS p = 0.054, DFS p = 0.009) and MTA1 (OS p = 0.043, DFS = p = 0.001) expression in the primary tumor tissue were found to be significantly correlated with poor OS and DFS, whereas expression of Survivin (DFS p = 0.024) and E Cadherin (DFS p = 0.027) correlated with DFS alone in TNBC. Univariate analysis revealed that p53, HIF1A and MTA1 could be independent prognostic markers. CONCLUSION Our study suggests cytoplasmic over expression of HIF1A, nuclear over expression of MTA1 and mutated p53 in the primary tumor tissue of TNBC have significance as markers predicting survival of TNBC patients.
Collapse
Affiliation(s)
- Shanaz S Sharaf
- Laboratory of Molecular Cytopathology and Proteomics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Karnataka, India
| | - K M Jaganath Krishna
- Epidemiology and Statistics Department, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Asha Lekshmi
- Laboratory of Molecular Cytopathology and Proteomics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Sujathan
- Laboratory of Molecular Cytopathology and Proteomics, Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
18
|
Kim HY, Kim YM, Hong S. CK2α-mediated phosphorylation of GRP94 facilitates the metastatic cascade in triple-negative breast cancer. Cell Death Discov 2024; 10:185. [PMID: 38649679 PMCID: PMC11035675 DOI: 10.1038/s41420-024-01956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Distant metastasis is a significant hallmark affecting to the high death rate of patients with triple-negative breast cancer (TNBC). Thus, it is crucial to identify and develop new therapeutic strategies to hinder cancer metastasis. While emerging studies have hinted a pivotal role of glucose-regulated protein 94 (GRP94) in tumorigenesis, the exact biological functions and molecular mechanisms of GRP94 in modulating cancer metastasis remain to be elucidated. Our study demonstrated an increased expression of GRP94 in TNBC correlated with metastatic progression and unfavorable prognosis in patients. Functionally, we identified that GRP94 depletion significantly diminished TNBC tumorigenesis and subsequent lung metastasis. In contrast, GRP94 overexpression exacerbated the invasiveness, migration, and lung metastasis of non-TNBC cells. Mechanistically, we found that casein kinase 2 alpha (CK2α) active in advanced breast cancer phosphorylated GRP94 at a conserved serine 306 (S306) residue. This phosphorylation increased the stability of GRP94 and enhanced its interaction with LRP6, leading to activation of canonical Wnt signaling. From a therapeutic standpoint, we found that benzamidine, a novel CK2α inhibitor, effectively suppressed GRP94 phosphorylation, LRP6 stabilization, and metastasis of TNBC. Our results point to the critical role of CK2α-mediated GRP94 phosphorylation in TNBC metastasis through activation of Wnt signaling, highlighting GRP94 as a therapeutic target to impede TNBC metastasis.
Collapse
Affiliation(s)
- Hye-Youn Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Young-Mi Kim
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Suntaek Hong
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea.
| |
Collapse
|
19
|
Wu Z, Tang Y, Liu Y, Chen Z, Feng Y, Hu H, Liu H, Chen G, Lu Y, Hu Y, Xu R. Co-delivery of fucoxanthin and Twist siRNA using hydroxyethyl starch-cholesterol self-assembled polymer nanoparticles for triple-negative breast cancer synergistic therapy. J Adv Res 2024:S2090-1232(24)00160-7. [PMID: 38636588 DOI: 10.1016/j.jare.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.
Collapse
Affiliation(s)
- Zeliang Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxiang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yuanhui Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuao Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Innovation Center for Brain Medical Sciences of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Sankar AP, Cho HM, Shin SU, Sneh T, Ramakrishnan S, Elledge C, Zhang Y, Das R, Gil-Henn H, Rosenblatt JD. Antibody-Drug Conjugate αEGFR-E-P125A Reduces Triple-negative Breast Cancer Vasculogenic Mimicry, Motility, and Metastasis through Inhibition of EGFR, Integrin, and FAK/STAT3 Signaling. CANCER RESEARCH COMMUNICATIONS 2024; 4:738-756. [PMID: 38315147 PMCID: PMC10926898 DOI: 10.1158/2767-9764.crc-23-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Primary tumor growth and metastasis in triple-negative breast cancer (TNBC) require supporting vasculature, which develop through a combination of endothelial angiogenesis and vasculogenic mimicry (VM), a process associated with aggressive metastatic behavior in which vascular-like structures are lined by tumor cells. We developed αEGFR-E-P125A, an antibody-endostatin fusion protein that delivers a dimeric, mutant endostatin (E-P125A) payload that inhibits TNBC angiogenesis and VM in vitro and in vivo. To characterize the mechanisms associated with induction and inhibition of VM, RNA sequencing (RNA-seq) of MDA-MB-231-4175 TNBC cells grown in a monolayer (two-dimensional) was compared with cells plated on Matrigel undergoing VM [three-dimensional (3D)]. We then compared RNA-seq between TNBC cells in 3D and cells in 3D with VM inhibited by αEGFR-E-P125A (EGFR-E-P125A). Gene set enrichment analysis demonstrated that VM induction activated the IL6-JAK-STAT3 and angiogenesis pathways, which were downregulated by αEGFR-E-P125A treatment.Correlative analysis of the phosphoproteome demonstrated decreased EGFR phosphorylation at Y1069, along with decreased phosphorylation of focal adhesion kinase Y397 and STAT3 Y705 sites downstream of α5β1 integrin. Suppression of phosphorylation events downstream of EGFR and α5β1 integrin demonstrated that αEGFR-E-P125A interferes with ligand-receptor activation, inhibits VM, and overcomes oncogenic signaling associated with EGFR and α5β1 integrin cross-talk. In vivo, αEGFR-E-P125A treatment decreased primary tumor growth and VM, reduced lung metastasis, and confirmed the inhibition of signaling events observed in vitro. Simultaneous inhibition of EGFR and α5β1 integrin signaling by αEGFR-E-P125A is a promising strategy for the inhibition of VM, tumor growth, motility, and metastasis in TNBC and other EGFR-overexpressing tumors. SIGNIFICANCE αEGFR-E-P125A reduces VM, angiogenesis, tumor growth, and metastasis by inhibiting EGFR and α5β1 integrin signaling, and is a promising therapeutic agent for TNBC treatment, used alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Ankita P. Sankar
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Hyun-Mi Cho
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Seung-Uon Shin
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Tal Sneh
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sundaram Ramakrishnan
- Sylvester Comprehensive Cancer Center, Miami, Florida
- Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Christian Elledge
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Yu Zhang
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Rathin Das
- Synergys Biotherapeutics, Inc., Alamo, California
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Joseph D. Rosenblatt
- Department of Medicine, Division of Hematology, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miami, Florida
| |
Collapse
|
21
|
De Santis P, Perrone M, Guarini C, Santoro AN, Laface C, Carrozzo D, Oliva GR, Fedele P. Early-stage triple negative breast cancer: the therapeutic role of immunotherapy and the prognostic value of pathological complete response. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:232-250. [PMID: 38464390 PMCID: PMC10918232 DOI: 10.37349/etat.2024.00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/26/2023] [Indexed: 03/12/2024] Open
Abstract
Triple negative breast cancer (TNBC) represents an aggressive disease associated with a high risk of recurrence after curative treatment and a poor prognosis in the metastatic setting. Chemotherapy was for years the only treatment available in the early and metastatic setting, due to the lack of actionable targets. Clinical practice has changed following the results obtained with the addition of immunotherapy to standard chemotherapy, the development of novel drugs [i.e. antibody-drug conjugates (ADCs)], and the use of targeted treatments for patients carrying germline pathogenic breast cancer susceptibility genes (BRCA) 1 or BRCA 2 variants. The treatment of early-stage disease has had a shift in clinical practice since July 2021, after the Food and Drug Administration (FDA) approval of pembrolizumab in association with chemotherapy as neoadjuvant treatment for TNBC and as a single agent in the subsequent adjuvant setting. This intensive treatment based on the combination of a poly-chemotherapy and an immune checkpoint inhibitor (ICI) led to the improvement of short- and long-term outcomes, but it has highlighted some new unmet clinical needs in the treatment of early-stage TNBC: the selection of the most effective adjuvant therapy and the integration of pembrolizumab with other therapeutic strategies [capecitabine, poly(ADP-ribose) polymerase (PARP) inhibitors] based on the achievement of pathologic complete response (pCR); the identification of predictive biomarkers to select patients who could most benefit from the addition of ICI, to minimize toxicities and to maximize outcomes; the possibility of de-escalating chemotherapy in favor of immune-combo or novel agents, such as ADCs; the role of immunotherapy in estrogen receptor (ER)-low patients. The advent of immunotherapy not only addresses current challenges in TNBC treatment but also holds the promise of a radical transformation in its therapeutic paradigm, enhancing significantly clinical outcomes and offering new perspectives for patients grappling with this aggressive form of breast cancer.
Collapse
Affiliation(s)
- Pierluigi De Santis
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| | - Chiara Guarini
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| | - Anna Natalizia Santoro
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| | - Carmelo Laface
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| | - Daniela Carrozzo
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| | - Gaia Rachele Oliva
- Department of Medicine and Translational Surgery, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Palma Fedele
- Oncology Unit, Francavilla Fontana Ceglie Messapica Hospital District, 72021 Francavilla Fontana, Italy
| |
Collapse
|
22
|
Singh A, Georgy JT, Dhananjayan S, Sigamani E, John AO, Joel A, Chandramohan J, Abarna R, Rebekah G, Backianathan S, Abraham DT, Paul MJ, Chacko RT, Manipadam MT, Pai R. Comparative analysis of mutational patterns in triple negative breast cancer before and after neoadjuvant chemotherapy in patients with residual disease. Gene 2024; 895:147980. [PMID: 37951371 DOI: 10.1016/j.gene.2023.147980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with poor survival compared to other subtypes. Patients with residual disease after neoadjuvant chemotherapy (NAC) face an increased risk of relapse and death. We aimed to characterize the mutational landscape of this subset to offer insights into relapse pathogenesis and potential therapeutic targets. We retrospectively analyzed archived paired (pre- and post-NAC) tumor samples from 25 patients with TNBC with residual disease using a targeted 72-gene next-generation sequencing panel. Our findings revealed a stable mutational burden in both pre- and post-NAC samples, with a median count of 12 variants (IQR 7-17.25) per sample. TP53, PMS2, PTEN, ERBB2, and NOTCH1 variants were observed in pre-NAC samples predominantly. Notably, post-NAC samples exhibited a significant increase in AR gene mutations, suggesting potential prognostic and predictive implications. No difference in mutational burden was found between patients who did and did not receive platinum (p = 0.94), or between those with and without recurrence (p = 0.49). We employed K-means clustering to categorize the patients based on their variant profiles, aiding in the prediction of possible patterns associated with recurrence. Our study was limited by its small sample size and retrospective design, suggesting the need for further validation in larger prospective cohorts.
Collapse
Affiliation(s)
- Ashish Singh
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Josh Thomas Georgy
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Sakthi Dhananjayan
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Elanthenral Sigamani
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Ajoy Oommen John
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Anjana Joel
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Jagan Chandramohan
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Rajadurai Abarna
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Selvamani Backianathan
- Department of Radiotherapy, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | - Deepak Thomas Abraham
- Department of Endocrine Surgery, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | | | - Raju Titus Chacko
- Department of Medical Oncology, Christian Medical College, Vellore, Tamil Nadu 632004, India
| | | | - Rekha Pai
- Department of Pathology, Christian Medical College, Vellore, Tamil Nadu 632004, India.
| |
Collapse
|
23
|
Jacobo Jacobo M, Donnella HJ, Sobti S, Kaushik S, Goga A, Bandyopadhyay S. An inflamed tumor cell subpopulation promotes chemotherapy resistance in triple negative breast cancer. Sci Rep 2024; 14:3694. [PMID: 38355954 PMCID: PMC10866903 DOI: 10.1038/s41598-024-53999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Individual cancers are composed of heterogeneous tumor cells with distinct phenotypes and genotypes, with triple negative breast cancers (TNBC) demonstrating the most heterogeneity among breast cancer types. Variability in transcriptional phenotypes could meaningfully limit the efficacy of monotherapies and fuel drug resistance, although to an unknown extent. To determine if transcriptional differences between tumor cells lead to differential drug responses we performed single cell RNA-seq on cell line and PDX models of breast cancer revealing cell subpopulations in states associated with resistance to standard-of-care therapies. We found that TNBC models contained a subpopulation in an inflamed cellular state, often also present in human breast cancer samples. Inflamed cells display evidence of heightened cGAS/STING signaling which we demonstrate is sufficient to cause tumor cell resistance to chemotherapy. Accordingly, inflamed cells were enriched in human tumors taken after neoadjuvant chemotherapy and associated with early recurrence, highlighting the potential for diverse tumor cell states to promote drug resistance.
Collapse
Affiliation(s)
- Mauricio Jacobo Jacobo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hayley J Donnella
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sushil Sobti
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Swati Kaushik
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
24
|
Berfelde J, Hildebrand LS, Kuhlmann L, Fietkau R, Distel LV. FEN1 Inhibition as a Potential Novel Targeted Therapy against Breast Cancer and the Prognostic Relevance of FEN1. Int J Mol Sci 2024; 25:2110. [PMID: 38396787 PMCID: PMC10889347 DOI: 10.3390/ijms25042110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
To improve breast cancer treatment and to enable new strategies for therapeutic resistance, therapeutic targets are constantly being studied. Potential targets are proteins of DNA repair and replication and genomic integrity, such as Flap Endonuclease 1 (FEN1). This study investigated the effects of FEN1 inhibitor FEN1-IN-4 in combination with ionizing radiation on cell death, clonogenic survival, the cell cycle, senescence, doubling time, DNA double-strand breaks and micronuclei in breast cancer cells, breast cells and healthy skin fibroblasts. Furthermore, the variation in the baseline FEN1 level and its influence on treatment prognosis was investigated. The cell lines show specific response patterns in the aspects studied and have heterogeneous baseline FEN1 levels. FEN1-IN-4 has cytotoxic, cytostatic and radiosensitizing effects, expressed through increasing cell death by apoptosis and necrosis, G2M share, senescence, double-strand breaks and a reduced survival fraction. Nevertheless, some cells are less affected by the cytotoxicity and fibroblasts show a rather limited response. In vivo, high FEN1 mRNA expression worsens the prognosis of breast cancer patients. Due to the increased expression in breast cancer tissue, FEN1 could represent a new tumor and prognosis marker and FEN1-IN-4 may serve as a new potent agent in personalized medicine and targeted breast cancer therapy.
Collapse
Affiliation(s)
- Johanna Berfelde
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
25
|
Das M, Pandey V, Jajoria K, Bhatia D, Gupta I, Shekhar H. Glycosylated Porphyrin Derivatives for Sonodynamic Therapy: ROS Generation and Cytotoxicity Studies in Breast Cancer Cells. ACS OMEGA 2024; 9:1196-1205. [PMID: 38222585 PMCID: PMC10785087 DOI: 10.1021/acsomega.3c07445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Sonodynamic therapy (SDT) is a promising alternative to photodynamic therapy for achieving site-specific cytotoxic therapy. Porphyrin derivative molecules have been reported extensively in photodynamic therapy. We have previously shown that the glycosylation of porphyrin-based sonosensitizers can enhance their cellular uptake. However, the sonodynamic potential of these water-soluble glycosylated porphyrins has not been investigated. In this study, we characterized the sonodynamic response of two water-soluble glycosylated porphyrin derivatives. Ultrasound (US) exposure was performed (1 MHz frequency, intensities of 0.05-1.1 W/cm2) for 0-3 min in continuous mode. Reactive oxygen species (ROS) generation was quantified via ultraviolet-visible (UV-vis) spectrophotometry. MTT assay was used to quantify cytotoxicity caused by sonodynamic effects from these derivatives in the human mammary carcinoma (SUM-159) cell line in vitro. ROS generation from the porphyrin derivatives was demonstrated at a concentration of 15 μM. No significant cytotoxic effects were observed with the sonosensitizer alone or US exposure alone over the tested range of intensities and duration. The free base porphyrin derivative caused 60-70% cell death, whereas the zinc-porphyrin derivative with Zn metal conjugation caused nearly 50% cytotoxicity when exposed at 0.6 W/cm2 intensity for 3 min. These studies demonstrate the potential of anticancer SDT with soluble glycosylated porphyrins.
Collapse
Affiliation(s)
- Manita Das
- Department
of Electrical Engineering, Indian Institute
of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Vijayalakshmi Pandey
- Department
of Chemistry, Indian Institute of Technology
(IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Kuldeep Jajoria
- Department
of Electrical Engineering, Indian Institute
of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Dhiraj Bhatia
- Department
of Biological Engineering, Indian Institute
of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Iti Gupta
- Department
of Chemistry, Indian Institute of Technology
(IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Himanshu Shekhar
- Department
of Electrical Engineering, Indian Institute
of Technology (IIT) Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
26
|
Facca VJ, Cai Z, Ku A, Georgiou CJ, Reilly RM. Adjuvant Auger Electron-Emitting Radioimmunotherapy with [ 111In]In-DOTA-Panitumumab in a Mouse Model of Local Recurrence and Metastatic Progression of Human Triple-Negative Breast Cancer. Mol Pharm 2023; 20:6407-6419. [PMID: 37983089 DOI: 10.1021/acs.molpharmaceut.3c00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Triple-negative breast cancer (TNBC) has a high risk for recurrence and metastasis. We studied the effectiveness of Auger electron (AE) radioimmunotherapy (RIT) with antiepidermal growth factor receptor (EGFR) panitumumab conjugated with DOTA complexed to 111In ([111In]In-DOTA-panitumumab) for preventing metastatic progression after local treatment of 231/LM2-4 Luc+ human TNBC tumors in the mammary fat pad of NRG mice. Prior to RIT, the primary tumor was resected, and tumor margins were treated with X-irradiation (XRT; 5 days × 6 Gy/d). RIT was administered 1 day post-XRT by intravenous injection of 26 MBq (15 μg) or 2 × 10 MBq (15 μg each) separated by 7 d. These treatments were compared to tumor resection with or without XRT combined with DOTA-panitumumab (15 μg) or irrelevant [111In]In-DOTA-IgG2 (24 MBq; 15 μg), and efficacy was evaluated by Kaplan-Meier survival curves. The effect of [111In]In-DOTA-panitumumab (23 MBq; 15 μg) after tumor resection without local XRT was also studied. Tumor resection followed by XRT and RIT with 26 MBq [111In]In-DOTA-panitumumab significantly increased the median survival to 35 d compared to tumor resection with or without XRT (23-24 d; P < 0.0001). Local treatment with tumor resection and XRT followed by 2 × 10 MBq of [111In]In-DOTA-panitumumab, DOTA-panitumumab, or [111In]In-DOTA-IgG2 did not significantly improve median survival (26 days for all treatments). RIT alone with [111In]In-DOTA-panitumumab postresection of the tumor without XRT increased median survival to 29 days, though this was not significant. Despite significantly improved survival in mice treated with tumor resection, XRT, and RIT with [111In]In-DOTA-panitumumab, all mice eventually succumbed to advanced metastatic disease by 45 d post-tumor resection. SPECT/CT with [111In]In-DOTA-panitumumab, PET/MRI with [64Cu]Cu-DOTA-panitumumab F(ab')2, and PET/CT with [18F]FDG were used to detect recurrent and metastatic disease. Uptake of [111In]In-DOTA-panitumumab at 4 d p.i. in the MFP tumor was 26.8 ± 9.7% ID/g and in metastatic lymph nodes (LN), lungs, and liver was 34.2 ± 26.9% ID/g, 17.5 ± 6.0% ID/g, and 9.4 ± 2.4%ID/g, respectively, while uptake in the lungs (6.0 ± 0.9% ID/g) and liver (5.2 ± 2.9% ID/g) of non-tumor-bearing NRG was significantly lower (P < 0.05). Radiation-absorbed doses in metastatic LN, lungs, and liver were 9.7 ± 6.1, 6.4 ± 2.1, and 10.9 ± 2.7 Gy, respectively. In conclusion, we demonstrated that RIT with [111In]In-DOTA-panitumumab combined with tumor resection and XRT significantly improved the survival of mice with recurrent TNBC. However, the aggressive nature of 231/LM2-4 Luc+ tumors in NRG mice may have contributed to the tumor recurrence and progression observed.
Collapse
Affiliation(s)
- Valerie J Facca
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Anthony Ku
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Constantine J Georgiou
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
- Department of Medical Imaging, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Joint Department of Medical Imaging and Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
27
|
Capuozzo M, Celotto V, Santorsola M, Fabozzi A, Landi L, Ferrara F, Borzacchiello A, Granata V, Sabbatino F, Savarese G, Cascella M, Perri F, Ottaiano A. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 2023; 41:5. [PMID: 38038783 DOI: 10.1007/s12032-023-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Venere Celotto
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Antonio Fabozzi
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL Napoli 3, Pompei, 80045, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, ASL Napoli 3, Via Dell'amicizia 22, Nola, 80035, Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale Srl, Via Padre Carmine Fico 24, Casalnuovo Di, 80013, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
28
|
Aldrich J, Canning M, Bhave M. Monitoring of Triple Negative Breast Cancer After Neoadjuvant Chemotherapy. Clin Breast Cancer 2023; 23:832-834. [PMID: 37596146 DOI: 10.1016/j.clbc.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease with a poor prognosis that disproportionately affects young women and African Americans, and represents a major unmet need in the field. TNBCs display a more aggressive growth pattern with an increased risk of advanced disease and high recurrence risk in patients with early stage TNBC. The addition of immunotherapy to chemotherapy for the treatment of patients with early stage TNBC in the (neo) adjuvant setting per the pivotal KEYNOTE 522 significantly improved pCR rates. Despite this advancement, however, approximately 35% of patients had residual disease at the time of surgery and reduced event free survival. Further techniques to assess for molecular residual disease after completion of neoadjuvant chemotherapy (NAC) may allow us to identify patients at high risk of relapse who may benefit from salvage adjuvant systemic therapy, while also potentially de-escalating treatment in those achieving a molecular complete response.
Collapse
Affiliation(s)
- Jeffrey Aldrich
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Madison Canning
- Department of Medicine, Emory School of Medicine, Emory University, Atlanta, GA
| | - Manali Bhave
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA.
| |
Collapse
|
29
|
Gorenšek R, Kresnik M, Takač I, Rojko T, Sobočan M. Advances in Tumour-Infiltrating Lymphocytes for Triple-Negative Breast Cancer Management. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:773-783. [PMID: 37936879 PMCID: PMC10627091 DOI: 10.2147/bctt.s399157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/13/2023] [Indexed: 11/09/2023]
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer which does not express or expresses a minimum amount of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor 2 (HER2) protein. TNBCs include a heterogenic group of cancers that are aggressive, grow rapidly and are associated with poor prognosis and overall survival, mainly attributed to a lack of effective therapeutic targets. For a long time, a major issue with predicting the outcome and prognosis of TNBCs was the lack of an accurate biomarker, a molecule that helps us objectively assess a patient's health status. In recent times, defining the presence of tumor-infiltrating lymphocytes (TIL) is becoming an indispensable method of determining a patient's prognosis. TILs are found in tumor tissue and the surrounding stroma and carry a prognostic value. Furthermore, they are known to improve the effect of systemic therapy. With the rise of immunotherapy, the role of TIL in this newer therapeutic option is a topic of increased importance. The goal behind this research article is a comprehensive review of the current literature on the importance of tumor-infiltrating lymphocytes in the prognosis of TNBC.
Collapse
Affiliation(s)
- Rok Gorenšek
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Oncology, University Medical Centre Maribor, Maribor, Slovenia
| | - Martin Kresnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Emergency Medicine, University Medical Centre Maribor, Maribor, Slovenia
| | - Iztok Takač
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Division of Gynecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia
| | - Tomaž Rojko
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Pathology, University Medical Centre Maribor, Maribor, Slovenia
| | - Monika Sobočan
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Division of Gynecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia
| |
Collapse
|
30
|
Adedokun KA, Oluogun WA, Oyenike MA, Imodoye SO, Yunus LA, Lasisi SA, Bello IO, Kamorudeen RT, Adekola SA. Expression Patterns of ER, PR, HER-2/neu and p53 in Association with Nottingham Tumour Grade in Breast Cancer Patients. Sultan Qaboos Univ Med J 2023; 23:526-533. [PMID: 38090235 PMCID: PMC10712386 DOI: 10.18295/squmj.7.2023.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023] Open
Abstract
Objectives Recent molecular studies show that breast cancer (BC) is a heterogeneous disease, and several molecular changes may accumulate over time to influence treatment response. As a result, employing reliable molecular biomarkers to monitor these modifications may help deliver personalised treatment. However, this may be unrealistic in the resource-limited parts of the world. Thus, this study aimed to investigate the expression pattern of hormone receptors and p53 tumour suppressor using immunohistochemistry (IHC) in BC compared to the traditional tumour grade. Methods In total, 205 cases were investigated, and the Modified Bloom-Richardson score system was adopted in grading the tumours. The tissue sections of the cases were stained with specific primary antibodies at dilutions of 1:60 for oestrogen receptors (ER) and progesterone receptors (PR), 1:350 for the human epidermal growth factor (HER-2/neu) and 1:50 for p53. Results Invasive ductal carcinoma of no-specific type (n = 190, 92.7%) was predominant and grade II tumour (n = 146, 71.2%) was the most frequent. Hormone receptors ER (n = 127) and PR (n = 145) had 62.0% and 70.7% positive cases, respectively; 34.1% (n = 70) were positive for HER-2/neu, while 76.1% (n = 156) were positive for p53. Significant associations between Nottingham grade and expression patterns of ER (P <0.01), PR (P <0.001), HER-2/neu (P <0.001) and p53 (P = 0.001) were observed. Conclusion Nottingham grade had a high degree of concordance with the patterns of expression of hormone receptors, HER-2/neu and p53, suggesting that it may play an important role in connection with the predictive and prognostic biomarkers for BC.
Collapse
Affiliation(s)
- Kamoru A. Adedokun
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Waheed A. Oluogun
- Department of Morbid Anatomy and Histopathology Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - Musiliu A. Oyenike
- Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Lukman A. Yunus
- Department of Morbid Anatomy and Histopathology Osun State University Teaching Hospital (UNIOSUNTH), Osogbo, Nigeria
| | - smaila A. Lasisi
- Laboratory Unit, Health Centre, Osun State Polytechnic Iree, Osun State, Nigeria
| | - Ibrahim O. Bello
- Department of Biological Sciences, Southern Illinois University at Edwardsville, Edwardsville, Illinois, USA
| | | | | |
Collapse
|
31
|
Wu M, Hu Y, Xu M, Fu L, Li C, Wu J, Sun X, Wang W, Wang S, Wang T, Ding W, Li P. Transdermal delivery of brucine-encapsulated liposomes significantly enhances anti-tumor outcomes in treating triple-negative breast cancer. BIOMATERIALS ADVANCES 2023; 153:213566. [PMID: 37536027 DOI: 10.1016/j.bioadv.2023.213566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is always the most challenging breast cancer subtype. Herein, brucine, encapsulated in peptide-modified liposomes, was proposed for treating TNBC by transdermal delivery. For the TD peptide-modified brucine-loaded liposome (Bru-TD-Lip) we developed, it presents high encapsulation efficiency of brucine and stability. In vitro, Bru-TD-Lip shows the enhanced percutaneous permeability of brucine, is able to readily enter TNBC cells, and significantly inhibits the proliferation, migration, and invasion of these cells. In vivo, through transdermal delivery, Bru-TD-Lip presents good biosafety and anti-tumor efficacy. The transdermal delivery of Bru-TD-Lip effectively targets and inhibits subcutaneous mammary carcinogenesis in female nude mice. Compared with oral administration, the transdermal delivery significantly reduces the damage of brucine to major organs and enhances the antitumor outcomes of brucine in treating TNBC. This study provides a new therapeutic strategy for treating triple-negative breast cancer by brucine.
Collapse
Affiliation(s)
- Min Wu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Yi Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Mengran Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Lijuan Fu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jingjing Wu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Xin Sun
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Wenshen Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Shaozhen Wang
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China; School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
32
|
Hatzipanagiotou ME, Pigerl M, Gerken M, Räpple S, Zeltner V, Hetterich M, Ugocsai P, Fernandez-Pacheco M, Inwald EC, Klinkhammer-Schalke M, Ortmann O, Seitz S. Does timing of neoadjuvant chemotherapy influence the prognosis in patients with early triple negative breast cancer? J Cancer Res Clin Oncol 2023; 149:11941-11950. [PMID: 37418056 PMCID: PMC10465651 DOI: 10.1007/s00432-023-05060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE For patients with triple negative breast cancer (TNBC), the optimal time to initiate neoadjuvant chemotherapy (TTNC) is unknown. This study evaluates the association between TTNC and survival in patients with early TNBC. METHODS A retrospective study using data from of a cohort of TNBC patients diagnosed between January 1, 2010 to December 31, 2018 registered in the Tumor Centre Regensburg was performed. Data included demographics, pathology, treatment, recurrence, and survival. Interval to treatment was defined as days from pathology diagnosis of TNBC to first dose of neoadjuvant chemotherapy (NACT). The Kaplan-Meier and Cox regression methods were used to evaluate the impact of TTNC on overall survival (OS) and 5 year OS. RESULTS A total of 270 patients were included. Median follow up was 3.5 years. The 5-year OS estimates according to TTNC were 77.4%, 66.9%, 82.3%, 80.6%, 88.3%, 58.3%, 71.1% and 66.7% in patients who received NACT within 0-14, 15-21, 22-28, 29-35, 36-42, 43-49, 50-56 and > 56 days after diagnosis. Patients who received systemic therapy early had the highest estimated mean OS of 8.4 years, while patients who received systemic therapy after more than 56 days survived an estimated 3.3 years. CONCLUSION The optimal time interval between diagnosis and NACT remains to be determined. However, starting NACT more than 42 days after diagnosis of TNBC seems to reduce survival. Therefore, it is strongly recommended to carry out the treatment in a certified breast center with appropriate structures, in order to enable an adequate and timely care.
Collapse
Affiliation(s)
- Maria Eleni Hatzipanagiotou
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany.
- Department of Gynecology and Obstetrics, Maria Eleni Hatzipanagiotou, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany.
| | - Miriam Pigerl
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Michael Gerken
- Bavarian Cancer Registry, Regional Centre Regensburg, Bavarian Health and Food Safety Authority, Regensburg, Germany
| | - Sophie Räpple
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Verena Zeltner
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Madeleine Hetterich
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Peter Ugocsai
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Miriam Fernandez-Pacheco
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Elisabeth Christine Inwald
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Monika Klinkhammer-Schalke
- Tumor Center Regensburg - Centre for Quality Management and Health Services Research, University of Regensburg, Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Centre Regensburg, Landshuter Straße 65, 93053, Regensburg, Germany
| |
Collapse
|
33
|
Xia YT, Zhang YQ, Chen L, Min L, Huang D, Zhang Y, Li C, Li ZH. Suppression of migration and invasion by taraxerol in the triple-negative breast cancer cell line MDA-MB-231 via the ERK/Slug axis. PLoS One 2023; 18:e0291693. [PMID: 37751436 PMCID: PMC10522031 DOI: 10.1371/journal.pone.0291693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
As one of the triterpene extracts of Taraxacum, a traditional Chinese plant, taraxerol (TRX) exhibits antitumor activity. In this study, we evaluated the effects of TRX on the migration and invasion of MDA-MB-231 cells, analyzed the molecular mechanism through network pharmacology and molecular docking, and finally verified it by in vitro experiments. The results showed that TRX could inhibit the migration and invasion of MDA-MB-231 cells in a time- and concentration-dependent manner, while MAPK3 was the most promising target and could stably combine with TRX. In addition, the relative protein expression levels were detected by Western blot, and we observed that TRX could inhibit the migration and invasion of MDA-MB-231 cells via the ERK/Slug axis. Moreover, an ERK activator (tert-butylhydroquinone, tBHQ) partially reversed the suppressive effect of TRX on MDA-MB-231 cells. In conclusion, TRX inhibited the migration and invasion of MDA-MB-231 cells via the ERK/Slug axis.
Collapse
Affiliation(s)
- Yu-ting Xia
- Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Yu-qin Zhang
- Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Lu Chen
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Liangliang Min
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Da Huang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Yulu Zhang
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Cong Li
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| | - Zhi-hua Li
- Key Laboratory of Breast Diseases in Jiangxi Province, Third Hospital of Nanchang, Jiangxi, China
| |
Collapse
|
34
|
Heinolainen K, Saarinen S, Vertuani S, Ellonen A, Karlsson A, Utriainen M, Carlqvist P, Mandelin J, Holm B. Characterization of clinicopathological features, treatment practices, and outcomes among Finnish advanced breast cancer patients in real-life clinical practice. J Cancer Res Clin Oncol 2023; 149:9139-9149. [PMID: 37178424 PMCID: PMC10374819 DOI: 10.1007/s00432-023-04723-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE In recent years, several new targeted therapies have emerged for advanced breast cancer (aBC). However, real-life data specific to aBC and different breast cancer subtypes are scarce. This retrospective cohort study was designed to describe the distribution of aBC subtypes, incidence, treatment patterns, survival, and PIK3CA hotspot mutation frequency. METHODS The study included all patients in the Hospital District of Southwest Finland diagnosed with aBC between 2004 and 2013 and with a sample available in Auria Biobank. In addition to registry-based data collection, 161 HR+/HER2- aBCs were screened for PIK3CA mutations. RESULTS Altogether, 54.7% of the 444 patients included in the study had luminal B subtype. The smallest representations were in HR-/HER2+ (4.5%) and triple-negative (5.6%) subgroups. The percentage of aBC among all diagnosed breast cancers increased until 2010, after which it remained stable. The triple-negative cancers were associated with shorter median overall survival (5.5 months) compared to other subgroups (16.5-24.6 months). Most (84%) triple-negative cancers also metastasized during the first two years, whereas this was more evenly distributed over time in other subgroups. Of the HR+/HER2- tumors, 32.3% harbored a PIK3CA hotspot mutation. These patients, however, did not have inferior survival compared to patients with PIK3CA wild-type cancers. CONCLUSION This study described real-world aBC subgroups and indicated that the clinical outcomes of subgroups vary. Although PIK3CA hotspot mutations did not lead to inferior survival, they are relevant as possible treatment targets. Overall, these data could be utilized to further evaluate the subgroup-specific medical needs in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Antti Ellonen
- Department of Oncology, Turku University Central Hospital, Turku, Finland
| | | | - Meri Utriainen
- Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
Chu M, Meng T, Zhou Y, Jin L, Dai Q, Ma L, Chen H. Molecular mechanism of Ruxian Shuhou prescription in the treatment of triple-negative breast cancer based on network pharmacology. Medicine (Baltimore) 2023; 102:e34763. [PMID: 37657065 PMCID: PMC10476815 DOI: 10.1097/md.0000000000034763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
We aimed to explore the molecular mechanism of Ruxian Shuhou prescription in the treatment of triple-negative breast cancer (TNBC) by using network pharmacology. The active components and targets of the prescription were obtained by Traditional Chinese medicine systems pharmacology database. Gencards database, online mendelian inheritance in man database, therapeutic target database, and DRUGBANK database were used to search for the TNBC-related targets. The potential targets of Ruxian Shuhou prescription for TNBC were screened out by the intersection of effective ingredient action targets and disease targets. A herb-active ingredient-target network was constructed and analyzed for key ingredients. A protein-protein interaction network was constructed for studying key targets. Furthermore, gene ontology analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. Finally, the relationship between key ingredients and key genes was evaluated by molecular docking. The key ingredients of Ruxian Shuhou prescription for the treatment of TNBC may be Quercetin, Luteolin and Kaempferol, while the key therapeutic targets may be protein kinase B, interleukin-6, cellular tumor antigen p53, and vascular endothelial growth factor A. The related signaling pathways were mainly involved in tumor, apoptosis and virus infection, among which the PI3K-Akt signaling pathway was the most closely related to TNBC. Molecular docking showed that the key ingredients had high binding activity with the key targets. The molecular mechanisms of Ruxian Shuhou prescription for TNBC are likely to involve multi-ingredient, multi-target and multi-pathway.
Collapse
Affiliation(s)
- Meiling Chu
- Breast Department of TCM, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Pont M, Marqués M, Sorolla MA, Parisi E, Urdanibia I, Morales S, Salud A, Sorolla A. Applications of CRISPR Technology to Breast Cancer and Triple Negative Breast Cancer Research. Cancers (Basel) 2023; 15:4364. [PMID: 37686639 PMCID: PMC10486929 DOI: 10.3390/cancers15174364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has transformed oncology research in many ways. Breast cancer is the most prevalent malignancy globally and triple negative breast cancer (TNBC) is one of the most aggressive subtypes with numerous challenges still to be faced. In this work, we have explained what CRISPR consists of and listed its applications in breast cancer while focusing on TNBC research. These are disease modelling, the search for novel genes involved in tumour progression, sensitivity to drugs and immunotherapy response, tumour fitness, diagnosis, and treatment. Additionally, we have listed the current delivery methods employed for the delivery of CRISPR systems in vivo. Lastly, we have highlighted the limitations that CRISPR technology is subject to and the future directions that we envisage. Overall, we have provided a round summary of the aspects concerning CRISPR in breast cancer/TNBC research.
Collapse
Affiliation(s)
- Mariona Pont
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
| | - Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.P.); (M.M.); (M.A.S.); (E.P.); (I.U.); (S.M.); (A.S.)
| |
Collapse
|
37
|
Wang Y, Wang Q, Wang X, Yao P, Dai Q, Qi X, Yang M, Zhang X, Huang R, Yang J, Wang Q, Xia P, Zhang D, Sun F. Docetaxel-loaded pH/ROS dual-responsive nanoparticles with self-supplied ROS for inhibiting metastasis and enhancing immunotherapy of breast cancer. J Nanobiotechnology 2023; 21:286. [PMID: 37608285 PMCID: PMC10464340 DOI: 10.1186/s12951-023-02013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Although stimuli-responsive nanoplatforms were developed to deliver immunogenic cell death (ICD) inducers to enhance cancer immunotherapy, the complete release of ICD inducers into the tumor microenvironment (TME) was limited by the inadequate supplementation of endogenous stimulus (e.g., reactive oxygen species (ROS)). To address this issue, we synthesized a self-responsive nanomaterial with self-supplied ROS, which mainly consists of a ROS responsive moiety HPAP and cinnamaldehyde (CA) as the ROS-generating agent. The endogenous ROS can accelerate the degradation of HPAP in materials to release docetaxel (DTX, an ICD inducer). In intracellular acidic environment, the pH-sensitive acetal was cleaved to release CA. The released CA in turn induces the generation of more ROS through mitochondrial damage, resulting in amplified DTX release. Using this self-cycling and self-responsive nanomaterial as a carrier, DTX-loaded pH/ROS dual-responsive nanoparticles (DTX/FA-CA-Oxi-αCD NPs) were fabricated and evaluated in vitro and in vivo. RESULTS In vitro experiments validated that the NPs could be effectively internalized by FA-overexpressed cells and completely release DTX in acidic and ROS microenvironments to induce ICD effect. These NPs significantly blocked 4T1 cell migration and decreased cell invasion. In vivo experiments demonstrated that the tumor-targeted NPs significantly inhibited tumor growth and blocked tumor metastasis. More importantly, these NPs significantly improved immunotherapy through triggering effector T-cell activation and relieving the immunosuppressive state of the TME. CONCLUSIONS Our results demonstrated that DTX/FA-CA-Oxi-αCD NPs displayed great potential in preventing tumor metastasis, inhibiting tumor growth, and improving the efficacy of anti-PD-1antibody.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Dai
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ming Yang
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiao Zhang
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Rong Huang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jing Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Department of Urology, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
38
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
39
|
Huang Y, Guo Y, Xiao Q, Liang S, Yu Q, Qian L, Zhou J, Le J, Pei Y, Wang L, Chang C, Chen S, Zhou S. Unraveling the Pivotal Network of Ultrasound and Somatic Mutations in Triple-Negative and Non-Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:461-472. [PMID: 37456987 PMCID: PMC10349575 DOI: 10.2147/bctt.s408997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Purpose The emergence of genomic targeted therapy has improved the prospects of treatment for breast cancer (BC). However, genetic testing relies on invasive and sophisticated procedures. Patients and Methods Here, we performed ultrasound (US) and target sequencing to unravel the possible association between US radiomics features and somatic mutations in TNBC (n=83) and non-TNBC (n=83) patients. Least absolute shrinkage and selection operator (Lasso) were utilized to perform radiomic feature selection. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was utilized to identify the signaling pathways associated with radiomic features. Results Thirteen differently represented radiomic features were identified in TNBC and non-TNBC, including tumor shape, textual, and intensity features. The US radiomic-gene pairs were differently exhibited between TNBC and non-TNBC. Further investigation with KEGG verified radiomic-pathway (ie, JAK-STAT, MAPK, Ras, Wnt, microRNAs in cancer, PI3K-Akt) associations in TNBC and non-TNBC. Conclusion The pivotal network provided the connections of US radiogenomic signature and target sequencing for non-invasive genetic assessment of precise BC treatment.
Collapse
Affiliation(s)
- Yunxia Huang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yi Guo
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Qin Xiao
- Department of Electronic Engineering, Fudan University and Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, People’s Republic of China
| | - Shuyu Liang
- Department of Radiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Qiang Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Lang Qian
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jin Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jian Le
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yuchen Pei
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Lei Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Cai Chang
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Sheng Chen
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, People’s Republic of China
| | - Shichong Zhou
- Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
40
|
Obidiro O, Battogtokh G, Akala EO. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook. Pharmaceutics 2023; 15:1796. [PMID: 37513983 PMCID: PMC10384267 DOI: 10.3390/pharmaceutics15071796] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Triple negative breast cancer (TNBC) has a negative expression of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). The survival rate for TNBC is generally worse than other breast cancer subtypes. TNBC treatment has made significant advances, but certain limitations remain. Treatment for TNBC can be challenging since the disease has various molecular subtypes. A variety of treatment options are available, such as chemotherapy, immunotherapy, radiotherapy, and surgery. Chemotherapy is the most common of these options. TNBC is generally treated with systemic chemotherapy using drugs such as anthracyclines and taxanes in neoadjuvant or adjuvant settings. Developing resistance to anticancer drugs and off-target toxicity are the primary hindrances to chemotherapeutic solutions for cancer. It is imperative that researchers, clinicians, and pharmaceutical companies work together to develop effective treatment options for TNBC. Several studies have suggested nanotechnology as a potential solution to the problem of suboptimal TNBC treatment. In this review, we summarized possible treatment options for TNBC, including chemotherapy, immunotherapy, targeted therapy, combination therapy, and nanoparticle-based therapy, and some solutions for the treatment of TNBC in the future. Moreover, we gave general information about TNBC in terms of its characteristics and aggressiveness.
Collapse
Affiliation(s)
| | | | - Emmanuel O. Akala
- Center for Drug Research and Development, Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, Washington, DC 20059, USA; (O.O.); (G.B.)
| |
Collapse
|
41
|
Alaouna M, Penny C, Hull R, Molefi T, Chauke-Malinga N, Khanyile R, Makgoka M, Bida M, Dlamini Z. Overcoming the Challenges of Phytochemicals in Triple Negative Breast Cancer Therapy: The Path Forward. PLANTS (BASEL, SWITZERLAND) 2023; 12:2350. [PMID: 37375975 DOI: 10.3390/plants12122350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Triple negative breast cancer (TNBC) is a very aggressive subtype of breast cancer that lacks estrogen, progesterone, and HER2 receptor expression. TNBC is thought to be produced by Wnt, Notch, TGF-beta, and VEGF pathway activation, which leads to cell invasion and metastasis. To address this, the use of phytochemicals as a therapeutic option for TNBC has been researched. Plants contain natural compounds known as phytochemicals. Curcumin, resveratrol, and EGCG are phytochemicals that have been found to inhibit the pathways that cause TNBC, but their limited bioavailability and lack of clinical evidence for their use as single therapies pose challenges to the use of these phytochemical therapies. More research is required to better understand the role of phytochemicals in TNBC therapy, or to advance the development of more effective delivery mechanisms for these phytochemicals to the site where they are required. This review will discuss the promise shown by phytochemicals as a treatment option for TNBC.
Collapse
Affiliation(s)
- Mohammed Alaouna
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Nkhensani Chauke-Malinga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Plastic and Reconstructive Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Malose Makgoka
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa
| | - Meshack Bida
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Anatomical Pathology, National Health Laboratory Service (NHLS), University of Pretoria, Pretoria 0001, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
42
|
Anifowose LO, Paimo OK, Adegboyega FN, Ogunyemi OM, Akano RO, Hammad SF, Ghazy MA. Molecular docking appraisal of Dysphania ambrosioides phytochemicals as potential inhibitor of a key triple-negative breast cancer driver gene. In Silico Pharmacol 2023; 11:15. [PMID: 37323538 PMCID: PMC10267046 DOI: 10.1007/s40203-023-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a lethal and aggressive breast cancer subtype. It is characterized by the deficient expression of the three main receptors implicated in breast cancers, making it unresponsive to hormone therapy. Hence, an existing need to develop a targeted molecular therapy for TNBC. The PI3K/AKT/mTOR signaling pathway mediates critical cellular processes, including cell proliferation, survival, and angiogenesis. It is activated in approximately 10-21% of TNBCs, emphasizing the importance of this intracellular target in TNBC treatment. AKT is a prominent driver of the PI3K/AKT/mTOR pathway, validating it as a promising therapeutic target. Dysphania ambrosioides is an important ingredient of Nigeria's traditional herbal recipe for cancer treatment. Thus, our present study explores its anticancer properties through a structure-based virtual screening of 25 biologically active compounds domiciled in the plant. Interestingly, our molecular docking study identified several potent inhibitors of AKT 1 and 2 isoforms from D. ambrosioides. However, cynaroside and epicatechin gallate having a binding energy of - 9.9 and - 10.2 kcal/mol for AKT 1 and 2, respectively, demonstrate considerable drug-likeness than the reference drug (capivasertib), whose respective binding strengths for AKT 1 and 2 are - 9.5 and - 8.4 kcal/mol. Lastly, the molecular dynamics simulation experiment showed that the simulated complex systems of the best hits exhibit structural stability throughout the 50 ns run. Together, our computational modeling analysis suggests that these compounds could emerge as efficacious drug candidates in the treatment of TNBC. Nevertheless, further experimental, translational, and clinical research is required to establish an empirical clinical application. Graphical Abstract A structure-based virtual screening and simulation of Dysphania ambrosioides phytochemicals in the active pocket of AKT 1 and 2 isoforms.
Collapse
Affiliation(s)
- Lateef O. Anifowose
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - Fikayo N. Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oludare M. Ogunyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Rukayat O. Akano
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Sherif F. Hammad
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Mohamed A. Ghazy
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
43
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
44
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|
45
|
Sun X, Tang H, Chen Y, Chen Z, Hu Z, Cui Z, Tao Y, Yuan J, Fu Y, Zhuang Z, He Q, Li Q, Xu X, Wan X, Jiang Y, Mao Z. Loss of the receptors ER, PR and HER2 promotes USP15-dependent stabilization of PARP1 in triple-negative breast cancer. NATURE CANCER 2023; 4:716-733. [PMID: 37012401 DOI: 10.1038/s43018-023-00535-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is essential for the progression of several types of cancers. However, whether and how PARP1 is stabilized to promote genomic stability in triple-negative breast cancer (TNBC) remains unknown. Here, we demonstrated that the deubiquitinase USP15 interacts with and deubiquitinates PARP1 to promote its stability, thereby stimulating DNA repair, genomic stability and TNBC cell proliferation. Two PARP1 mutations found in individuals with breast cancer (E90K and S104R) enhanced the PARP1-USP15 interaction and suppressed PARP1 ubiquitination, thereby elevating the protein level of PARP1. Importantly, we found that estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) inhibited USP15-mediated PARP1 stabilization through different mechanisms. ER bound to the USP15 promoter to suppress its expression, PR suppressed the deubiquitinase activity of USP15, and HER2 abrogated the PARP1-USP15 interaction. The specific absence of these three receptors in TNBC results in high PARP1 levels, leading to increases in base excision repair and female TNBC cell survival.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyi Hu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaming Tao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jian Yuan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Fu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhigang Zhuang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qizhi He
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghong Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, China.
| |
Collapse
|
46
|
Liu F, Xie B, Ye R, Xie Y, Zhong B, Zhu J, Tang Y, Lin Z, Tang H, Wu Z, Li H. Overexpression of tripartite motif-containing 47 (TRIM47) confers sensitivity to PARP inhibition via ubiquitylation of BRCA1 in triple negative breast cancer cells. Oncogenesis 2023; 12:13. [PMID: 36906594 PMCID: PMC10008536 DOI: 10.1038/s41389-023-00453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 03/13/2023] Open
Abstract
Triple-negative breast cancers (TNBC) frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. However, less than 15% of TNBC patients were found to carry BRCA1 mutation, indicating that there are other mechanisms regulating BRCA1-deficient in TNBC. In the current study, we shown that overexpression of TRIM47 correlates with progression and poor prognosis in triple-negative breast cancer. Moreover, we demonstrated that TRIM47 directly interacts with BRCA1 and induces ubiquitin-ligase-mediated proteasome turnover of BRCA1, subsequently leads to a decrease of BRCA1 protein levels in TNBC. Moreover, the downstream gene expression of BRCA1, such as p53, p27, p21 was significantly reduced in the overexpression of TRIM47 cell lines but increased in TRIM47-deleted cells. Functionally, we found that overexpression of TRIM47 in TNBC cells confers an exquisite sensitivity to olaparib, an inhibitor of poly-(ADP-ribose)-polymerase (PARP), but TRIM47 inhibition significantly confers TNBC cells resistance to olaparib both in vitro and in vivo. Furthermore, we showed that overexpression of BRCA1 significant increase the olaparib resistance in TRIM47-overexpression-induced PARP inhibitions sensitivity. Taken together, our results uncover a novel mechanism for BRCA1-deficient in TNBC and targeting TRIM47/BRCA1 axis may be a promising prognostic factor and a valuable therapeutic target for TNBC.
Collapse
Affiliation(s)
- Fengen Liu
- Department of General Surgery III, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Binhui Xie
- Department of General Surgery I, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China.,Ganzhou Key Laboratory of Hepatocellular carcinoma, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Rong Ye
- Department of General Surgery III, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yuankang Xie
- Department of General Surgery I, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Baiyin Zhong
- Department of General Surgery I, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jinrong Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yao Tang
- Department of Pathology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510310, China
| | - Zelong Lin
- Department of Pathology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510310, China
| | - Huiru Tang
- Cheerland Watson Precision Medicine Co. Ltd, Shenzhen, 518036, P. R. China.
| | - Ziqing Wu
- Department of Pathology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510310, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, 510515, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Heping Li
- Department of Medical Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| |
Collapse
|
47
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
48
|
Li J, Zheng J, Lin B, Sun H, Lu S, Wang D, Huo H. Knockdown of NCAPG promotes the apoptosis and inhibits the invasion and migration of triple‑negative breast cancer MDA‑MB‑231 cells via regulation of EGFR/JAK/STAT3 signaling. Exp Ther Med 2023; 25:119. [PMID: 36815969 PMCID: PMC9932631 DOI: 10.3892/etm.2023.11818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and the treatment options are extremely limited. Non-SMC condensing I complex subunit G (NCAPG) expression is upregulated in TNBC, but its specific regulatory mechanism in TNBC has not been previously reported. The expression levels of NCAPG in TNBC were analyzed using data obtained from the UALCAN database. RT-qPCR and western blotting were used to detect the expression of NCAPG in various breast cancer cell lines. The expression of NCAPG was knocked down, and cell viability was then detected using a CCK-8 assay, apoptosis was detected using a TUNEL assay, and the expression of the apoptosis-related proteins Bcl-2, Bax and Bad were detected by western blotting. Wound healing and Transwell assays were used to assess migration and invasion. Western blotting was also used to determine the expression levels of migration and invasion-related proteins MMP2 and MMP9, as well as EGFR/JAK/STAT3 pathway-related proteins. Following exogenous treatment with EGF and the JAK/STAT3 signaling pathway agonist colivelin, cell viability, apoptosis, invasion and migration were assessed. The expression of NCAPG in TNBC MDA-MB-231 cells was significantly increased. Inhibition of NCAPG inhibited the activity, promoted apoptosis, and inhibited the invasion and migration of TNBC MDA-MB-231 cells, potentially via regulation of the EGFR/JAK/STAT3 signaling pathway. In conclusion, downregulation of NCAPG can promote apoptosis and inhibit invasion and migration of TNBC MDA-MB-231 cells via EGFR/JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Juanyun Li
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China,Correspondence to: Dr Juanyun Li, Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, 6082 Longgang Avenue, Longgang, Shenzhen, Guangdong 518116, P.R. China
| | - Jialu Zheng
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Hao Sun
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Shan Lu
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Dandan Wang
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| | - Hongjun Huo
- Department of Thyroid, Breast and Vascular Surgery, Shenzhen Longgang Central Hospital, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
49
|
Gregory AM, Rutter MK, Madrid-Valero JJ, Bennett SD, Shafran R, Buysse DJ. Editorial: Therapies for mental health difficulties: finding the sweet spot between standardization and personalization. J Child Psychol Psychiatry 2023; 64:213-216. [PMID: 36636905 DOI: 10.1111/jcpp.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/14/2023]
Abstract
There are strong arguments for standardizing therapies for mental health difficulties in young people and for the development of digital therapies. At the same time, the importance of personalized treatments is also increasingly apparent. In this editorial, we discuss challenges and the continued need to find the sweet spot between standardization and personalization when it comes to therapies for mental health difficulties. We illustrate our discussion with reference to insomnia in adolescents/young adults as well as the chronic health condition type 1 diabetes.
Collapse
Affiliation(s)
- Alice M Gregory
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, UK.,Diabetes, Endocrinology and Metabolism Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Juan J Madrid-Valero
- Department of Health Psychology, Faculty of Health Sciences, University of Alicante, Alicante, Spain
| | | | - Roz Shafran
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniel J Buysse
- Department of Psychiatry, Center for Sleep and Circadian Science, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Li Z, Han Y, Wang J, Xu B. Prognostic Factors for Triple-Negative Breast Cancer with Residual Disease after Neoadjuvant Chemotherapy. J Pers Med 2023; 13:jpm13020190. [PMID: 36836424 PMCID: PMC9959351 DOI: 10.3390/jpm13020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Valid factors to evaluate the prognosis of triple-negative breast cancer (TNBC) with residual disease after neoadjuvant chemotherapy (NAC) are still lacking. We performed this study to explore prognostic factors focusing on genetic alterations and clinicopathology features in non- pathologic complete response (pCR) TNBC patients. Patients initially diagnosed with early-stage TNBC, treated with NAC, and who had residual disease after primary tumor surgery at the China National Cancer Center during 2016 and 2020 were enrolled. Genomic analyses were performed by targeted sequencing for each tumor sample. Univariable and multivariable analyses were conducted to screen prognostic factors for the survival of patients. Fifty-seven patients were included in our study. Genomic analyses showed that TP53 (41/57, 72%), PIK3CA (12/57, 21%), and MET (7/57, 12%), and PTEN (7/57, 12%) alternations commonly occurred. The clinical TNM (cTNM) stage and PIK3CA status were independent prognostic factors of disease-free survival (DFS) (p < 0.001, p = 0.03). A prognostic stratification indicated that patients with clinical stages I &II possessed the best DFS, followed by those with clinical stage III & wild-type PIK3CA. In contrast, patients with clinical stage III & the PIK3CA mutation had the worst DFS. In TNBC patients with residual disease after NAC, prognostic stratification for DFS was observed by combining the cTNM stage and PIK3CA status.
Collapse
|