1
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
2
|
Chen JL, Guo L, Wu ZY, He K, Li H, Yang C, Han YW. Prognostic value of circulating tumor cells combined with neutrophil-lymphocyte ratio in patients with hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:372-385. [PMID: 38425405 PMCID: PMC10900146 DOI: 10.4251/wjgo.v16.i2.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Circulating tumor cell (CTC) count and neutrophil-to-lymphocyte ratio (NLR) are both closely associated with the prognosis of hepatocellular carcinoma (HCC). AIM To investigate the prognostic value of combining these two indicators in HCC. METHODS Clinical data were collected from patients with advanced HCC who received immune therapy combined with targeted therapy at the Department of Oncology, the Affiliated Hospital of Southwest Medical University, Sichuan, China, from 2021 to 2023. The optimal cutoff values for CTC programmed death-ligand 1 (PD-L1) (+) > 1 or CTC PD-L1 (+) ≤ 1 and NLR > 3.89 or NLR ≤ 3.89 were evaluated using X-Tile software. Patients were categorized into three groups based on CTC PD-L1 (+) counts and NLR: CTC-NLR (0), CTC-NLR (1), and CTC-NLR (2). The relationship between CTC-NLR and clinical variables as well as survival rates was assessed. RESULTS Patients with high CTC PD-L1 (+) expression or NLR at baseline had shorter median progression-free survival (mPFS) and median overall survival (mOS) than those with low levels of CTC PD-L1 (+) or NLR (P < 0.001). Meanwhile, patients in the CTC-NLR (2) group showed a significant decrease in mPFS and mOS. Cox regression analysis revealed that alpha-fetoprotein (AFP), CTC PD-L1 (+), and CTC-NLR were independent predictors of OS. The time-dependent receiver operating characteristic curve showed that the area under the curve of CTC-NLR at 12 months (0.821) and 18 months (0.821) was superior to that of AFP and CTC PD-L1 (+). CONCLUSION HCC patients with high CTC PD-L1 (+) or NLR expression tend to exhibit poor prognosis, and a high baseline CTC-NLR score may indicate low survival. CTC-NLR may serve as an effective prognostic indicator for patients with advanced HCC receiving immunotherapy combined with targeted therapy.
Collapse
Affiliation(s)
- Jia-Li Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lu Guo
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Zhen-Ying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Kun He
- Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Chi Yang
- Department of Plastic Surgery, Meguiar's Medical Beauty Hospital, Chengdu 610000, Sichuan Province, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
3
|
Di Cosimo S, De Marco C, Silvestri M, Busico A, Vingiani A, Pruneri G, Cappelletti V. Can we define breast cancer HER2 status by liquid biopsy? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:23-56. [PMID: 37739483 DOI: 10.1016/bs.ircmb.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Human Epidermal growth factor Receptor 2 (HER2) assessment is crucial for breast cancer treatment. Therapeutic decisions for recurrent cases often rely on primary tumor status. However, mounting evidence suggests that tumors show dynamic changes and up to 10% of breast cancer modify their initial status during progression. It is still debated whether these changes reflect a biological evolution of the disease or are secondary to primary tumor heterogeneity. Certainly, repeating HER2 assessment during breast cancer trajectory is important for the increasing availability of effective anti-HER2 drugs. In response to this need, circulating biomarkers such as circulating tumor cells (CTCs) and cell-free circulating tumor DNA (ctDNA) offer the potential to safely and repeatedly assess HER2 status over time. This chapter outlines current methods for testing HER2 in CTCs and ctDNA, and reviews clinical trials evaluating its prognostic and predictive value in patients with breast cancer, as well as recent advances in the field.
Collapse
Affiliation(s)
- Serena Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Cinzia De Marco
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marco Silvestri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Adele Busico
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Andrea Vingiani
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giancarlo Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Vera Cappelletti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy.
| |
Collapse
|
4
|
Munoz-Arcos LS, Nicolò E, Serafini MS, Gerratana L, Reduzzi C, Cristofanilli M. Latest advances in clinical studies of circulating tumor cells in early and metastatic breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:1-21. [PMID: 37739480 DOI: 10.1016/bs.ircmb.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as a promising biomarker in breast cancer, offering insights into disease progression and treatment response. While CTCs have demonstrated prognostic relevance in early breast cancer, more validation is required to establish optimal cut-off points. In metastatic breast cancer, the detection of CTCs using the Food and Drug Administration-approved CellSearch® system is a strong independent prognostic factor. However, mesenchymal CTCs and the Parsortix® PC1 system show promise as alternative detection methods. This chapter offers a comprehensive review of clinical studies on CTCs in breast cancer, emphasizing their prognostic and predictive value in different stages of the disease and provides insights into potential future directions in CTC research.
Collapse
Affiliation(s)
- Laura S Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Mara S Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
5
|
Caredda E, Pedini G, D'Amico F, Scioli MG, Pacini L, Orsaria P, Vanni G, Buonomo OC, Orlandi A, Bagni C, Palombi L. FMRP expression in primary breast tumor cells correlates with recurrence and specific site of metastasis. PLoS One 2023; 18:e0287062. [PMID: 37379311 DOI: 10.1371/journal.pone.0287062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Breast cancer is the most common cancer among women worldwide. Molecular and clinical evidence indicated that Fragile X Messenger Ribonucleoprotein 1 (FMRP) plays a role in different types of cancer, including breast cancer. FMRP is an RNA binding protein that regulates the metabolism of a large group of mRNAs coding for proteins involved in both neural processes and in epithelial-mesenchymal transition, a pivotal mechanism that in cancer is associated to tumor progression, aggressiveness and chemoresistance. Here, we carried out a retrospective case-control study of 127 patients, to study the expression of FMRP and its correlation with metastasis formation in breast cancer. Consistent with previous findings, we found that FMRP levels are high in tumor tissue. Two categories have been analyzed, tumor with no metastases (referred as control tumors, 84 patients) and tumor with distant metastatic repetition, (referred as cases, 43 patients), with a follow-up of 7 years (mean). We found that FMRP levels were lower in both the nuclei and the cytoplasm in the cases compared to control tumors. Next, within the category cases (tumor with metastases) we evaluated FMRP expression in the specific sites of metastasis revealing a nuclear staining of FMRP. In addition, FMRP expression in both the nuclear and cytoplasmic compartment was significantly lower in patients who developed brain and bone metastases and higher in hepatic and pulmonary sites. While further studies are required to explore the underlying molecular mechanisms of FMRP expression and direct or inverse correlation with the secondary metastatic site, our findings suggest that FMRP levels might be considered a prognostic factor for site-specific metastasis.
Collapse
Affiliation(s)
- E Caredda
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- Directorate-General for Health Prevention, Ministry of Health, Rome, Italy
| | - G Pedini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - F D'Amico
- Anatomic Pathology, Department Biomedicine and Prevention, Faculty of Medicine, Tor Vergata University Hospital, Rome, Italy
- Infectious Diseases Unit, Niguarda Hospital, Milan, Italy
| | - M G Scioli
- Anatomic Pathology, Department Biomedicine and Prevention, Faculty of Medicine, Tor Vergata University Hospital, Rome, Italy
| | - L Pacini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- UniCamillus, Saint Camillus International, Faculty of Medicine, University of Health and Medical Sciences, Rome, Italy
| | - P Orsaria
- Department of Breast Surgery, University Campus Bio-Medico, Rome, Italy
| | - G Vanni
- Department of Surgery, Faculty of Medicine, Tor Vergata University Hospital, Rome, Italy
| | - O C Buonomo
- Department of Surgery, Faculty of Medicine, Tor Vergata University Hospital, Rome, Italy
| | - A Orlandi
- Anatomic Pathology, Department Biomedicine and Prevention, Faculty of Medicine, Tor Vergata University Hospital, Rome, Italy
| | - C Bagni
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Fundamental Neurosciences (DNF), Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - L Palombi
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Bai S, Lin S, Lin T, Wang Q, Cheng C, Lin J, Zhang Y, Jiang X, Han X. Clinical diagnostic biomarker "circulating tumor cells" in breast cancer - a meta-analysis. Front Oncol 2023; 13:1137519. [PMID: 37397397 PMCID: PMC10313226 DOI: 10.3389/fonc.2023.1137519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Objective Using meta-analysis, we evaluate circulating tumor cells(CTCs) as a potential diagnostic tool for breast cancer. Methods A document search was conducted using publicly available databases up to May 2021. Specific inclusion and exclusion criteria were formulated and summarize relevant data through literature types, research types, case populations, samples, etc. Subgroup analysis of documents based on regions, enrichment methods, and detection methods. The included research projects were evaluated using DeeKs' bias, and evaluation indicators such as specificity (SPE), sensitivity (SEN), diagnosis odds ratio (DOR) were used as evaluation indicators. Results 16 studies on the use of circulating tumor cells to diagnose breast cancer were included in our meta-analysis. Overall sensitivity value was 0.50 (95%CI:0.48-0.52), specificity value was 0.93 (95%CI:0.92- 0.95), DOR value was 33.41 (95%CI:12.47-89.51), and AUC value was 0.8129. Conclusion In meta-regressions and subgroup analysis, potential heterogeneity factors were analyzed, but the source of heterogeneity is still unclear. CTCs, as a novel tumor marker, have a good diagnostic value, but its enrichment and detection methods still need to continue to be developed to improve detection accuracy. Therefore, CTCs can be used as an auxiliary means of early detection, which is helpful to the diagnosis and screening of breast cancer.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shujin Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Qiaowen Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Junru Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ying Zhang
- Industrial Management Engineering, National University of Singapore, Singapore, Singapore
| | - Xiwen Jiang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
7
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
8
|
Bates M, Mohamed BM, Ward MP, Kelly TE, O'Connor R, Malone V, Brooks R, Brooks D, Selemidis S, Martin C, O'Toole S, O'Leary JJ. Circulating tumour cells: The Good, the Bad and the Ugly. Biochim Biophys Acta Rev Cancer 2023; 1878:188863. [PMID: 36796527 DOI: 10.1016/j.bbcan.2023.188863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
This review is an overview of the current knowledge regarding circulating tumour cells (CTCs), which are potentially the most lethal type of cancer cell, and may be a key component of the metastatic cascade. The clinical utility of CTCs (the "Good"), includes their diagnostic, prognostic, and therapeutic potential. Conversely, their complex biology (the "Bad"), including the existence of CD45+/EpCAM+ CTCs, adds insult to injury regarding their isolation and identification, which in turn hampers their clinical translation. CTCs are capable of forming microemboli composed of both non-discrete phenotypic populations such as mesenchymal CTCs and homotypic and heterotypic clusters which are poised to interact with other cells in the circulation, including immune cells and platelets, which may increase their malignant potential. These microemboli (the "Ugly") represent a prognostically important CTC subset, however, phenotypic EMT/MET gradients bring additional complexities to an already challenging situation.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya E Kelly
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Roisin O'Connor
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Robert Brooks
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Doug Brooks
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
9
|
Khristov V, Lin A, Freedman Z, Staub J, Shenoy G, Mrowczynski O, Rizk E, Zacharia B, Connor J. Tumor-Derived Biomarkers in Liquid Biopsy of Glioblastoma. World Neurosurg 2023; 170:182-194. [PMID: 36347463 DOI: 10.1016/j.wneu.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
There is a pressing clinical need for minimally invasive liquid biopsies to supplement imaging in the treatment of glioblastoma. Diagnostic imaging is often difficult to interpret and the medical community is divided on distinguishing among complete response, partial response, stable disease, and progressive disease. A minimally invasive liquid biopsy would supplement imaging and clinical findings and has the capacity to be helpful in several ways: 1) diagnosis, 2) selection of patients for specific treatments, 3) tracking of treatment response, and 4) prognostic value. The liquid biome is the combination of biological fluids including blood, urine, and cerebrospinal fluid that contain small amounts of tumor cells, DNA/RNA coding material, peptides, and metabolites. Within the liquid biome, 2 broad categories of biomarkers can exist: tumor-derived, which can be directly traced to the tumor, and tumor-associated, which can be traced back to the response of the body to disease. Although tumor-associated biomarkers are promising liquid biopsy candidates, recent advances in biomarker enrichment and detection have allowed concentration on a new class of biomarker: tumor-derived biomarkers. This review focuses on making the distinction between the 2 biomarker categories and highlights promising new direction.
Collapse
Affiliation(s)
- Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA.
| | - Andrea Lin
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Zachary Freedman
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Jacob Staub
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Oliver Mrowczynski
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Brad Zacharia
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| |
Collapse
|
10
|
Peng X, Gong C, Zhang W, Zhou A. Advanced development of biomarkers for immunotherapy in hepatocellular carcinoma. Front Oncol 2023; 12:1091088. [PMID: 36727075 PMCID: PMC9885011 DOI: 10.3389/fonc.2022.1091088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and one of the leading causes of cancer-related deaths in the world. Mono-immunotherapy and combination therapy with immune checkpoint inhibitors (ICIs) and multitargeted tyrosine kinase inhibitors (TKIs) or anti-vascular endothelial growth factor (anti-VEGF) inhibitors have become new standard therapies in advanced HCC (aHCC). However, the clinical benefit of these treatments is still limited. Thus, proper biomarkers which can predict treatment response to immunotherapy to maximize clinical benefit while sparing unnecessary toxicity are urgently needed. Contrary to other malignancies, up until now, no acknowledged biomarkers are available to predict resistance or response to immunotherapy for HCC patients. Furthermore, biomarkers, which are established in other cancer types, such as programmed death ligand 1 (PD-L1) expression and tumor mutational burden (TMB), have no stable predictive effect in HCC. Thus, plenty of research focusing on biomarkers for HCC is under exploration. In this review, we summarize the predictive and prognostic biomarkers as well as the potential predictive mechanism in order to guide future research direction for biomarker exploration and clinical treatment options in HCC.
Collapse
|
11
|
Yang Y, Li L, Tian W, Qiao Z, Qin Q, Su L, Li P, Chen W, Zhao H. A nomogram for predicting the HER2 status of circulating tumor cells and survival analysis in HER2-negative breast cancer. Front Oncol 2022; 12:943800. [PMID: 36620609 PMCID: PMC9811813 DOI: 10.3389/fonc.2022.943800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background In breast cancer patients with HER2-negative tumors (tHER2-), HER2-positive CTCs (cHER2+) were associated with promising efficacy of HER2-targeted therapy, but controversy has persisted over its prognostic effect. We developed a model including clinicopathologic parameters/blood test variables to predict cHER2 status and evaluated the prognostic value of cHER2+ in tHER2- patients. Methods cHER2+ was detected, blood test results and clinicopathological characteristics were combined, and a nomogram was constructed to predict cHER2 status in tHER2- patients according to logistic regression analysis. The nomogram was evaluated by C-index values and calibration curve. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were performed to evaluate the prognostic value of cHER2 status. Results TNM stage, white blood cells (WBCs), neutrophils (NEUs), uric acid (UA), De Ritis ratio [aspartate transaminase (AST)/alanine transaminase (ALT)], and high-density lipoprotein (HDL) were found to be associated with cHER2 status in tHER2- patients in univariate logistic regression analysis, in which UA and De Ritis ratio remained significant in multivariate logistic regression analysis. A model combining these six variables was constructed, the C-index was 0.745 (95% CI: 0.630-0.860), and the calibration curve presented a perfect predictive consistency. In survival analysis, patients of the subgroups "with cHER2+/UA-low" (p = 0.015) and "with cHER2+/De Ritis ratio - high" (p = 0.006) had a significantly decreased disease-free survival (DFS). Conclusions Our nomogram, based on TNM stage, WBC, NEU, UA, De Ritis ratio, and HDL, may excellently predict the cHER2 status of tHER2- patients. Incorporation with UA and De Ritis ratio may enhance the prognostic value of cHER2 status.
Collapse
Affiliation(s)
- Yuqin Yang
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Liudan Li
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, Guangdong, China
| | - Wenjing Tian
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zhen Qiao
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, Guangdong, China
| | - Qi Qin
- Department of Medical Oncology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Liqian Su
- Precision Medicine Center of Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Peiqiu Li
- Department of Nephrology, The Fifth Hospital Affiliated of Sun Yat-sen University Zhuhai, Guangdong, China
| | - Weirong Chen
- Department of Breast Surgery, Zhuhai Maternity and Child Health Hospital, Zhuhai, Guangdong, China,*Correspondence: Hong Zhao, ; Weirong Chen,
| | - Hong Zhao
- The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China,*Correspondence: Hong Zhao, ; Weirong Chen,
| |
Collapse
|
12
|
Long Y, Chong T, Lyu X, Chen L, Luo X, Faleti OD, Deng S, Wang F, He M, Qian Z, Zhao H, Zhou W, Guo X, Chen C, Li X. FOXD1-dependent RalA-ANXA2-Src complex promotes CTC formation in breast cancer. J Exp Clin Cancer Res 2022; 41:301. [PMID: 36229838 PMCID: PMC9558416 DOI: 10.1186/s13046-022-02504-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early metastasis is a key factor contributing to poor breast cancer (BC) prognosis. Circulating tumor cells (CTCs) are regarded as the precursor cells of metastasis, which are ultimately responsible for the main cause of death in BC. However, to date molecular mechanisms underlying CTC formation in BC have been insufficiently defined. METHODS RNA-seq was carried out in primary tissues from early-stage BC patients (with CTCs≥5 and CTCs = 0, respectively) and the validation study was conducted in untreated 80 BC patients. Multiple in vitro and in vivo models were used in functional studies. Luciferase reporter, ChIP-seq, CUT&Tag-seq, and GST-pulldown, etc. were utilized in mechanistic studies. CTCs were counted by the CanPatrol™ CTC classification system or LiquidBiospy™ microfluidic chips. ERK1/2 inhibitor SCH772984 was applied to in vivo treatment. RESULTS Highly expressed FOXD1 of primary BC tissues was observed to be significantly associated with increased CTCs in BC patients, particularly in early BC patients. Overexpressing FOXD1 enhanced the migration capability of BC cells, CTC formation and BC metastasis, via facilitating epithelial-mesenchymal transition of tumor cells. Mechanistically, FOXD1 was discovered to induce RalA expression by directly bound to RalA promotor. Then, RalA formed a complex with ANXA2 and Src, promoting the interaction between ANXA2 and Src, thus increasing the phosphorylation (Tyr23) of ANXA2. Inhibiting RalA-GTP form attenuated the interaction between ANXA2 and Src. This cascade culminated in the activation of ERK1/2 signal that enhanced metastatic ability of BC cells. In addition, in vivo treatment with SCH772984, a specific inhibitor of ERK1/2, was used to dramatically inhibit the CTC formation and BC metastasis. CONCLUSION Here, we report a FOXD1-dependent RalA-ANXA2-Src complex that promotes CTC formation via activating ERK1/2 signal in BC. FOXD1 may serve as a prognostic factor in evaluation of BC metastasis risks. This signaling cascade is druggable and effective for overcoming CTC formation from the early stages of BC.
Collapse
Affiliation(s)
- Yufei Long
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Tuotuo Chong
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaoming Lyu
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lujia Chen
- grid.284723.80000 0000 8877 7471Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Xiaomin Luo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Oluwasijibomi Damola Faleti
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Simin Deng
- grid.284723.80000 0000 8877 7471Department of laboratory medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Fei Wang
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Mingliang He
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhipeng Qian
- Guangzhou SaiCheng Bio Co. Ltd, Guangzhou, Guangdong China
| | - Hongli Zhao
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Wenyan Zhou
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China
| | - Xia Guo
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan China ,grid.285847.40000 0000 9588 0960The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan China
| | - Xin Li
- grid.284723.80000 0000 8877 7471Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong China ,grid.284723.80000 0000 8877 7471The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong China
| |
Collapse
|
13
|
Wang M, Liu Y, Shao B, Liu X, Hu Z, Wang C, Li H, Zhu L, Li P, Yang Y. HER2 status of CTCs by peptide-functionalized nanoparticles as the diagnostic biomarker of breast cancer and predicting the efficacy of anti-HER2 treatment. Front Bioeng Biotechnol 2022; 10:1015295. [PMID: 36246381 PMCID: PMC9554095 DOI: 10.3389/fbioe.2022.1015295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Efficacy of anti-human epidermal growth factor receptor 2 (HER2) treatment is impacted by tissue-based evaluation bias due to tumor heterogeneity and dynamic changes of HER2 in breast cancer. Circulating tumor cell (CTC)-based HER2 phenotyping provides integral and real-time assessment, benefiting accurate HER2 diagnosis. This study developed a semi-quantitative fluorescent evaluation system of HER2 immunostaining on CTCs by peptide-functionalized magnetic nanoparticles (Pep@MNPs) and immunocytochemistry (ICC). 52 newly-diagnosed advanced breast cancer patients were enrolled for blood samples before and/or after first-line treatment, including 24 patients who were diagnosed with HER2+ tumors and treated with anti-HER2 drugs. We enumerated CTCs and assessed levels of HER2 expression on CTCs in 2.0 ml whole blood. Enumerating CTCs at baseline could distinguish cancer patients (sensitivity, 69.2%; specificity, 100%). 80.8% (42/52) of patients had at least one CTCs before therapy. Patients with <3 CTCs at baseline had significantly longer progression-free survival (medians, 19.4 vs. 9.2 months; log-rank p = 0.046) and overall survival (medians, not yet reached; log-rank p = 0.049) than those with ≥3 CTCs. Both HER2+ and HER2-low patients could be detected with HER2 overexpression on CTCs (CTC-HER2+) (52.6%, 44.4%, respectively), whereas all the HER2-negative patients had no CTC-HER2+ phenotype. Among HER2+ patients with ≥3 CTCs at baseline, objective response only appeared in pretherapeutic CTC-HER2+ cohort (60.0%), rather than in CTC-HER2- cohort (0.0%) (p = 0.034). In conclusion, we demonstrate the significance of CTC enumeration in diagnosis and prognosis of first-line advanced breast cancer, and highlight the value of CTC-HER2 status in predicting efficacy of anti-HER2 treatment.
Collapse
Affiliation(s)
- Mengting Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaxin Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Shao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoran Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Szymborski TR, Czaplicka M, Nowicka AB, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips. BIOSENSORS 2022; 12:681. [PMID: 36140065 PMCID: PMC9496591 DOI: 10.3390/bios12090681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The detection of freely circulating cancer cells (CTCs) is one of the greatest challenges of modern medical diagnostics. For several years, there has been increased attention on the use of surface-enhanced Raman spectroscopy (SERS) for the detection of CTCs. SERS is a non-destructive, accurate and precise technique, and the use of special SERS platforms even enables the amplification of weak signals from biological objects. In the current study, we demonstrate the unique arrangement of the SERS technique combined with the deposition of CTCs cells on the surface of the SERS platform via a dielectrophoretic effect. The appropriate frequencies of an alternating electric field and a selected shape of the electric field can result in the efficient deposition of CTCs on the SERS platform. The geometry of the microfluidic chip, the type of the cancer cells and the positive dielectrophoretic phenomenon resulted in the trapping of CTCs on the surface of the SERS platform. We presented results for two type of breast cancer cells, MCF-7 and MDA-MB-231, deposited from the 0.1 PBS solution. The limit of detection (LOD) is 20 cells/mL, which reflects the clinical potential and usefulness of the developed approach. We also provide a proof-of-concept for these CTCs deposited on the SERS platform from blood plasma.
Collapse
Affiliation(s)
- Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ariadna B. Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
15
|
Circulating tumor cell assay to non-invasively evaluate PD-L1 and other therapeutic targets in multiple cancers. PLoS One 2022; 17:e0270139. [PMID: 35714131 PMCID: PMC9205490 DOI: 10.1371/journal.pone.0270139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022] Open
Abstract
Biomarker directed selection of targeted anti-neoplastic agents such as immune checkpoint inhibitors, small molecule inhibitors and monoclonal antibodies form an important aspect of cancer treatment. Immunohistochemistry (IHC) analysis of the tumor tissue is the method of choice to evaluate the presence of these biomarkers. However, a significant barrier to biomarker testing on tissue is the availability of an adequate amount of tissue and need for repetitive sampling due to tumor evolution. Also, tumor tissue testing is not immune to inter- and intra-tumor heterogeneity. We describe the analytical and clinical validation of a Circulating Tumor Cell (CTC) assay to accurately assess the presence of PD-L1 22C3 and PD-L1 28.8, ER, PR and HER2, from patients with solid tumors to guide the choice of suitable targeted therapies. Analytically, the test has high sensitivity, specificity, linearity and precision. Based on a blinded case control study, the clinical sensitivity and specificity for PD-L1 (22C3 and 28.8) was determined to be 90% and 100% respectively. The clinical sensitivity and specificity was 83% and 89% for ER; 80% and 94% for PR; 63% and 89% for HER2 (by ICC); and 100% and 92% for HER2 (by FISH), respectively. The performance characteristics of the test support its suitability and adaptability for routine clinical use.
Collapse
|
16
|
Verschoor N, Deger T, Jager A, Sleijfer S, Wilting SM, Martens JW. Validity and utility of HER2/ERBB2 copy number variation assessed in liquid biopsies from breast cancer patients: a systematic review. Cancer Treat Rev 2022; 106:102384. [DOI: 10.1016/j.ctrv.2022.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
|
17
|
Topa J, Grešner P, Żaczek AJ, Markiewicz A. Breast cancer circulating tumor cells with mesenchymal features-an unreachable target? Cell Mol Life Sci 2022; 79:81. [PMID: 35048186 PMCID: PMC8770434 DOI: 10.1007/s00018-021-04064-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) mediate dissemination of solid tumors and can be an early sign of disease progression. Moreover, they show a great potential in terms of non-invasive, longitudinal monitoring of cancer patients. CTCs have been extensively studied in breast cancer (BC) and were shown to present a significant phenotypic plasticity connected with initiation of epithelial-mesenchymal transition (EMT). Apart from conferring malignant properties, EMT affects CTCs recovery rate, making a significant portion of CTCs from patients’ samples undetected. Wider application of methods and markers designed to isolate and identify mesenchymal CTCs is required to expand our knowledge about the clinical impact of mesenchymal CTCs. Therefore, here we provide a comprehensive review of clinical significance of mesenchymal CTCs in BC together with statistical analysis of previously published data, in which we assessed the suitability of a number of methods/markers used for isolation of CTCs with different EMT phenotypes, both in in vitro spike-in tests with BC cell lines, as well as clinical samples. Results of spiked-in cell lines indicate that, in general, methods not based on epithelial enrichment only, capture mesenchymal CTCs much more efficiently that CellSearch® (golden standard in CTCs detection), but at the same time are not much inferior to Cell Search®, though large variation in recovery rates of added cells among the methods is observed. In clinical samples, where additional CTCs detection markers are needed, positive epithelial-based CTCs enrichment was the most efficient in isolating CTCs with mesenchymal features from non-metastatic BC patients. From the marker side, PI3K and VIM were contributing the most to detection of CTCs with mesenchymal features (in comparison to SNAIL) in non-metastatic and metastatic BC patients, respectively. However, additional data are needed for more robust identification of markers for efficient detection of CTCs with mesenchymal features.
Collapse
Affiliation(s)
- Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Peter Grešner
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
18
|
Vajhadin F, Mazloum-Ardakani M, Shahidi M, Moshtaghioun SM, Haghiralsadat F, Ebadi A, Amini A. MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe 2O 4@Ag magnetic nanohybrids conjugated to the HB5 aptamer. Biosens Bioelectron 2022; 195:113626. [PMID: 34543916 DOI: 10.1016/j.bios.2021.113626] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022]
Abstract
MXenes are a new class of conductive two-dimensional material which have received growing attention in biosensing for their significant surface area and unique surface chemistry. Here, gold electrodes were modified with MXene nanosheets of about 2 nm thickness and 1.5 μm lateral size for the electrochemical detection of tumor cells. An HB5 aptamer with high selectivity for HER-2 positive cells was immobilized on the MXene layers via electrostatic interactions. To minimize electrode biofouling with blood matrix, magnetic separation of HER-2 positive circulating tumor cells was carried out using CoFe2O4@Ag magnetic nanohybrids bonded to the HB5. The formation of sandwich-like structures between the magnetically captured cells and the functionalized MXene electrodes effectively shields the electron transfer of a redox probe, enabling quantitative cell detection using the change in current. This label-free MXene-based cytosensor platform yielded a wide linear range of 102-106 cells/mL, low detection limit of 47 cells/mL, and good sensitivity and selectivity in the detection of HER2-posetive cells in blood samples. The presented aptacytosensor demonstrates the great potential of using CoFe2O4@Ag magnetic nanohybrids and MXenes to monitor cancer progression via circulating tumor cells in blood at low cost.
Collapse
Affiliation(s)
- Fereshteh Vajhadin
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | | | - Maryamsadat Shahidi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | | | - Fateme Haghiralsadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azar Ebadi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian College of Kuwait, Mishref, Safat 13015, Kuwait; Centre for Infrastructure Engineering, Western Sydney University, Penrith 2751, NSW, Australia
| |
Collapse
|
19
|
Evaluation of Liquid Biopsy in Patients with HER2-Positive Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6388492. [PMID: 34901275 PMCID: PMC8664526 DOI: 10.1155/2021/6388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Breast cancer is one of the common malignant tumors, and liquid biopsy has become a hot spot for clinical testing. To clarify the detection effect of liquid biopsy in breast cancer, we collected peripheral blood of HER2-positive (human epidermal growth factor receptor 2-positive) patients. Circulating tumor cells (CTCs) were isolated and analyzed. HER2 expression on CTCs was detected. The results showed that in the 198 HER2-positive samples, the CTC detection rate was 79.8% (158/198), and the mean number of CTCs was 21, ranging from 1 to 63/7.5 mL peripheral blood. Only 41.1% (65/158) of patients had histology and CTC HER2 status consistent with the remaining 58.9% (93/158) of patients, although their histological HER2 was positive, and CTC HER2 was negative. Our study confirmed the value of CTC HER2 real-time status testing in HER2-positive breast cancer patients. The inconsistency in HER2 status between CTCs and histology may be related to the time interval between CTCs and histological HER2 detection, suggesting that real-time HER2 detection is necessary for histological HER2-positive patients.
Collapse
|
20
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 342] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Jiang M, Jin S, Han J, Li T, Shi J, Zhong Q, Li W, Tang W, Huang Q, Zong H. Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomark Res 2021; 9:85. [PMID: 34798902 PMCID: PMC8605607 DOI: 10.1186/s40364-021-00326-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Histopathological examination (biopsy) is the "gold standard" for the diagnosis of colorectal cancer (CRC). However, biopsy is an invasive method, and due to the temporal and spatial heterogeneity of the tumor, a single biopsy cannot reveal the comprehensive biological characteristics and dynamic changes of the tumor. Therefore, there is a need for new biomarkers to improve CRC diagnosis and to monitor and treat CRC patients. Numerous studies have shown that "liquid biopsy" is a promising minimally invasive method for early CRC detection. A liquid biopsy mainly samples circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), microRNA (miRNA) and extracellular vesicles (EVs). CTCs are malignant cells that are shed from the primary tumors and/or metastases into the peripheral circulation. CTCs carry information on both primary tumors and metastases that can reflect dynamic changes in tumors in a timely manner. As a promising biomarker, CTCs can be used for early disease detection, treatment response and disease progression evaluation, disease mechanism elucidation, and therapeutic target identification for drug development. This review will discuss currently available technologies for plasma CTC isolation and detection, their utility in the management of CRC patients and future research directions.
Collapse
Affiliation(s)
- Miao Jiang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Shuiling Jin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jinming Han
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Tong Li
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jianxiang Shi
- BGI College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, Henan, China.,Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, China
| | - Qian Zhong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wen Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Wenxue Tang
- Departments of Otolaryngology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Qinqin Huang
- Academy of medical science, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Hong Zong
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, NO.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
22
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L, Diéguez L. HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers (Basel) 2021; 13:4446. [PMID: 34503260 PMCID: PMC8431641 DOI: 10.3390/cancers13174446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Collapse
Affiliation(s)
- Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Liliana R. Pires
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal;
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| |
Collapse
|
23
|
Ahn JC, Teng PC, Chen PJ, Posadas E, Tseng HR, Lu SC, Yang JD. Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology 2021; 73:422-436. [PMID: 32017145 PMCID: PMC8183673 DOI: 10.1002/hep.31165] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the leading causes of worldwide cancer-related morbidity and mortality. Poor prognosis of HCC is attributed primarily to tumor presentation at an advanced stage when there is no effective treatment to achieve the long term survival of patients. Currently available tests such as alpha-fetoprotein have limited accuracy as a diagnostic or prognostic biomarker for HCC. Liver biopsy provides tissue that can reveal tumor biology but it is not used routinely due to its invasiveness and risk of tumor seeding, especially in early-stage patients. Liver biopsy is also limited in revealing comprehensive tumor biology due to intratumoral heterogeneity. There is a clear need for new biomarkers to improve HCC detection, prognostication, prediction of treatment response, and disease monitoring with treatment. Liquid biopsy could be an effective method of early detection and management of HCC. Circulating tumor cells (CTCs) are cancer cells in circulation derived from the original tumor or metastatic foci, and their measurement by liquid biopsy represents a great potential in facilitating the implementation of precision medicine in patients with HCC. CTCs can be detected by a simple peripheral blood draw and potentially show global features of tumor characteristics. Various CTC detection platforms using immunoaffinity and biophysical properties have been developed to identify and capture CTCs with high efficiency. Quantitative abundance of CTCs, as well as biological characteristics and genomic heterogeneity among the CTCs, can predict disease prognosis and response to therapy in patients with HCC. This review article will discuss the currently available technologies for CTC detection and isolation, their utility in the clinical management of HCC patients, their limitations, and future directions of research.
Collapse
Affiliation(s)
- Joseph C Ahn
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55904, United States
| | - Pai-Chi Teng
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Pin-Jung Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Edwin Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States,Translational Oncology Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States,Division of Hematology/Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Shelly C. Lu
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ju Dong Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States,Comprehensive Transplant Center, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
24
|
Grenda A, Wojas-Krawczyk K, Skoczylas T, Krawczyk P, Sierocińska-Sawa J, Wallner G, Milanowski J. HER2 gene assessment in liquid biopsy of gastric and esophagogastric junction cancer patients qualified for surgery. BMC Gastroenterol 2020; 20:382. [PMID: 33198632 PMCID: PMC7670771 DOI: 10.1186/s12876-020-01531-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Amplification of HER2 gene (ERBB2) and overexpression of HER2 protein on cancer cells are found in 10-26% of gastric cancer (GC) and esophagogastric junction cancer (EGJC). Gene copy number variation (CNV) could be detected in these patients in liquid biopsy and in cancer cells. METHODS We analysed HER2 gene CNV used qPCR method in 87 sera collected from GC and EGJC patients before surgical treatment and in 40 sera obtained from healthy donors. HER2 gene CNV was also assessed in formalin-fixed paraffin-embedded (FFPE) tumor tissue. Furthermore, we assessed the number of HER2 gene copies and HER2 expression in cancer cells using the fluorescent in situ hybridization method (FISH) and immunohistochemistry (IHC). RESULTS We found that the HER2 gene copy number in liquid biopsy was higher in GC and EGJC patients compared to healthy people (p = 0.01). Moreover, EGJC patients had higher number of HER2 gene copies than healthy donors (p = 0.0016). HER2 CNV examination could distinguish healthy individuals and patients with gastric or esophagogastric junction cancers with sensitivity and specificity of 58% and 98% (AUC = 0.707, 95% CI 0.593-0.821, p = 0.004). We found that patients with a high copy number of the HER2 gene in the tumor tissue assessed by qPCR (but not by FISH) have significantly more often a high number of HER2 gene copies in liquid biopsy (p = 0.04). CONCLUSIONS We suggested that HER2 testing in liquid biopsy could be used as an auxiliary method to analysis of HER2 status in tumor tissue in gastric or esophagogastric junction cancers.
Collapse
Affiliation(s)
- Anna Grenda
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Kamila Wojas-Krawczyk
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Tomasz Skoczylas
- II Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Staszica 16, 20-080, Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Jadwiga Sierocińska-Sawa
- Laboratory of Pathomorphology, Independent Public Clinical Hospital No. 1 in Lublin, ul. Staszica 11, 20-081, Lublin, Poland
| | - Grzegorz Wallner
- II Chair and Department of General and Gastrointestinal Surgery and Surgical Oncology of the Alimentary Tract, Medical University of Lublin, Staszica 16, 20-080, Lublin, Poland
| | - Janusz Milanowski
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
25
|
Gowthami J, Gururaj N, Mahalakshmi V, Sathya R, Sabarinath TR, Doss DM. Genetic predisposition and prediction protocol for epithelial neoplasms in disease-free individuals: A systematic review. J Oral Maxillofac Pathol 2020; 24:293-307. [PMID: 33456239 PMCID: PMC7802851 DOI: 10.4103/jomfp.jomfp_348_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background Epithelial neoplasm is an important global health-care problem, with high morbidity and mortality rates. Early diagnosis and appropriate treatment are essential for increased life survival. Prediction of occurrence of malignancy in a disease-free individual by any means will be a great breakthrough for healthy living. Aims and Objectives The aims and objectives were to predict the genetic predisposition and propose a prediction protocol for epithelial malignancy of various systems in our body, in a disease-free individual. Methods We have searched databases both manually and electronically, published in English language in Cochrane group, Google search, MEDLINE and PubMed from 2000 to 2019. We have included all the published, peer-reviewed, narrative reviews; randomized controlled trials; case-control studies; and cohort studies and excluded the abstract-only articles and duplicates. Specific words such as "etiological factors," "pathology and mutations," "signs and symptoms," "genetics and IHC marker," and "treatment outcome" were used for the search. A total of 1032 citations were taken, and only 141 citations met the inclusion criteria and were analyzed. Results After analyzing various articles, the etiological factors, clinical signs and symptoms, genes and the pathology involved and the commonly used blood and tissue markers were analyzed. A basic investigation strategy using immunohistochemistry markers was established. Conclusion The set of proposed biomarkers should be studied in future to predict genetic predisposition in disease-free individuals.
Collapse
Affiliation(s)
- J Gowthami
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - N Gururaj
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - V Mahalakshmi
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - R Sathya
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - T R Sabarinath
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Daffney Mano Doss
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
26
|
Abstract
The discovery of the HER2 molecules has embarked a series of investigations on the efficacy and safety of different types of anti-HER2 therapies for treating breast cancer, with the clinical pathway requiring a more detailed, more precise, and more dynamics therapeutic approaches due to the heterogeneity of the disease. As the "do more" and "do less" approaches are becoming more important to personalize treatment for early HER2-positive breast cancer, recent advances aim at tackling the advanced stage of the disease by using novel therapeutic agents and combination strategies. There are also important points of consideration on prognosis and choice of therapies, including HER2 gene copy number, HER2 heterogeneity, tissue biomarkers, blood-based biomarkers, and HER2 mutation and its treatment. Altogether, these could potentially play a vital role in the journey of HER2-positive breast cancer patient to achieve greater survival benefit and potentially a cure for the disease.
Collapse
Affiliation(s)
- Louis W C Chow
- UNIMED Medical Institute, Hong Kong, China; Organisation for Oncology and Translational Research, Hong Kong, China.
| | - Erich F Lie
- Organisation for Oncology and Translational Research, Hong Kong, China
| | - Masakazu Toi
- Organisation for Oncology and Translational Research, Hong Kong, China; Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Costa C, Dávila-Ibáñez AB. Methodology for the Isolation and Analysis of CTCs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:45-59. [PMID: 32304079 DOI: 10.1007/978-3-030-35805-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The majority of deaths related to breast cancer are caused by metastasis. Understanding the process of metastasis is key to achieve a reduction on breast cancer mortality. Currently, liquid biopsies are gaining attention in this regard. Circulating tumor cells (CTCs), an important component of liquid biopsies, are cells shed from primary tumor that disseminate to blood circulation being responsible of distal metastasis. Hence, the study CTCs is a promising alternative to monitor the progress of metastasis disease and can be used for early diagnosis of cancers as well as for earlier assessment of cancer recurrence and therapy efficacy. Despite their clinical interest, CTC analysis is not recommended by oncology guidelines so far. The main reason is that there is no gold standard technology for CTCs isolation and most of the current technologies are not yet validated for clinical use. In this chapter we will focus on the most relevant technologies for CTC isolation based on their properties and depending on whether it is a positive or negative selection. We also describe each technology based on its potential use and its relevance in breast cancer. The chapter also contains a future perspective including the challenges and requirements of CTC detection.
Collapse
Affiliation(s)
- Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| | - Ana B Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Martos T, Casadevall D, Albanell J. Circulating Tumor Cells: Applications for Early Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:135-146. [PMID: 32304084 DOI: 10.1007/978-3-030-35805-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most common malignancy among women. Most of breast cancer patients are diagnosed in early stages and will be treated with curative intent. Despite this, some patients will relapse. The identification of patients at high risk remains an important challenge. CTCs can be useful to identify this patients, to assess tumor dynamics and to monitoring therapy. There is definitive evidence on the prognostic role of CTCs in early breast cancer (eBC) but its clinical utility in daily practice is still lacking. We have to take into consideration that the studies published to date mainly evaluated the presence of CTC based on the expression of epithelial surface markers. Future studies need to overcome this limitation and important advances in technical methods can assess CTCs and capture the heterogeneity of the tumor landscape. It is also tempting to speculate that CTCs may also provide complementary information on the interplay of tumor cells with the immune system. The combination of different methods to detect tumoral disease by liquid biopsy may provide new ways to personalize in an unprecedented manner the management of patients with eBC.
Collapse
Affiliation(s)
- Tamara Martos
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain
| | - David Casadevall
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain.,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joan Albanell
- Servei d'Oncologia Mèdica, Hospital del Mar, Barcelona, Spain. .,Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain. .,CEXS Department, Pompeu Fabra University, Barcelona, Spain. .,CIOCC HM Delfos, Barcelona, Spain.
| |
Collapse
|
29
|
Jacot W, Cottu P, Berger F, Dubot C, Venat-Bouvet L, Lortholary A, Bourgeois H, Bollet M, Servent V, Luporsi E, Espié M, Guiu S, D'Hondt V, Dieras V, Sablin MP, Brain E, Neffati S, Pierga JY, Bidard FC. Actionability of HER2-amplified circulating tumor cells in HER2-negative metastatic breast cancer: the CirCe T-DM1 trial. Breast Cancer Res 2019; 21:121. [PMID: 31727113 PMCID: PMC6854749 DOI: 10.1186/s13058-019-1215-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this prospective phase 2 trial, we assessed the efficacy of trastuzumab-emtansine (T-DM1) in HER2-negative metastatic breast cancer (MBC) patients with HER2-positive CTC. METHODS Main inclusion criteria for screening were as follows: women with HER2-negative MBC treated with ≥ 2 prior lines of chemotherapy and measurable disease. CTC with a HER2/CEP17 ratio of ≥ 2.2 by fluorescent in situ hybridization (CellSearch) were considered to be HER2-amplified (HER2amp). Patients with ≥ 1 HER2amp CTC were eligible for the treatment phase (T-DM1 monotherapy). The primary endpoint was the overall response rate. RESULTS In 154 screened patients, ≥ 1 and ≥ 5 CTC/7.5 ml of blood were detected in N = 118 (78.7%) and N = 86 (57.3%) patients, respectively. ≥1 HER2amp CTC was found in 14 patients (9.1% of patients with ≥ 1 CTC/7.5 ml). Among 11 patients treated with T-DM1, one achieved a confirmed partial response. Four patients had a stable disease as best response. Median PFS was 4.8 months while median OS was 9.5 months. CONCLUSIONS CTC with HER2 amplification can be detected in a limited subset of HER2-negative MBC patients. Treatment with T-DM1 achieved a partial response in only one patient. TRIAL REGISTRATION NCT01975142, Registered 03 November 2013.
Collapse
Affiliation(s)
- William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.,Montpellier University, Montpellier, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France
| | - Frederique Berger
- Biometry and Clinical Trial Promotion Units, Institut Curie, PSL Research University, Saint Cloud, France
| | - Coraline Dubot
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France
| | | | - Alain Lortholary
- Department of Medical Oncology, Centre Catherine de Sienne, Nantes, France
| | - Hugues Bourgeois
- Department of Medical Oncology, Clinique Victor Hugo, Le Mans, France
| | - Marc Bollet
- Department of Radiation Therapy, Clinique Hartmann, Neuilly, France
| | | | - Elisabeth Luporsi
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Nancy, France
| | - Marc Espié
- Department of Medical Oncology, Hôpital Saint Louis, Paris, France
| | - Severine Guiu
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Veronique D'Hondt
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Veronique Dieras
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France
| | - Marie-Paule Sablin
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France
| | - Etienne Brain
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France
| | - Souhir Neffati
- Biometry and Clinical Trial Promotion Units, Institut Curie, PSL Research University, Saint Cloud, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France.,Université Paris Descartes, Paris, France.,Laboratory of Circulating Tumor Biomarkers, Institut Curie, PSL Research University, Paris, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint Cloud, France. .,Université Paris Descartes, Paris, France. .,UVSQ, Paris Saclay University, Saint Cloud, France.
| |
Collapse
|
30
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|