1
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Hashimoto Y, Yoshida Y, Yamada T, Yoshimatsu G, Yoshimura F, Hasegawa S. Association Between Changes in Plasma Capecitabine Concentrations and Adverse Events in the Treatment of Colorectal Cancer. Cureus 2024; 16:e71341. [PMID: 39534818 PMCID: PMC11555300 DOI: 10.7759/cureus.71341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background Therapeutic drug monitoring (TDM) is an effective approach to improving the efficacy of drugs with a narrow therapeutic index and high toxicity. TDM-guided dosing of 5-fluorouracil (5-FU) has been shown to result in superior efficacy and fewer adverse events compared to body surface area (BSA)-based dosing. Therefore, accurate measurement of plasma 5-FU concentrations after capecitabine administration is necessary. Capecitabine is a prodrug of 5-FU and is metabolized to 5-FU in multiple steps in the gastrointestinal tract, liver, and within tumors. To solve the problem of frequent blood draws for TDM, we reduced the number of blood draws to two and examined whether changes in 5-FU concentration correlated with adverse events. Methods This study investigated the relationship between the changes in plasma 5-FU concentrations after one and two hours of capecitabine administration in 36 patients and adverse events based on drug concentrations determined after adding 5-NU to the plasma samples. Concentration gradients and adverse events were estimated using the Mann-Whitney test. Results The median one- and two-hour plasma 5-FU concentrations were 67.5 (range 5-307) and 85.5 (range 19-246) ng/mL, respectively. The plasma 5-FU concentration gradient, defined as the difference between the one- and two-hour concentrations, was significantly higher in patients with diarrhea and nausea (p = 0.0234 and p = 0.0409, respectively). Conclusion The high plasma 5-FU concentration gradient suggests rapid degradation of 5-FU into its metabolites, which may lead to predict intestinal mucosal damage, diarrhea, and nausea.
Collapse
Affiliation(s)
| | - Yoichiro Yoshida
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| | - Teppei Yamada
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| | - Gumpei Yoshimatsu
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| | | | - Suguru Hasegawa
- Gastroenterological Surgery, Fukuoka University Hospital, Fukuoka, JPN
| |
Collapse
|
3
|
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed Pharmacother 2024; 170:115992. [PMID: 38070247 DOI: 10.1016/j.biopha.2023.115992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer vaccines hold considerable promise for the immunotherapy of solid tumors. Nanomedicine offers several strategies for enhancing vaccine effectiveness. In particular, molecular or (sub) cellular vaccines can be delivered to the target lymphoid tissues and cells by nanocarriers and nanoplatforms to increase the potency and durability of antitumor immunity and minimize negative side effects. Nanovaccines use nanoparticles (NPs) as carriers and/or adjuvants, offering the advantages of optimal nanoscale size, high stability, ample antigen loading, high immunogenicity, tunable antigen presentation, increased retention in lymph nodes, and immunity promotion. To induce antitumor immunity, cancer vaccines rely on tumor antigens, which are administered in the form of entire cells, peptides, nucleic acids, extracellular vesicles (EVs), or cell membrane-encapsulated NPs. Ideal cancer vaccines stimulate both humoral and cellular immunity while overcoming tumor-induced immune suppression. Herein, we review the key properties of nanovaccines for cancer immunotherapy and highlight the recent advances in their development based on the structure and composition of various (including synthetic and semi (biogenic) nanocarriers. Moreover, we discuss tumor cell-derived vaccines (including those based on whole-tumor-cell components, EVs, cell membrane-encapsulated NPs, and hybrid membrane-coated NPs), nanovaccine action mechanisms, and the challenges of immunocancer therapy and their translation to clinical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India.
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Li M, Mindt S, Lück A, Hutzschenreuter U, Kollendt M, Lathan B, Zöller T, Frank-Gleich S, Lorentz C, Lamberti C, Sick C, Zingerle M, Tesch H, Stein W, Hebart H, Stosiek C, Sandner R, Fries S, Burkholder I, Hofheinz RD. Drug monitoring detects under- and overdosing in patients receiving 5-fluorouracil-containing chemotherapy-results of a prospective, multicenter German observational study. ESMO Open 2023; 8:101201. [PMID: 36965262 PMCID: PMC10073640 DOI: 10.1016/j.esmoop.2023.101201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/27/2023] Open
Abstract
INTRODUCTION Body surface area (BSA)-based dosing of 5-fluorouracil (5-FU) results in marked inter-individual variability in drug levels, whereas determination of plasma 5-FU concentration and area under the curve (AUC) is a more precise dosing method but has not been integrated into clinical routine. We conducted a multicenter, prospective study to study 5-FU AUC distributions and assess clinical factors predicting therapeutic dosing in patients receiving BSA-dosed 5-FU. METHODS Between June 2017 and January 2018, a total of 434 patients receiving continuous, infusional BSA-dosed 5-FU from 37 sites in Germany were included. Plasma 5-FU concentration and AUC were measured in venous blood samples at steady state. The primary objective was to determine 5-FU AUC distributions in relation to the target range, which is defined as 20-30 mg × h/l. The second objective was to explore clinical parameters that correlate with achievement of 5-FU AUC target range. RESULTS The primary tumor was mainly located in the gastrointestinal tract (96.3%), with colorectal cancer being the most common (71.2%) tumor entity. 5-FU was administered as monotherapy (8.1%) or as part of FOLFOX (33.2%), FOLFIRI (26.3%), or other regimens (12.4%). Treatment setting was adjuvant (31.3%) or metastatic (64.5%). The median AUC was 16 mg × h/l. Only 20.3% of patients received 5-FU treatment within the target range, whereas the majority of patients (60.6%) were underdosed and 19.1% of patients were overdosed. In the univariate logistic regression, treatment setting was the only clinical parameter that significantly correlated with achievement of the target range. Patients treated in the metastatic setting had a 2.1 (95% confidence interval 1.186-3.776, P = 0.011) higher odds to reach the target range compared with patients treated in the adjuvant setting. CONCLUSIONS The majority of patients received suboptimal doses of 5-FU using BSA dosing. Therapeutic drug monitoring of 5-FU is an option for optimized individualized cancer therapy and should be integrated into the clinical practice.
Collapse
Affiliation(s)
- M Li
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - S Mindt
- Institut für Labor- und Transfusionsmedizin, Klinikum Passau, Passau, Germany
| | - A Lück
- Facharztpraxis für Hämatologie, Onkologie und Innere Medizin, Rostock, Germany
| | - U Hutzschenreuter
- Hämatologisch-Onkologische Gemeinschaftspraxis Nordhorn, Nordhorn, Germany
| | - M Kollendt
- Praxis am Volkspark, Schwerpunktpraxis für Hämatologie und Onkologie, Berlin, Germany
| | - B Lathan
- Gemeinschaftspraxis für Hämatologie und Onkologie, Dortmund, Germany
| | - T Zöller
- Schwerpunktpraxis für Hämatologie und Internistische Onkologie, Coburg, Germany
| | - S Frank-Gleich
- Gemeinschaftspraxis und Tagesklinik Innere Medizin, Hämatologie, Onkologie, Gastroenterologie, Halle, Germany
| | - C Lorentz
- Onkologische Schwerpunkt-Praxis Worms, Worms, Germany
| | - C Lamberti
- Klinik für Hämatologie und Onkologie, Klinikum Coburg, Coburg, Germany
| | - C Sick
- Gemeinschaftspraxis Onkologie und Infektiologie, Bremen, Germany
| | - M Zingerle
- Hämato-Onkologische überörtliche Gemeinschaftspraxis Pasing und Fürstenfeldbruck, Munich, Germany
| | - H Tesch
- CHOP GmbH Comprehensive Haematology and Oncology Practice, Hämatologisch-Onkologische Gemeinschaftspraxis, Wiesbaden, Germany
| | - W Stein
- Medizinische Klinik, Klinikum Frankfurt (Oder), Frankfurt (Oder), Germany
| | - H Hebart
- Zentrum für Innere Medizin, Kliniken Ostalb, Stauferklinikum, Mutlangen, Germany
| | - C Stosiek
- Gemeinschaftspraxis Dr. med. Alexander Kröber und Dr. med. Catarina Stosiek, Regensburg, Germany
| | - R Sandner
- Passauer onkolologische Praxis Dres, Siegfried D. Prenninger und Reiner Sandner, Passau, Germany
| | - S Fries
- Onkologische Schwerpunktpraxis Bamberg, Bamberg, Germany
| | - I Burkholder
- Department of Nursing and Health, University of Applied Sciences of the Saarland, Saarbrücken, Germany
| | - R-D Hofheinz
- Mannheim Cancer Center, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Etienne-Grimaldi MC, Pallet N, Boige V, Ciccolini J, Chouchana L, Barin-Le Guellec C, Zaanan A, Narjoz C, Taieb J, Thomas F, Loriot MA. Current diagnostic and clinical issues of screening for dihydropyrimidine dehydrogenase deficiency. Eur J Cancer 2023; 181:3-17. [PMID: 36621118 DOI: 10.1016/j.ejca.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Fluoropyrimidine drugs (FP) are the backbone of many chemotherapy protocols for treating solid tumours. The rate-limiting step of fluoropyrimidine catabolism is dihydropyrimidine dehydrogenase (DPD), and deficiency in DPD activity can result in severe and even fatal toxicity. In this review, we survey the evidence-based pharmacogenetics and therapeutic recommendations regarding DPYD (the gene encoding DPD) genotyping and DPD phenotyping to prevent toxicity and optimize dosing adaptation before FP administration. The French experience of mandatory DPD-deficiency screening prior to initiating FP is discussed.
Collapse
Affiliation(s)
| | - Nicolas Pallet
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Valérie Boige
- Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Joseph Ciccolini
- SMARTc, CRCM INSERM U1068, Université Aix-Marseille, Marseille, France; Laboratory of Pharmacokinetics and Toxicology, Hôpital Universitaire La Timone, F-13385 Marseille, France; COMPO, CRCM INSERM U1068-Inria, Université Aix-Marseille, Marseille, France
| | - Laurent Chouchana
- Regional Center of Pharmacovigilance, Department of Pharmacology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, Université de Paris, Paris, France; French Pharmacovigilance Network, France
| | - Chantal Barin-Le Guellec
- Laboratory of Biochemistry and Molecular Biology, Centre Hospitalo-uinversitaire de Tours, Tours, France; INSERM U1248, IPPRITT, University of Limoges, Limoges, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céline Narjoz
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Julien Taieb
- SIRIC CARPEM, Université de Paris; Fédération Francophone de Cancérologie Digestive (FFCD), Assistance Publique-Hôpitaux de Paris, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Fabienne Thomas
- Laboratory of Pharmacology, Institut Claudius Regaud, IUCT-Oncopole and CRCT, INSERM UMR1037, Université Paul Sabatier, Toulouse, France
| | - Marie-Anne Loriot
- Department of Clinical Chemistry, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Université de Paris, INSERM UMRS1138, Centre de Recherche des Cordeliers, F-75006 Paris, France.
| | | |
Collapse
|
6
|
Schmulenson E, Zimmermann N, Müller L, Kapsa S, Sihinevich I, Jaehde U. Influence of the skeletal muscle index on pharmacokinetics and toxicity of fluorouracil. Cancer Med 2023; 12:2580-2589. [PMID: 35941837 PMCID: PMC9939223 DOI: 10.1002/cam4.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/10/2022] [Accepted: 07/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The body composition of patients has been associated with tolerability and effectiveness of anticancer therapy. This study aimed to assess the influence of the skeletal muscle index (SMI) on the pharmacokinetics and toxicity of fluorouracil. METHODS Patients treated in an oncological practice with fluorouracil-based chemotherapy and undergoing therapeutic drug monitoring were retrospectively investigated. Computed tomography images were analyzed to measure abdominal skeletal muscle areas in Hounsfield units for the psoas major muscle, back and total skeletal muscle to determine the SMI. For the latter, an automated segmentation method was used additionally. SMI measures were tested as covariates on fluorouracil clearance in a population pharmacokinetic model. Furthermore, regression analyses were performed to analyze the influence of SMI measures on the probability of clinically relevant adverse events (CTCAE grades ≥ 2). RESULTS Fluorouracil plasma concentrations of 111 patients were available. Covariate analyses showed significant improvements of the model fit by all SMI measures. However, interindividual variability of fluorouracil clearance was only slightly reduced, whereas the SMI of the back muscle showed the largest reduction (-1.1 percentage points). Lower SMI values of the back muscle increased the probability for polyneuropathy and lower SMI of the psoas increased the probability for fatigue. CONCLUSIONS Our results suggest that pharmacokinetics and toxicity of fluorouracil may be associated with specific SMI measures which deserve further investigation.
Collapse
Affiliation(s)
- Eduard Schmulenson
- Department of Clinical PharmacyInstitute of Pharmacy, University of BonnBonnGermany
| | - Nigina Zimmermann
- Department of Clinical PharmacyInstitute of Pharmacy, University of BonnBonnGermany
| | | | - Stefanie Kapsa
- Department of Clinical PharmacyInstitute of Pharmacy, University of BonnBonnGermany
| | - Iryna Sihinevich
- Department of Clinical PharmacyInstitute of Pharmacy, University of BonnBonnGermany
| | - Ulrich Jaehde
- Department of Clinical PharmacyInstitute of Pharmacy, University of BonnBonnGermany
| |
Collapse
|
7
|
Smita P, Narayan PA, J K, Gaurav P. Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices. Front Oncol 2022; 12:1015200. [PMID: 36568145 PMCID: PMC9773989 DOI: 10.3389/fonc.2022.1015200] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic drugs are highly efficacious and also have low therapeutic index. A great degree of caution needs to be exercised in their usage. To optimize the efficacy these drugs need to be given at maximum tolerated dose which leads to significant amount of toxicity to the patient. The fine balance between efficacy and safety is the key to the success of cytotoxic chemotherapeutics. However, it is possibly more rewarding to obtain that balance for this class drugs as the frequency of drug related toxicities are higher compared to the other therapeutic class and are potentially life threatening and may cause prolonged morbidity. Significant efforts have been invested in last three to four decades in therapeutic drug monitoring (TDM) research to understand the relationship between the drug concentration and the response achieved for therapeutic efficacy as well as drug toxicity for cytotoxic drugs. TDM evolved over this period and the evidence gathered favored its routine use for certain drugs. Since, TDM is an expensive endeavor both from economic and logistic point of view, to justify its use it is necessary to demonstrate that the implementation leads to perceivable improvement in the patient outcomes. It is indeed challenging to prove the utility of TDM in randomized controlled trials and at times may be nearly impossible to generate such data in view of the obvious findings and concern of compromising patient safety. Therefore, good quality data from well-designed observational study do add immense value to the scientific knowledge base, when they are examined in totality, despite the heterogeneity amongst them. This article compiles the summary of the evidence and the best practices for TDM for the three cytotoxic drug, busulfan, 5-FU and methotrexate. Traditional use of TDM or drug concentration data for dose modification has been witnessing a sea change and model informed precision dosing is the future of cytotoxic drug therapeutic management.
Collapse
Affiliation(s)
- Pattanaik Smita
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Patil Amol Narayan
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kumaravel J
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prakash Gaurav
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Pfab C, Abgaryan A, Danzer B, Mourtada F, Ali W, Gessner A, El-Najjar N. Ceftazidime and cefepime antagonize 5-fluorouracil's effect in colon cancer cells. BMC Cancer 2022; 22:125. [PMID: 35100987 PMCID: PMC8802503 DOI: 10.1186/s12885-021-09125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Drug-drug interaction (DDI), which can occur at the pharmacokinetics and/or the pharmacodynamics (PD) levels, can increase or decrease the therapeutic or adverse response of a drug itself or a combination of drugs. Cancer patients often receive, along their antineoplastic agents, antibiotics such as ß-lactams to treat or prevent infection. Despite the narrow therapeutic indices of antibiotics and antineoplastic agents, data about their potential interaction are insufficient. 5-fluorouracil (5-FU), widely used against colon cancer, is known for its toxicity and large intra- and inter- individual variability. Therefore, knowledge about its interaction with antibiotics is crucial. Methods In this study, we evaluated at the PD levels, against HCT-116 colon cancer cells, DDI between 5-FU and several ß-lactams (ampicillin, benzypenicillin, piperacillin, meropenem, flucloxacillin, ceftazidime (CFT), and cefepime (CFP)), widely used in intensive care units. All drugs were tested at clinically achieved concentrations. MTT assay was used to measure the metabolic activity of the cells. Cell cycle profile and apoptosis induction were monitored, in HCT-116 and DLD-1 cells, using propidium iodide staining and Caspase-3/7 activity assay. The uptake of CFT and CFP by the cells was measured using LC-MS/MS method. Results Our data indicate that despite their limited uptake by the cells, CFT and CFP (two cephalosporins) antagonized significantly 5-FU-induced S-phase arrest (DLD-1 cells) and apoptosis induction (HCT-116 cells). Remarkably, while CFP did not affect the proliferation of colon cancer cells, CFT inhibited, at clinically relevant concentrations, the proliferation of DLD-1 cells via apoptosis induction, as evidenced by an increase in caspase 3/7 activation. Unexpectedly, 5-FU also antagonized CFT’s induced cell death in DLD-1 cells. Conclusion This study shows that CFP and CFT have adverse effects on 5-FU’s action while CFT is a potent anticancer agent that inhibits DLD-1 cells by inducing apoptotic cell death. Further studies are needed to decipher the mechanism(s) responsible for CFT’s effects against colon cancer as well as the observed antagonism between CFT, CFP, and 5-FU with the ultimate aim of translating the findings to the clinical settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09125-4.
Collapse
Affiliation(s)
- Christina Pfab
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Anush Abgaryan
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Barbara Danzer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Fatme Mourtada
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Weaam Ali
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Schmulenson E, Zimmermann N, Mikus G, Joerger M, Jaehde U. Current status and future outlooks on therapeutic drug monitoring of fluorouracil. Expert Opin Drug Metab Toxicol 2022; 17:1407-1422. [PMID: 35029518 DOI: 10.1080/17425255.2021.2029403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION : Therapeutic drug monitoring (TDM) of the anticancer drug fluorouracil (5FU) as a method to support dose adjustments has been researched and discussed extensively. Despite manifold evidence of the advantages of 5FU-TDM, traditional body surface area (BSA)-guided dosing is still widely applied. AREAS COVERED : This review covers the latest evidence on 5FU-TDM based on a literature search in PubMed between June and September 2021. It particularly highlights new approaches of implementing 5FU-TDM into precision medicine by combining TDM with pharmacogenetic testing and/or pharmacometric models. This review further discusses remaining obstacles in order to incorporate 5FU-TDM into clinical routine. EXPERT OPINION : New data on 5FU-TDM further strengthen the advantages compared to BSA-guided dosing as it is able to reduce pharmacokinetic variability and thereby improve treatment efficacy and safety. Interprofessional collaboration has the potential to overcome the remaining barriers for its implementation. Pre-emptive pharmacogenetic testing followed by 5FU-TDM can further improve 5FU exposure in a substantial proportion of patients. Developing a model framework integrating pharmacokinetics and pharmacodynamics of 5FU will be crucial to fully advance into the precision medicine era. Model applications can potentially support clinicians in dose finding before starting chemotherapy. Additionally, TDM provides further assistance in continuously improving model predictions.
Collapse
Affiliation(s)
- Eduard Schmulenson
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Nigina Zimmermann
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany.,Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Emelyanova M, Pokataev I, Shashkov I, Kopantseva E, Lyadov V, Heydarov R, Mikhailovich V. TYMS 3'-UTR Polymorphism: A Novel Association with FOLFIRINOX-Induced Neurotoxicity in Pancreatic Cancer Patients. Pharmaceutics 2021; 14:pharmaceutics14010077. [PMID: 35056973 PMCID: PMC8779442 DOI: 10.3390/pharmaceutics14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy that has the worst 5-year survival rate of all of the common malignant tumors. Surgery, chemotherapy, and/or chemoradiation remain the main tactics for PDAC treatment. The efficacy of chemotherapy is often compromised because of the substantial risk of severe toxicities. In our study, we focused on identification of polymorphisms in the genes involved in drug metabolism, DNA repair and replication that are associated with inter-individual differences in drug-induced toxicities. Using the microarray, we genotyped 12 polymorphisms in the DPYD, XPC, GSTP1, MTHFR, ERCC1, UGT1A1, and TYMS genes in 78 PDAC patients treated with FOLFIRINOX. It was found that the TYMS rs11280056 polymorphism (6 bp-deletion in TYMS 3'-UTR) predicted grade 1-2 neurotoxicity (p = 0.0072 and p = 0.0019, according to co-dominant (CDM) and recessive model (RM), respectively). It is the first report on the association between TYMS rs11280056 and peripheral neuropathy. We also found that PDAC patients carrying the GSTP1 rs1695 GG genotype had a decreased risk for grade 3-4 hematological toxicity as compared to those with the AA or AG genotypes (p = 0.032 and p = 0.014, CDM and RM, respectively). Due to relatively high p-values, we consider that the impact of GSTP1 rs1695 requires further investigation in a larger sample size.
Collapse
Affiliation(s)
- Marina Emelyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
| | - Ilya Pokataev
- Department of Oncology, Moscow Clinical Oncology Hospital No.1, Moscow City Health Department, 105005 Moscow, Russia; (I.P.); (V.L.)
| | - Igor Shashkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
- Federal Research Centre ‘Fundamentals of Biotechnology’, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elena Kopantseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
| | - Vladimir Lyadov
- Department of Oncology, Moscow Clinical Oncology Hospital No.1, Moscow City Health Department, 105005 Moscow, Russia; (I.P.); (V.L.)
- Department of Oncology and Palliative Medicine, Russian Medical Academy of Continuous Professional Education, 123242 Moscow, Russia
- Department of Oncology, Novokuznetsk State Institute for Continuous Medical Education, 654005 Novokuznetsk, Russia
| | - Rustam Heydarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
| | - Vladimir Mikhailovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (M.E.); (I.S.); (E.K.); (R.H.)
- Correspondence: or ; Tel./Fax: +7-499-1351177
| |
Collapse
|
11
|
Bae H, Lee W, Song J, Hong T, Kim MH, Ham J, Song G, Lim W. Polydatin Counteracts 5-Fluorouracil Resistance by Enhancing Apoptosis via Calcium Influx in Colon Cancer. Antioxidants (Basel) 2021; 10:antiox10091477. [PMID: 34573109 PMCID: PMC8469995 DOI: 10.3390/antiox10091477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is a disease with a high prevalence rate worldwide, and for its treatment, a 5-fluorouracil (5-FU)-based chemotherapeutic strategy is generally used. However, conventional anticancer agents have some limitations, including the development of drug resistance. Therefore, there has recently been a demand for the improvement of antitumor agents using natural products with low side effects and high efficacy. Polydatin is a natural active compound extracted from an annual plant, and widely known for its anticancer effects in diverse types of cancer. However, it is still not clearly understood how polydatin ameliorates several drawbacks of standard anticancer drugs by reinforcing the chemosensitivity against 5-FU, and neither are the intrinsic mechanisms behind this process. In this study, we examined how polydatin produces anticancer effects in two types of colon cancer, called HCT116 and HT-29 cells. Polydatin has the ability to repress the progression of colon cancer, and causes a modification of distribution in the cell cycle by a flow cytometry analysis. It also induces mitochondrial dysfunctions through oxidative stress and the loss of mitochondrial membrane potential. The present study investigated the apoptosis caused by the disturbance of calcium regulation and the expression levels of related proteins through flow cytometry and immunoblotting analysis. It was revealed that polydatin suppresses the signaling pathways of the mitogen-activated protein kinase (MAPK) and PI3K/AKT. In addition, it was shown that polydatin combined with 5-FU counteracts drug resistance in 5-FU-resistant cells. Therefore, this study suggests that polydatin has the potential to be developed as an innovative medicinal drug for the treatment of colon cancer.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Oriental Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea;
| | - Woonghee Lee
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (W.L.); (J.H.)
| | - Jisoo Song
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Taeyeon Hong
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
| | - Myung Hyun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Jiyeon Ham
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (W.L.); (J.H.)
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (W.L.); (J.H.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3881 (G.S.); +82-2-910-4773 (W.L.)
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (J.S.); (T.H.)
- Correspondence: (G.S.); (W.L.); Tel.: +82-2-3290-3881 (G.S.); +82-2-910-4773 (W.L.)
| |
Collapse
|
12
|
Zhou X, Chang Y, Qian J, Shen C, Han J, Zhao H, Chang R. Clinical Benefit of Therapeutic Drug Monitoring in Colorectal Cancer Patients Who Received Fluorouracil-Based Chemotherapy. Med Sci Monit 2021; 27:e929474. [PMID: 34330885 PMCID: PMC8336255 DOI: 10.12659/msm.929474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The impact of therapeutic drug management (TDM) on reducing toxicity and improving efficacy in colorectal cancer (CRC) patients receiving fluorouracil-based chemotherapy is still unclear. Material/Methods A total of 207 patients (Study Group n=54, Historical Group n=153) with metastatic colorectal cancer were enrolled. All of them received 6 administrations of the 5-FU based regimens. Initial 5-FU dosing of all patients was calculated using body surface area (BSA). In the Study Group, individual exposure during each cycle was measured using a nanoparticle immunoassay, and the 5-FU blood concentration was calculated using the area under the curve (AUC). We adjusted the 5-FU infusion dose of the next cycle based on the AUC data of the previous cycle to achieve the target of 20–30 mg×h/L. Results In the fourth cycle, patients in the target concentration range (AUC mean, 26.3 mg×h/L; Median, 28 mg×h/L; Range, 14–38 mg×h/L; CV, 22.4%) accounted for 46.8% of all patients, which were more than the ones in the first cycle (P<0.001). 5-FU TDM significantly reduced the toxicity of chemotherapy and improved its efficacy. The Study Group (30/289) showed a lower percentage of severe adverse events than that in the Historical Group (185/447) (P<0.001). The incidences of complete response and partial response in the Study Group were higher than those in the Historical Group (P=0.032). Conclusions TDM in colorectal cancer can reduce toxicity, improve efficacy and clinical outcome, and can be routinely used in 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Xingqin Zhou
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yazhou Chang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China (mainland)
| | - Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Chaoyan Shen
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Jie Han
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Hongyu Zhao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| | - Renan Chang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
13
|
Saif MW, Hamal R, Siddiqui N, Maloney A, Smith M. Alternative chemoradiotherapy in anal carcinoma patients with mutations in thymidylate synthase and dihydropyrimidine dehydrogenase genes. Therap Adv Gastroenterol 2021; 14:17562848211024464. [PMID: 34276810 PMCID: PMC8255561 DOI: 10.1177/17562848211024464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) and mitomycin-C (MMC) with radiotherapy (RT) remain an established treatment for patients with anal cancer (AC). Genetic mutations in two major metabolizing enzymes for 5-FU; dihydropyrimidine dehydrogenase (DPYD and thymidylate synthetase (TYMS), have been associated with clinical response and toxicity. However, their place in the treatment of AC remains undetermined. METHODS We retrospectively reviewed 21 patients with AC, including T2-4, N0-1, M0 or T1-4, N2-3, and M0 treated between 2012 and 2018. All patients were treated with 5-FU 1,000 mg/m2/day via continuous intravenous (IV) infusion 1-4 and 29-32, MMC 10 mg/m2 IV bolus days 1 and 29 plus RT. Patients who developed ⩾3 grade toxicities were tested for the DPYD and TYMS genes. Treatment was either modified with reduced doses or changed to MMC 10 mg/m2 day 1 and 29 with cisplatin 25 mg/m2/week plus RT. Toxicities and responses were collected. RESULTS Six out of 21 patients who developed ⩾3 grade toxicities including pancytopenia, neutropenia, thrombocytopenia, mucositis, nausea, rash, and nephritis were found to have genetic mutations: TYMS 2RG/3RC (n = 2), 3RG/3RC (n = 1), 2R/2R (n = 2), TYMS 3'UTR del/Ins (n = 2), and DPYD c.2864A > T heterozygous (n = 1). Two patients received 5-FU at a 50% reduced dose on days 29-32; one patient refused to receive 5-FU (continued with MMC and RT); one patient received only radiation therapy due to persistent pancytopenia despite the use of growth factors; two patients received an alternative regimen consisting of MMC 10 mg/m2 on day 29 with cisplatin (CDDP) 25 mg/m2/week plus RT; and two patients received cisplatin/MMC with RT from the beginning as they were prospectively detected to have TYMS abnormalities prior to dosing the chemotherapy. These patients tolerated treatment very well with only grade 2 toxicities. All the patients (4/4) on cisplatin/MMC achieved clinical complete response (cCR), while four patients (4/15) on 5-FU/MMC reached cCR at the first assessment. Radiological response showed complete response at the end of 24 weeks assessment. CONCLUSIONS Molecular testing for DPYD and TYMS genes can allow us to identify patients who are most likely to respond or face severe toxicity to 5-FU in a potentially curable cancer. Combining radiation with CDDP with MMC in patients with AC is feasible. A prospective study based on pharmacogenetic testing comparing MMC/cisplatin with MMC/5-FU is indicated in patients with AC.
Collapse
|
14
|
Yang HL, Liu HW, Shrestha S, Thiyagarajan V, Huang HC, Hseu YC. Antrodia salmonea induces apoptosis and enhances cytoprotective autophagy in colon cancer cells. Aging (Albany NY) 2021; 13:15964-15989. [PMID: 34031264 PMCID: PMC8266357 DOI: 10.18632/aging.203019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 04/07/2023]
Abstract
A traditional Chinese medicinal fungus, Antrodia salmonea (AS), with antioxidant properties is familiar in Taiwan but anti-cancer activity of AS in human colon cancer is ambiguous. Hence, we explored the anti-cancer activity of AS in colon cancer cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that AS showed a remarkable effect on cell viability in colon cancer cells; SW620, HCT116, and HT29. Annexin V/propidium iodide (PI) stained cells indicated that AS induced both early/late apoptosis in SW620 cells. Additionally, cells treated with AS induced caspase-3 activation, poly (ADP-ribose) polymerase (PARP) cleavage, mitochondrial dysfunction, and Bcl-2 associated X (Bax)/B-cell lymphoma (Bcl-2) dysregulation. Microtubule- associated protein 1A/1B-light chain 3B (LC3-II) accumulation, sequestosome 1 (p62/SQSTM1) activation, autophagy related 4B cysteine peptidase (ATG4B) inactivation, acidic vesicular organelles (AVOs) formation, and Beclin-1/Bcl-2 dysregulation revealed that AS-induced autophagy. Interestingly, cells pretreated with 3-methyladenine (3-MA) strengthened AS-induced caspase-3/apoptosis. Suppression of apoptosis by z-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not however block AS-induced autophagy, suggesting that autophagy was not attenuated by the AS-induced apoptosis. Application of N-acetylcysteine (NAC) prevented AS-induced cell death, caspase-3 activation, LC3-II accumulation, and AVOs formation, indicating that AS-induced apoptosis and autophagy was mediated by reactive oxygen species (ROS). Furthermore, AS-induced cytoprotective autophagy and apoptosis through extracellular signal-regulated kinase (ERK) signaling cascades. Moreover, in vivo data disclosed that AS inhibited colitis-associated tumorigenesis in azoxymethane (AOM)-dextran sodium sulphate (DSS)-treated mice. For the first time, we report the anti-cancer properties of this potentially advantageous mushroom for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Hui-Wen Liu
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Sirjana Shrestha
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | | | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
15
|
Sicher therapieren trotz komplexer Medikation. BEST PRACTICE ONKOLOGIE 2021. [PMCID: PMC8080086 DOI: 10.1007/s11654-021-00308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Knikman JE, Gelderblom H, Beijnen JH, Cats A, Guchelaar H, Henricks LM. Individualized Dosing of Fluoropyrimidine-Based Chemotherapy to Prevent Severe Fluoropyrimidine-Related Toxicity: What Are the Options? Clin Pharmacol Ther 2021; 109:591-604. [PMID: 33020924 PMCID: PMC7983939 DOI: 10.1002/cpt.2069] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Fluoropyrimidines are widely used in the treatment of several types of solid tumors. Although most often well tolerated, severe toxicity is encountered in ~ 20-30% of the patients. Individualized dosing for these patients can reduce the incidence of severe fluoropyrimidine-related toxicity. However, no consensus has been achieved on which dosing strategy is preferred. The most established strategy for individualized dosing of fluoropyrimidines is upfront genotyping of the DPYD gene. Prospective research has shown that DPYD-guided dose-individualization significantly reduces the incidence of severe toxicity and can be easily applied in routine daily practice. Furthermore, the measurement of the dihydropyrimidine dehydrogenase (DPD) enzyme activity has shown to accurately detect patients with a DPD deficiency. Yet, because this assay is time-consuming and expensive, it is not widely implemented in routine clinical care. Other methods include the measurement of pretreatment endogenous serum uracil concentrations, the uracil/dihydrouracil-ratio, and the 5-fluorouracil (5-FU) degradation rate. These methods have shown mixed results. Next to these methods to detect DPD deficiency, pharmacokinetically guided follow-up of 5-FU could potentially be used as an addition to dosing strategies to further improve the safety of fluoropyrimidines. Furthermore, baseline characteristics, such as sex, age, body composition, and renal function have shown to have a relationship with the development of severe toxicity. Therefore, these baseline characteristics should be considered as a dose-individualization strategy. We present an overview of the current dose-individualization strategies and provide perspectives for a future multiparametric approach.
Collapse
Affiliation(s)
- Jonathan E. Knikman
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Hans Gelderblom
- Department of Clinical OncologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jos H. Beijnen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Annemieke Cats
- Department of Gastroenterology and HepatologyDivision of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Linda M. Henricks
- Department of Clinical Chemistry and Laboratory MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
17
|
Dolat M, Macaire P, Goirand F, Vincent J, Hennequin A, Palmier R, Bengrine-Lefevre L, Ghiringhelli F, Royer B, Schmitt A. Association of 5-FU Therapeutic Drug Monitoring to DPD Phenotype Assessment May Reduce 5-FU Under-Exposure. Pharmaceuticals (Basel) 2020; 13:ph13110416. [PMID: 33238487 PMCID: PMC7700344 DOI: 10.3390/ph13110416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
In order to limit 5-fluorouracil (5-FU) toxicity, some health agencies recommend evaluating dihydropyrimidine dehydrogenase (DPD) deficiency before any 5-FU treatment introduction. In our study, we investigated relationships between 5-FU clearance and markers of DPD activity such as uracilemia (U), dihydrouracilemia (UH2)/U ratio, or genotype of the gene encoding DPD (DPYD). All patients with gastrointestinal cancers who received 5-FU-based regimens form March 2018 to June 2020 were included in our study. They routinely benefited of a pre-therapeutic DPYD genotyping and phenotyping. During 5-FU infusion, blood samples were collected to measure 5-FU steady-state concentration in order to adapt 5-FU doses at the following cycles. A total of 169 patients were included. Median age was 68 (40–88) years and main primary tumor sites were colorectal (40.8%) and pancreas (31.4%), metastatic in 76.3%. 5-FU was given as part of FOLFIRINOX (44.4%), simplified FOLFOX-6 (26.6%), or docetaxel/FOLFOX-4 (10.6%). Regarding DPD activity, median U and UH2/U were, respectively, 10.8 ng/mL and 10.1, and almost 15% harbored a heterozygous mutation. On the range of measured U and UH2/U, no correlation was observed with 5-FU clearance. Moreover, in patients with U < 16 ng/mL, 5-FU exposure was higher than in other patients, and most of them benefited of dose increase following 5-FU therapeutic drug monitoring (TDM). If recent guidelines recommend decreasing 5-FU dose in patients harboring U ≥ 16 ng/mL, our study highlights that those patients are at risk of under-exposure and that 5-FU TDM should be conducted in order to avoid loss of efficacy.
Collapse
Affiliation(s)
- Marine Dolat
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
| | - Pauline Macaire
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
- INSERM U1231, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Françoise Goirand
- Laboratoire de Pharmacologie/Toxicologie, CHU de Dijon, 21000 Dijon, France;
| | - Julie Vincent
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
| | - Audrey Hennequin
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
| | - Rémi Palmier
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
| | - Leïla Bengrine-Lefevre
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
| | - François Ghiringhelli
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
- INSERM U1231, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Bernard Royer
- Laboratoire de Pharmacologie Clinique, CHU Jean-Minjoz, 3, Boulevard Alexandre-Fleming, 25030 Besançon, France;
- INSERM, EFS BFC, UMR1098, Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Université Bourgogne Franche-Comté, 25000 Besançon, France
| | - Antonin Schmitt
- Centre Georges-François Leclerc, 21000 Dijon, France; (M.D.); (P.M.); (J.V.); (A.H.); (R.P.); (L.B.-L.); (F.G.)
- INSERM U1231, University of Burgundy Franche-Comté, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
18
|
Wörmann B, Bokemeyer C, Burmeister T, Köhne CH, Schwab M, Arnold D, Blohmer JU, Borner M, Brucker S, Cascorbi I, Decker T, de Wit M, Dietz A, Einsele H, Eisterer W, Folprecht G, Hilbe W, Hoffmann J, Knauf W, Kunzmann V, Largiadèr CR, Lorenzen S, Lüftner D, Moehler M, Nöthen MM, Pox C, Reinacher-Schick A, Scharl A, Schlegelberger B, Seufferlein T, Sinn M, Stroth M, Tamm I, Trümper L, Wilhelm M, Wöll E, Hofheinz RD. Dihydropyrimidine Dehydrogenase Testing prior to Treatment with 5-Fluorouracil, Capecitabine, and Tegafur: A Consensus Paper. Oncol Res Treat 2020; 43:628-636. [PMID: 33099551 DOI: 10.1159/000510258] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND 5-Fluorouracil (FU) is one of the most commonly used cytostatic drugs in the systemic treatment of cancer. Treatment with FU may cause severe or life-threatening side effects and the treatment-related mortality rate is 0.2-1.0%. SUMMARY Among other risk factors associated with increased toxicity, a genetic deficiency in dihydropyrimidine dehydrogenase (DPD), an enzyme responsible for the metabolism of FU, is well known. This is due to variants in the DPD gene (DPYD). Up to 9% of European patients carry a DPD gene variant that decreases enzyme activity, and DPD is completely lacking in approximately 0.5% of patients. Here we describe the clinical and genetic background and summarize recommendations for the genetic testing and tailoring of treatment with 5-FU derivatives. The statement was developed as a consensus statement organized by the German Society for Hematology and Medical Oncology in cooperation with 13 medical associations from Austria, Germany, and Switzerland. Key Messages: (i) Patients should be tested for the 4 most common genetic DPYD variants before treatment with drugs containing FU. (ii) Testing forms the basis for a differentiated, risk-adapted algorithm with recommendations for treatment with FU-containing drugs. (iii) Testing may optionally be supplemented by therapeutic drug monitoring.
Collapse
Affiliation(s)
- Bernhard Wörmann
- Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie, Berlin, Germany, .,Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany,
| | - Carsten Bokemeyer
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Burmeister
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany
| | | | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institut für Klinische Pharmakologie, Stuttgart, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Dirk Arnold
- Asklepios Tumorzentrum Hamburg, AK Altona, Hamburg, Germany
| | | | - Markus Borner
- Onkologisches Zentrum, Oncocare, Engeriedspital, Bern, Switzerland
| | - Sara Brucker
- Department für Frauengesundheit, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Ingolf Cascorbi
- Institut für Experimentelle und Klinische Pharmakologie, Universitätsklinikum Kiel, Kiel, Germany
| | | | - Maike de Wit
- Klinik für Innere Medizin, Hämatologie, Onkologie und Palliativmedizin, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Andreas Dietz
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hermann Einsele
- Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Wolfgang Eisterer
- Abteilung für Innere Medizin und Onkologie, Klinikum Klagenfurt, Klagenfurt am Wörthersee, Austria
| | - Gunnar Folprecht
- Medizinische Klinik I, Universitätsklinikum Dresden, Dresden, Germany
| | - Wolfgang Hilbe
- Medizinische Abteilung am Wilhelminenspital, Wien, Austria
| | - Jürgen Hoffmann
- Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Wolfgang Knauf
- Centrum für Hämatologie und Onkologie, Bethanien-Krankenhaus, Frankfurt/Main, Germany
| | - Volker Kunzmann
- Medizinische Klinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Carlo R Largiadèr
- Universitätsinstitut für Klinische Chemie, Inselspital Bern, Bern, Switzerland
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, München, Germany
| | - Diana Lüftner
- Medizinische Klinik mit Schwerpunkt Hämatologie, Onkologie und Tumorimmunologie, Berlin, Germany
| | - Markus Moehler
- I. Medizinische Klinik, Universitätsmedizin Mainz, Mainz, Germany
| | - Markus M Nöthen
- Institut für Humangenetik, Universitätsklinikum Bonn, Bonn, Germany
| | - Christian Pox
- Medizinische Klinik, Krankenhaus St. Joseph-Stift, Bremen, Germany
| | - Anke Reinacher-Schick
- Hämatologie, Onkologie und Palliativmedizin, Katholisches Klinikum, Ruhr-Universität, Bochum, Germany
| | - Anton Scharl
- Frauenkliniken Amberg-Tirschenreuth-Weiden, Amberg, Germany
| | | | | | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ingo Tamm
- Onkologische Schwerpunktpraxis Kurfürstendamm, Berlin, Germany
| | - Lorenz Trümper
- Klinik für Hämatologie und Medizinische Onkologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Martin Wilhelm
- Klinik für Innere Medizin 5, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Ewald Wöll
- Klinik für Innere Medizin, Klinikum St. Vinzenz, Zams, Austria
| | - Ralf-Dieter Hofheinz
- Interdisziplinäres Tumorzentrum, Universitätsmedizin Mannheim, Mannheim, Germany
| |
Collapse
|
19
|
Jacob J, Mathew SK, Chacko RT, Aruldhas BW, Singh A, Prabha R, Mathew BS. Systemic exposure to 5-fluorouracil and its metabolite, 5,6-dihydrofluorouracil, and development of a limited sampling strategy for therapeutic drug management of 5-fluorouracil in patients with gastrointestinal malignancy. Br J Clin Pharmacol 2020; 87:937-945. [PMID: 32592630 DOI: 10.1111/bcp.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/28/2022] Open
Abstract
AIMS 5-Fluorouracil (5-FU) is widely used in combination chemotherapy, and literature suggests pharmacokinetic-guided dosing to improve clinical efficacy and reduce toxicity. This study aimed to determine the pharmacokinetic exposure of both 5-FU and its metabolite, 5,6-dihydrofluorouracil (DHFU), in patients with gastrointestinal malignancy and to establish a simplified strategy to assist in therapeutic drug management for dose optimization. METHODS This was a prospective, observational study, performed in 27 patients diagnosed with gastrointestinal malignancy who were prescribed 5-FU. Multiple samples were collected per patient over the slow bolus (15-20 min) and continuous infusion period (over 44 h) in doses 1 and 3, and the concentrations of 5-FU and DHFU were measured. RESULTS A higher proportion of patients had exposures within the therapeutic range in dose 3 (50%) as compared to dose 1 (37.5%) with 5-FU. There was an association between delayed time to maximum concentration of DHFU and a high maximum concentration of 5-FU. A limited sampling strategy was developed with 4 samples, 2 during the bolus period and 2 during the continuous period (at 18 h and the end of infusion), which accurately predicted the total area under the curve of 5-FU. CONCLUSION Using body surface area-based dosing with 5-FU, 50-60% of patients were outside of the therapeutic range. In the absence of genotype testing, measurement of the metabolite DHFU could be a phenotypical measure of dihydropyrimidine dehydrogenase enzyme activity. A limited sampling strategy was developed in patients who were prescribed a combination regimen of slow bolus, followed by a 44-hour continuous infusion of 5-FU to assist in the therapeutic drug management of patients.
Collapse
Affiliation(s)
- Jeana Jacob
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Sumith K Mathew
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Raju Titus Chacko
- Department of Medical Oncology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Blessed Winston Aruldhas
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ashish Singh
- Department of Medical Oncology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Ratna Prabha
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| | - Binu Susan Mathew
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College and Hospital, Vellore, Tamil Nadu, India
| |
Collapse
|
20
|
5-Fluorouracil Response Prediction and Blood Level-Guided Therapy in Oncology: Existing Evidence Fundamentally Supports Instigation. Ther Drug Monit 2020; 42:660-664. [PMID: 32649488 DOI: 10.1097/ftd.0000000000000788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
5-Fluorouracil (5-FU) response prediction and therapeutic drug monitoring (TDM) are required to minimize toxicity while preserving efficacy. Conventional 5-FU dose normalization uses body surface area. It is characterized by up to 100-fold interindividual variability of pharmacokinetic (PK) parameters, and typically >50% of patients have plasma 5-FU concentrations outside the optimal range. This underscores the need for a different dose rationalization paradigm, hence there is a case for 5-FU TDM. An association between 5-FU PK parameters and efficacy/toxicity has been established. It is believed that 5-FU response is enhanced and toxicity is reduced by PK management of its dosing. The area under the concentration-time curve is the most relevant PK parameter associated with 5-FU efficacy/toxicity, and optimal therapeutic windows have been proposed. Currently, there is no universally applied a priori test for predicting 5-FU response and identifying individuals with an elevated risk of toxicity. The following two-step strategy: prediction of response/toxicity and TDM for subsequent doses seems plausible. Approximately 80% of 5-FU is degraded in a three-step sequential metabolic pathway. Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme. Its deficiency can cause toxicity with standard 5-FU doses. DPD also metabolizes uracil (U) into 5,6-dihydrouracil (UH2). The UH2/U ratio is an index of DPD activity and a credible biomarker of response and toxicity. This article outlines the UH2/U ratio as a parameter for 5-FU response/toxicity prediction and highlights key studies emphasizing the value of 5-FU TDM. Broad application of 5-FU response/toxicity prediction and blood level-guided therapy remains unmet, despite ever-increasing clinical interest. Considered collectively, existing evidence is compelling and fundamentally supports universal instigation of response/toxicity prediction and TDM.
Collapse
|
21
|
Sáez-Belló M, Mangas-Sanjuán V, Martínez-Gómez MA, López-Montenegro Soria MÁ, Climente-Martí M, Merino-Sanjuán M. Evaluation of ABC gene polymorphisms on the pharmacokinetics and pharmacodynamics of capecitabine in colorectal patients: Implications for dosing recommendations. Br J Clin Pharmacol 2020; 87:905-915. [PMID: 32559325 DOI: 10.1111/bcp.14441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS The aims are to develop a population pharmacokinetic model of capecitabine (CAP) and its main metabolites after the oral administration of CAP in colorectal cancer patients with different polymorphisms of the ATP-binding cassette (ABC) gene and a population pharmacokinetic/pharmacodynamic model capable of accounting for the neutropenic effects, and to optimize the dosing strategy based on the polymorphisms of the ABC gene and/or the administration regimen as a single agent or in combination. METHODS Forty-eight patients diagnosed with colorectal cancer were included, with 432 plasma levels of CAP, 5'-desoxi-5-fluorouridine (5'-DFUR) and 5-fluorouracil (5-FU), and 370 neutrophil observations. Capecitabine doses ranged from 1250 to 2500 mg/m2 /24 h. Plasma measurements of CAP, 5'-DFUR and 5-FU were obtained at 1, 2 and 3 hours post administration. Neutrophil levels were measured between day 15 and day 24 post administration. RESULTS The pharmacokinetic model incorporates oxaliplatin as a covariate on absorption lag time, rs6720173 (ABCG5 gene) on clearance of 5'-DFUR (182% increase for mutated rs6720173) and rs2271862 (ABCA2 gene) on clearance of 5-FU (184% increase for mutated rs2271862). System- (Circ0 = 3.54 × 109 cells/mL, MTT = 204 hours and γ = 6.0 × 10-2 ) and drug-related (slope [SLP] = 3.1 × 10-2 mL/mg). Co-administration of oxaliplatin resulted in a 2.84-fold increase in SLP. The predicted exposure thresholds to G3/4 neutropenia in combination and monotherapy were 26 and 70 mg·h/L, respectively. CONCLUSIONS The population pharmacokinetic/pharmacodynamic model characterized the time course of capecitabine and its metabolites in plasma. Dose recommendations of capecitabine in patients with mutated and wild allele for single nucleotide polymorphisms rs2271862 of ≤3000 and ≤2400 mg/m2 /24 h in monotherapy and ≤1750 and ≤600 mg/m2 /24 h in combination with oxaliplatin, respectively, have been proposed.
Collapse
Affiliation(s)
- Marina Sáez-Belló
- Foundation for the Promotion of Health and Biomedical Research of Valencia, Department of Pharmacy, Doctor Peset University Hospital, Valencia, Spain
| | - Víctor Mangas-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain.,Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia-University of Valencia, Valencia, Spain
| | - Mª Amparo Martínez-Gómez
- Foundation for the Promotion of Health and Biomedical Research of Valencia, Department of Pharmacy, Doctor Peset University Hospital, Valencia, Spain
| | | | | | - Matilde Merino-Sanjuán
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain.,Interuniversity Research Institute for Molecular Recognition and Technological Development, Polytechnic University of Valencia-University of Valencia, Valencia, Spain
| |
Collapse
|
22
|
Enalapril overcomes chemoresistance and potentiates antitumor efficacy of 5-FU in colorectal cancer by suppressing proliferation, angiogenesis, and NF-κB/STAT3-regulated proteins. Cell Death Dis 2020; 11:477. [PMID: 32581212 PMCID: PMC7314775 DOI: 10.1038/s41419-020-2675-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most effective drugs for the treatment of colorectal cancer (CRC). However, there is an urgent need in reducing its systemic side effects and chemoresistance to make 5-FU-based chemotherapy more effective and less toxic in the treatment of CRC. Here, enalapril, a clinically widely used antihypertensive and anti-heart failure drug, has been verified as a chemosensitizer that extremely improves the sensitivity of CRC cells to 5-FU. Enalapril greatly augmented the cytotoxicity of 5-FU on the cell growth in both established and primary CRC cells. The combination of enalapril and 5-FU synergistically suppressed the cell migration and invasion in both 5-FU-sensitive and -resistant CRC cells in vitro, and inhibited angiogenesis, tumor growth, and metastasis of 5-FU-resistant CRC cells in vivo without increased systemic toxicity at concentrations that were ineffective as individual agents. Furthermore, combined treatment cooperatively inhibited NF-κB/STAT3 signaling pathway and subsequently reduced the expression levels of NF-κB/STAT3-regulated proteins (c-Myc, Cyclin D1, MMP-9, MMP-2, VEGF, Bcl-2, and XIAP) in vitro and in vivo. This study provides the first evidence that enalapril greatly sensitized CRC cells to 5-FU at clinically achievable concentrations without additional toxicity and the synergistic effect may be mainly by cooperatively suppressing proliferation, angiogenesis, and NF-κB/STAT3-regulated proteins.
Collapse
|
23
|
Fideles LDS, de Miranda JAL, Martins CDS, Barbosa MLL, Pimenta HB, Pimentel PVDS, Teixeira CS, Scafuri MAS, Façanha SDO, Barreto JEF, Carvalho PMDM, Scafuri AG, Araújo JL, Rocha JA, Vieira IGP, Ricardo NMPS, da Silva Campelo M, Ribeiro MENP, de Castro Brito GA, Cerqueira GS. Role of Rutin in 5-Fluorouracil-Induced Intestinal Mucositis: Prevention of Histological Damage and Reduction of Inflammation and Oxidative Stress. Molecules 2020; 25:molecules25122786. [PMID: 32560278 PMCID: PMC7356626 DOI: 10.3390/molecules25122786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Lázaro de Sousa Fideles
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - João Antônio Leal de Miranda
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Correspondence: ; Tel.: +55-85-3366-8492
| | - Conceição da Silva Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Maria Lucianny Lima Barbosa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Helder Bindá Pimenta
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Paulo Vitor de Souza Pimentel
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Claudio Silva Teixeira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | | | | | - João Erivan Façanha Barreto
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Christus University Center (Unichristus), 133 Adolfo Gurgel Street, Fortaleza 63010-475, Brazil;
| | | | - Ariel Gustavo Scafuri
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Scafuri Institute of Human Sexuality, 1513 Republic of Lebanon Street, Varjota, Fortaleza 60175-222, Brazil;
| | - Joabe Lima Araújo
- Department of Genetics and Morphology, s/n Darcy Ribeiro University Campus, University of Brasília, Brasília-DF 70910-900, Brazil;
| | - Jefferson Almeida Rocha
- Medicinal Chemistry and Biotechnology Research Group (QUIMEBIO), Federal University of Maranhão (UFMA), São Bernardo/MA 65550-000, Brazil;
| | - Icaro Gusmão Pinto Vieira
- Technological Development Park, Federal University of Ceará, Humberto Monte Avenue, 2977, Pici Campus, Fortaleza 60440-900, Brazil;
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Gerly Anne de Castro Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Gilberto Santos Cerqueira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| |
Collapse
|
24
|
Kobuchi S, Matsumura E, Ito Y, Sakaeda T. Population Pharmacokinetic Model-Based Evaluation of Circadian Variations in Plasma 5-Fluorouracil Concentrations During Long-Term Infusion in Rats: A Comparison With Oral Anticancer Prodrugs. J Pharm Sci 2020; 109:2356-2361. [PMID: 32311368 DOI: 10.1016/j.xphs.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Circadian fluctuations in the plasma concentration of 5-fluorouracil impede the accurate estimation of target therapeutic concentrations in the long-term infusion or oral 5-fluorouracil-based prodrug regimen. We evaluated the circadian patterns of plasma 5-fluorouracil concentrations in rats using population pharmacokinetic model. Rats were divided into 2 groups, and a continuous infusion (50 mg/m2/h) for 48 h was initiated with or without a bolus injection of 60 mg/kg 5-fluorouracil. In the group not administered a loading dose, significant circadian variation of plasma 5-fluorouracil concentration was observed. In contrast, in the loading dose group, this circadian variation disappeared. Additionally, decreased hepatic dihydropyrimidine dehydrogenase activity was observed. Population model analysis revealed that the concentrations of 5-fluorouracil followed a 24-h cosine circadian curve, representing an overall 1.8-fold increase from a nadir to a peak, with a relative amplitude (% of mesor) of 28%. The circadian 5-fluorouracil clearance pattern in the infusion-regimen was consistent with previously reported pattern for capecitabine and uracil-tegafur. In the recently modified regimen omitting the bolus injection of 5-fluorouracil, the circadian variations should be considered for blood sampling time points in therapeutic drug monitoring. The chronomodulated chemotherapy using oral prodrug administration could be established based on accumulating evidence in the infusion-regimen.
Collapse
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Eisuke Matsumura
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto, Japan.
| |
Collapse
|
25
|
Yang Q, Bi Y, Li X, Liu Q, Ma J, Zhang C, Zhang J, He G. A retrospective analysis of plasma concentration monitoring of fluorouracil in patients with advanced colorectal cancer. Eur J Hosp Pharm 2020; 27:e36-e40. [PMID: 32296503 DOI: 10.1136/ejhpharm-2019-001862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/04/2022] Open
Abstract
Objectives To analyse the results of fluorouracil (5-FU) plasma concentration monitoring in patients with advanced colorectal cancer after 5-FU treatment, and to provide a reference for the application prospect of 5-FU plasma concentration monitoring technology. Methods A retrospective analysis was performed with advanced colorectal cancer patients treated with 5-FU from March 2015 to August 2018. The results of plasma concentration monitoring of 5-FU, severe adverse reactions, and anti-tumour efficacy were analysed. Results Among 47 patients, 5-FU plasma concentration monitoring was carried out a total of 289 times. The area under the receiver operating characteristic (ROC) curve (AUC) reflecting 5-FU exposure in vivo was 2.8-158 mg*h/L (41±94.6 mg*h/L). Mean AUC range within the target range (20-30 mg*h/L) for each patient was observed in 28.8% of patients. The overall incidence of related severe adverse reactions in the AUC ≤30 mg*h/L group was lower than that in the >30 mg*h/L group (24.0% and 50.0%, respectively) (p=0.06), and the incidence of severe neutropenia was 12.0% and 40.9%, respectively (p=0.05). The disease control rate and overall response rate of the AUC <20 mg*h/L group was lower than that of the ≥20 mg*h/L group: 83.3% vs 97.1% (p=0.19) and 25.0% vs 51.4% (p = 0.10), respectively. Conclusions The 5-FU plasma concentration monitoring technique can improve the safety and efficacy of 5-FU administration to advanced colorectal cancer patients. It is expected to become an important means to individualise 5-FU use in the Chinese population.
Collapse
Affiliation(s)
- Quanliang Yang
- Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| | - Yanzhi Bi
- Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| | - Xiaoqian Li
- Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| | - Qian Liu
- Laboratory Medicine, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| | - Jian Ma
- Oncology, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| | - Chengliang Zhang
- Pharmacy, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jinlin Zhang
- Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Guangzhao He
- Pharmacy, Changzhou Cancer Hospital, Soochow University, Changzhou, China
| |
Collapse
|
26
|
Deng R, Shi L, Zhu W, Wang M, Guan X, Yang D, Shen B. Pharmacokinetics-based Dose Management of 5-Fluorouracil Clinical Research in Advanced Colorectal Cancer Treatment. Mini Rev Med Chem 2020; 20:161-167. [PMID: 31660826 DOI: 10.2174/1389557519666191011154923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/22/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
Objective:
The study aimed to explore the efficacy of pharmacokinetic-based 5-fluorouracil
dose management by plasma concentration test in advanced colorectal cancer treatment.
Methods:
153 samples of advanced colorectal cancer patients were enrolled and randomly assigned to a
control group and an experimental group. All patients received double-week chemotherapy with 5-
fluorouracil (four weeks were used as one period), and chemotherapy duration ranged from 2 to 6 periods.
In the first period, all patients were administered with the classic strategy of body surface area (BSA).
Results:
In the subsequent periods, the control group (77 samples) continued with BSA guided chemotherapy,
while the experimental group (76 samples) received pharmacokinetic AUC-based chemotherapy.
The efficacy and toxic side effects were assessed during chemotherapy, and survival was recorded
in a follow-up. In the AUC experimental group, the rate of diarrhea significantly decreased (37.50%
vs. 70.00%, P=0.010), and incidence of oral mucositis reduced (54.17% vs. 82.50%, P=0.014). Compared
with the control group, the clinical benefit rate of experimental group was much higher (90.79%
vs. 79.22%, P=0.046).
Conclusion:
There was no significant difference in other 5-fluorouracil related toxic side effect events
(nausea, vomiting, hand-foot syndrome) and progression-free survival between the two groups. Pharmacokinetic-
based dose management of 5-Fluorouracil reduces the toxicity of chemotherapy and improves
long-term efficacy of chemotherapy for advanced colorectal cancer patients.
Collapse
Affiliation(s)
- Rong Deng
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, Jiangsu 210009, China
| | - Lin Shi
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, Jiangsu 210009, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Xin Guan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, Jiangsu 210009, China
| | - DeLiang Yang
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, Jiangsu 210009, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, Jiangsu 210009, China
| |
Collapse
|
27
|
Arshad U, Ploylearmsaeng SA, Karlsson MO, Doroshyenko O, Langer D, Schömig E, Kunze S, Güner SA, Skripnichenko R, Ullah S, Jaehde U, Fuhr U, Jetter A, Taubert M. Prediction of exposure-driven myelotoxicity of continuous infusion 5-fluorouracil by a semi-physiological pharmacokinetic-pharmacodynamic model in gastrointestinal cancer patients. Cancer Chemother Pharmacol 2020; 85:711-722. [PMID: 32152679 PMCID: PMC7125253 DOI: 10.1007/s00280-019-04028-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023]
Abstract
Purpose To describe 5-fluorouracil (5FU) pharmacokinetics, myelotoxicity and respective covariates using a simultaneous nonlinear mixed effect modelling approach. Methods Thirty patients with gastrointestinal cancer received 5FU 650 or 1000 mg/m2/day as 5-day continuous venous infusion (14 of whom also received cisplatin 20 mg/m2/day). 5FU and 5-fluoro-5,6-dihydrouracil (5FUH2) plasma concentrations were described by a pharmacokinetic model using NONMEM. Absolute leukocyte counts were described by a semi-mechanistic myelosuppression model. Covariate relationships were evaluated to explain the possible sources of variability in 5FU pharmacokinetics and pharmacodynamics. Results Total clearance of 5FU correlated with body surface area (BSA). Population estimate for total clearance was 249 L/h. Clearances of 5FU and 5FUH2 fractionally changed by 77%/m2 difference from the median BSA. 5FU central and peripheral volumes of distribution were 5.56 L and 28.5 L, respectively. Estimated 5FUH2 clearance and volume of distribution were 121 L/h and 96.7 L, respectively. Baseline leukocyte count of 6.86 × 109/L, as well as mean leukocyte transit time of 281 h accounting for time delay between proliferating and circulating cells, was estimated. The relationship between 5FU plasma concentrations and absolute leukocyte count was found to be linear. A higher degree of myelosuppression was attributed to combination therapy (slope = 2.82 L/mg) with cisplatin as compared to 5FU monotherapy (slope = 1.17 L/mg). Conclusions BSA should be taken into account for predicting 5FU exposure. Myelosuppression was influenced by 5FU exposure and concomitant administration of cisplatin. Electronic supplementary material The online version of this article (10.1007/s00280-019-04028-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Usman Arshad
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany.
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany.
| | - Su-Arpa Ploylearmsaeng
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Mats O Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Oxana Doroshyenko
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Dorothee Langer
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Edgar Schömig
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Sabine Kunze
- Department of Radiotherapy, University Hospital Cologne, Cologne, Germany
| | - Semih A Güner
- Department of Radiotherapy, University Hospital Cologne, Cologne, Germany
| | | | - Sami Ullah
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Ulrich Jaehde
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Uwe Fuhr
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Alexander Jetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Max Taubert
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Mindt S, Aida S, Merx K, Müller A, Gutting T, Hedtke M, Neumaier M, Hofheinz RD. Therapeutic drug monitoring (TDM) of 5-fluorouracil (5-FU): new preanalytic aspects. Clin Chem Lab Med 2020; 57:1012-1016. [PMID: 30699067 DOI: 10.1515/cclm-2018-1177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022]
Abstract
Background 5-Fluorouracil (5-FU) is frequently used for the treatment of gastrointestinal tumors. The pharmacological effect of 5-FU is influenced by genetic polymorphisms as well as differently dosed regimens. Currently, 5-FU is generally administered as a continuous infusion via an implanted port system using a body surface area (BSA)-based dose calculation. In order to optimize treatment, the area under the curve (AUC) can be estimated to allow for individual dose adjustment. A 5-FU AUC range between 20 and 30 [mg×h×L] is recommended. The aim of the current study was to assess if blood for AUC analysis could also be drawn at the side where the port system had been placed. Methods We collected EDTA blood samples of patients receiving infusional 5-FU simultaneously from different sampling points (right/left cubital vein). 5-FU concentrations were measured in a steady-state equilibrium based on nanoparticle immunoassay (My5-FU; Saladax). Results A total of 39 patients took part in this study. About half of the patients did not reach the target 5-FU concentration window (37% were under- and 16% of the patients were overdosed). Calculated median AUC was 23.3 for the right arm (range 5.8-59.4) and a median of 23.4 for the left arm (range 5.3-61.0). AUC values showed no difference between right compared to left arms (p=0.99). Conclusions In all, these results confirm that a high percentage of patients are not treated with 5-FU doses reaching suggested AUC levels of 20-30. The location of venepuncture, however, had no impact on the results of plasma 5-FU concentration.
Collapse
Affiliation(s)
- Sonani Mindt
- Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
| | - Sihem Aida
- Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
| | - Kirsten Merx
- Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) & III Medical Clinic, Mannheim, Germany
| | - Annette Müller
- Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) & III Medical Clinic, Mannheim, Germany
| | - Tobias Gutting
- Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) & III Medical Clinic, Mannheim, Germany.,Department of Medicine II, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
| | - Maren Hedtke
- Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, Mannheim Medical Faculty of Heidelberg University, University Hospital Mannheim, Mannheim, Germany
| | - Ralf-Dieter Hofheinz
- Day Treatment Center (TTZ), Interdisciplinary Tumor Center Mannheim (ITM) & III Medical Clinic, Mannheim, Germany
| |
Collapse
|
29
|
|
30
|
Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis. Pharmaceuticals (Basel) 2019; 12:ph12020051. [PMID: 30987265 PMCID: PMC6630449 DOI: 10.3390/ph12020051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.
Collapse
|
31
|
Macaire P, Morawska K, Vincent J, Quipourt V, Marilier S, Ghiringhelli F, Bengrine-Lefevre L, Schmitt A. Therapeutic drug monitoring as a tool to optimize 5-FU-based chemotherapy in gastrointestinal cancer patients older than 75 years. Eur J Cancer 2019; 111:116-125. [PMID: 30849685 DOI: 10.1016/j.ejca.2019.01.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 10/27/2022]
Abstract
AIMS Most clinical trials exclude elderly people, leading to a limited understanding of the benefit-to-risk ratio in this population. Despite existing data regarding the oncological management of elderly receiving fluorouracil (5-FU)-based regimen, our objective was to investigate 5-FU exposure/toxicity relationship in patients ≥75 years and compare the effectiveness of 5-FU therapeutic drug monitoring between elderly and younger patients. METHODS Hundred fifty-four patients (31 of whom are older than 75 years) with gastrointestinal cancers, who were to receive 5-FU-based regimens, were included in our study. At cycle 1 (C1), the 5-FU dose was calculated using patient's body surface area, then a blood sample was drawn to measure 5-FU concentration and 5-FU dose was adjusted at the subsequent cycles based on C1 concentration. Assessments of toxicity were performed at the beginning of every cycle. RESULTS Seventy-one percent of elderly patients required dose adjustments after C1, compared with 50% for younger patients. Percentages of patients within 5-FU area under the curve range at cycle 2 were 64% and 68%, respectively, for elderly and younger patients. The proportion of elderly patients experiencing severe toxicities fell from 15% at C1 to only 5% at cycle 3. CONCLUSION Pharmacokinetic-guided 5-FU-dosing algorithm, leading to an improved tolerability while remaining within therapeutic concentration range, is even more valuable for patients older than 75 years than in younger patients.
Collapse
Affiliation(s)
- Pauline Macaire
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France; INSERM U1231, University of Burgundy Franche-Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France
| | - Katarzyna Morawska
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Julie Vincent
- Medical Oncology Deparment, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Valérie Quipourt
- Department of Geriatrics and Internal Medicine, Hospital of Champmaillot, University Hospital, 21079 Dijon, France; Geriatric Oncology Coordination Unit in Burgundy, University Hospital, 21079 Dijon, France
| | - Sophie Marilier
- Department of Geriatrics and Internal Medicine, Hospital of Champmaillot, University Hospital, 21079 Dijon, France; Geriatric Oncology Coordination Unit in Burgundy, University Hospital, 21079 Dijon, France
| | - François Ghiringhelli
- INSERM U1231, University of Burgundy Franche-Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France; Medical Oncology Deparment, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Leila Bengrine-Lefevre
- Medical Oncology Deparment, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France
| | - Antonin Schmitt
- Pharmacy Department, Centre Georges-François Leclerc, 1 rue Pr. Marion, 21000 Dijon, France; INSERM U1231, University of Burgundy Franche-Comté, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
32
|
Beumer JH, Chu E, Allegra C, Tanigawara Y, Milano G, Diasio R, Kim TW, Mathijssen RH, Zhang L, Arnold D, Muneoka K, Boku N, Joerger M. Therapeutic Drug Monitoring in Oncology: International Association of Therapeutic Drug Monitoring and Clinical Toxicology Recommendations for 5-Fluorouracil Therapy. Clin Pharmacol Ther 2019; 105:598-613. [PMID: 29923599 PMCID: PMC6309286 DOI: 10.1002/cpt.1124] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
5-Fluorouracil (5-FU) is dosed by body surface area, a practice unable to reduce the interindividual variability in exposure. Endorsed by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), we evaluated clinical evidence and strongly recommend TDM for the management of 5-FU therapy in patients with colorectal or head-and-neck cancer receiving common 5-FU regimens. Our systematic methodology provides a framework to evaluate published evidence in support of TDM recommendations in oncology.
Collapse
Affiliation(s)
- Jan H. Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edward Chu
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Yusuke Tanigawara
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Tokyo, Japan
| | - Gerard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, Nice, France
| | - Robert Diasio
- Developmental Therapeutics Program, Mayo Clinic Cancer Center, Rochester, MN
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Tae Won Kim
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ron H. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dirk Arnold
- Department of Oncology, AK Altona, Asklepios Tumorzentrum Hamburg, Hamburg, Germany
| | - Katsuki Muneoka
- Division of Oncology Center, Niitsu Medical Center Hospital, Niigata City, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
33
|
Goirand F, Lemaitre F, Launay M, Tron C, Chatelut E, Boyer JC, Bardou M, Schmitt A. How can we best monitor 5-FU administration to maximize benefit to risk ratio? Expert Opin Drug Metab Toxicol 2018; 14:1303-1313. [PMID: 30451549 DOI: 10.1080/17425255.2018.1550484] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION 5-Fluorouracil (5-FU) is currently used as a chemotherapy in several cancers such as head-and-neck (H&N) and colorectal cancers. 5-FU dosing is traditionally based on body surface area (BSA), but this strategy is usually associated with severe toxicities. 5-FU is mainly catabolized by dihydropyrimidine dehydrogenase (DPD), and 5-FU dosage adaptation according to DPD status at the first cycle of treatment is now recommended. To further optimize 5-FU-based chemotherapy, a body of evidences justifies therapeutic drug monitoring (TDM). Areas covered: 5-FU pharmacokinetics, relationships between pharmacokinetics and efficacy or toxicity of 5-FU, proofs of interest of 5-FU TDM and its practical considerations are discussed. Expert opinion: BSA-adjusted 5-FU administration is associated with a large inter-individual variability, and according to this strategy, many patients experience under- or overexposure. Moreover, relationships between 5-FU area under the curve (AUC) and its toxicity or efficacy have been demonstrated, at least in patients with colorectal or H&N cancers. 5-FU therapeutic index has been validated and algorithms of 5-FU dosage adaptation according to its AUC are now available. Advances in pre-analytical and analytical steps of 5-FU TDM make its use feasible in clinical practice. Thus, there are consistent evidences to recommend 5-FU TDM in patients with advanced colorectal or H&N cancers.
Collapse
Affiliation(s)
- Françoise Goirand
- a Centre Hospitalo-Universitaire de Dijon-Bourgogne , Dijon , France
| | - Florian Lemaitre
- b Service de Pharmacologie Clinique , Laboratoire de Pharmacologie Expérimentale et Clinique, Centre d'Investigation Clinique INSERM 1414, CHU de Rennes, Université Rennes 1 , Rennes , France
| | - Manon Launay
- c Service de Pharmacologie, Hôpital Européen Georges Pompidou , Laboratoire de Pharmacologie et de Toxicologie , Paris , France
| | - Camille Tron
- b Service de Pharmacologie Clinique , Laboratoire de Pharmacologie Expérimentale et Clinique, Centre d'Investigation Clinique INSERM 1414, CHU de Rennes, Université Rennes 1 , Rennes , France
| | - Etienne Chatelut
- d Institut Claudius-Regaud et Centre de Recherches en Cancérologie de Toulouse , IUCT - Oncopole , Toulouse , France
| | - Jean-Christophe Boyer
- e Laboratoire de Biochimie et Biologie Moléculaire , CHU de Nîmes Carémeau , Nîmes , France
| | - Marc Bardou
- f Centre d'Investigations Cliniques 1432, Module Plurithématique , CHU Dijon-Bourgogne, Hôpital François Mitterrand , Dijon , France
| | - Antonin Schmitt
- g Service Pharmacie , Centre Georges-François Leclerc , Dijon , France
| |
Collapse
|
34
|
Feasibility of 5-fluorouracil pharmacokinetic monitoring using the My-5FU PCM™ system in a quaternary oncology centre. Cancer Chemother Pharmacol 2018; 82:865-876. [DOI: 10.1007/s00280-018-3679-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
|
35
|
Lemaitre F, Goirand F, Launay M, Chatelut E, Boyer JC, Evrard A, Paludetto MN, Guilhaumou R, Ciccolini J, Schmitt A. [5-fluorouracil therapeutic drug monitoring: Update and recommendations of the STP-PT group of the SFPT and the GPCO-Unicancer]. Bull Cancer 2018; 105:790-803. [PMID: 30103904 DOI: 10.1016/j.bulcan.2018.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/26/2022]
Abstract
Despite being 60-years old now, 5-FU remains the backbone of numerous regimen to treat a variety of solid tumors such as breast, head-and-neck and digestive cancers either in neo-adjuvant, adjuvant or metastatic settings. Standard 5-FU usually claims 15-40% of severe toxicities and up to 1% of toxic-death. Numerous studies show a stiff relationship between 5-FU exposure and toxicity or efficacy. In addition, 5-FU pharmacokinetics is highly variable between patients. Indeed, 80% of the 5-FU dose is catabolized in the liver by dihydropyrimidine dehydrogenase (DPD) into inactive compounds. It is now well established that DPD deficiency could lead to severe toxicities and, thus, require dose reduction in deficient patients. However, despite dosage adaptation based on DPD status, some patients may still experience under- or over-exposure, leading to inefficacy or major toxicity. The "Suivi thérapeutique pharmacologique et personnalisation des traitements" (STP-PT) group of the "Société française de pharmacologie et de thérapeutique" (SFPT) and the "Groupe de pharmacologie clinique oncologique" (GPCO)-Unicancer, based on the latest and most up-to-date literature data, recommend the implementation of 5-FU Therapeutic Drug Monitoring in order to ensure an adequate 5-FU exposure.
Collapse
Affiliation(s)
- Florian Lemaitre
- Université Rennes 1, CHU de Rennes, centre d'investigation clinique Inserm 1414, service de pharmacologie clinique, laboratoire de pharmacologie expérimentale et clinique, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - Françoise Goirand
- Centre hospitalo-universitaire de Dijon-Bourgogne, 5, boulevard Jeanne-d'Arc, 21000 Dijon, France
| | - Manon Launay
- Hôpital européen Georges-Pompidou, laboratoire de pharmacologie et de toxicologie, service de pharmacologie, 20, rue Leblanc, 75908 Paris cedex 15, France
| | - Etienne Chatelut
- Institut Claudius-Regaud et centre de recherches en cancérologie de Toulouse, IUCT - Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Jean-Christophe Boyer
- CHU de Nîmes Carémeau, laboratoire de biochimie et biologie moléculaire, place du Professeur-Robert-Debré, 30029 Nîmes cedex 9, France
| | - Alexandre Evrard
- CHU de Nîmes Carémeau, laboratoire de biochimie et biologie moléculaire, place du Professeur-Robert-Debré, 30029 Nîmes cedex 9, France
| | - Marie-Noelle Paludetto
- Institut Claudius-Regaud et centre de recherches en cancérologie de Toulouse, IUCT - Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse, France
| | - Romain Guilhaumou
- AP-HM, CHU Timone, service de pharmacologie clinique et pharmacovigilance, 264, rue Saint-Pierre, 13005 Marseille, France
| | - Joseph Ciccolini
- AP-HM, CHU Timone, SMARTc CRCM UMR Inserm U1068, laboratoire de pharmacocinétique clinique, 265, rue St-Pierre, 13385 Marseille, France
| | - Antonin Schmitt
- Centre Georges-François-Leclerc, service pharmacie, 1, rue Pr.-Marion, 21000 Dijon, France.
| |
Collapse
|
36
|
Zhong L, He X, Zhang Y, Chuan JL, Chen M, Zhu SM, Peng Q. Relevance of methylenetetrahydrofolate reductase gene variants C677T and A1298C with response to fluoropyrimidine-based chemotherapy in colorectal cancer: a systematic review and meta-analysis. Oncotarget 2018; 9:31291-31301. [PMID: 30131855 PMCID: PMC6101282 DOI: 10.18632/oncotarget.24933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/06/2018] [Indexed: 01/11/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme influencing the metabolism of fluoropyrimidines. The relevance of MTHFR polymorphisms with the clinical response to fluoropyrimidine-based chemotherapy has been explored, but the results remain controversial. Thus, a meta-analysis was performed to provide a comprehensive estimate in this account. Relevant studies were identified through PubMed, Embase and Web of Science databases from inception up to May 2017. Odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were applied to assess the strength of association. A total of 2118 colorectal cancer patients from 21 studies were included in the meta-analysis. Overall, there was no significant association between MTHFR C677T (rs1801133) or A1298C (rs1801131) polymorphisms and the clinical response to fluoropyrimidine-based chemotherapy under all of the three genetic models (allele model, dominant model, and recessive model) and stratification analysis, except for the retrospective study subgroup in the dominant model of MTHFR C677T and the “5-Fu + FA” treatment group in the allele contrast of MTHFR A1298C. No or moderate heterogeneity was observed in all genetic models. This meta-analysis suggested that MTHFR polymorphisms could not be considered as reliable factors for predicting the clinical response to fluoropyrimidine-based chemotherapy in colorectal cancer patients.
Collapse
Affiliation(s)
- Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Xia He
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Jun-Lan Chuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Min Chen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Shao-Min Zhu
- Department of Anesthesiology, East Ward, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan 610072, China
| | - Qian Peng
- Cancer Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan 610072, China
| |
Collapse
|
37
|
Validation of a Commercial Assay and Decision Support Tool for Routine Paclitaxel Therapeutic Drug Monitoring (TDM). Ther Drug Monit 2018; 39:617-624. [PMID: 28937535 DOI: 10.1097/ftd.0000000000000446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The value of therapeutic drug monitoring (TDM) for paclitaxel (PTX) was recently demonstrated in the largest TDM trial ever conducted in oncology. The trial demonstrated significant reduction in neuropathy when using TDM. Dose adjustment for PTX was based on time above a threshold concentration (Tc>0.05). Tc>0.05 must be calculated with a pharmacokinetic model and complex nonlinear mixed-effects software. The use of the software and chromatographic methods to measure PTX requires specialized expertise. User-friendly methods to quantitate PTX and calculate Tc>0.05 could simplify the introduction of TDM into routine clinical practice. METHODS The immunoassay (MyPaclitaxel) was used to quantitate PTX in samples from the clinical trial; the results were used to calculate Tc>0.05 using a stand-alone computer program with a simple, friendly graphical user interface for nonlinear mixed-effects pharmacokinetic calculations (MyCare Drug Exposure Calculator). The resulting dose recommendations from the calculated Tc>0.05 were compared with those using liquid chromatography-ultraviolet detection and NONMEM to examine the efficacy of the simpler tools for TDM. RESULTS There was a good agreement between the immunoassay and liquid chromatography-ultraviolet detection: Passing-Bablok regression slope was 1.045 and intercept was -6.00, R was 0.9757, and mean bias was -1.77 ng/mL (-2.07 nmol/L). Dosing recommendations were identical for 70% of the cycles and within 10% for 89% of the samples. All Tc>0.05 values were at the same or adjacent medical decision points. CONCLUSIONS MyPaclitaxel assay and MyCare Drug Exposure Calculator are convenient, user-friendly tools that may be suitable for routine TDM of PTX in clinical care.
Collapse
|
38
|
DPD functional tests in plasma, fresh saliva and dried saliva samples as predictors of 5-fluorouracil exposure and occurrence of drug-related severe toxicity. Clin Biochem 2018; 56:18-25. [DOI: 10.1016/j.clinbiochem.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 01/07/2023]
|
39
|
A correlation study of fluorouracil pharmacodynamics with clinical efficacy and toxicity. TUMORI JOURNAL 2018; 104:157-164. [DOI: 10.5301/tj.5000652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose: Plasma 5-fluorouracil (5-FU) concentrations vary greatly between individuals who have received standard dosage. Pharmacokinetic adjusted doses have been hypothesized to overcome the possibility of potential toxicity and ineffectiveness related to inappropriate plasma levels of 5-FU. In this study, we prospectively investigated the clinical benefit and toxicity of 5-FU in relation to its pharmacokinetic properties. Methods: Pharmacokinetics, effectiveness, and toxicity of 5-FU were investigated in 101 patients. The 5-FU pharmacokinetics were measured on day 2 of chemotherapy infusions. Clinicodemographic characteristics are outlined. Results: All 101 patients who received adjuvant chemotherapy were alive at the end of a median 45 months of the follow-up period. At least one grade 1 adverse event (AE) was observed in 69.3% of the patients and grade two AEs were observed in 10.1% of the patients. The 5-FU levels ranged between 103 and 4311 µg/L and area under the curve (AUC) measurements ranged between 4.5 and 189.7 mg min/L. Pharmacokinetic measurements were not significantly correlated with clinical efficacy (log-rank p = 0.21). However, higher AUC levels were positively correlated with toxicity (p = 0.02) and with the severity of adverse events. The risks of mucositis (odds ratio [OR] 1.45; p = 0.042) and neurotoxicity (OR 2.01; p = 0.009) were significantly increased in a logistic regression model. Conclusions: There is no clear evidence that increased plasma levels or pharmacokinetic adjusted doses of 5-FU were related to better efficacy. However, toxicity might be closely associated with increased plasma levels of 5-FU. Toxicities can be deferred via dose adjustments without any expense in efficacy.
Collapse
|
40
|
Abstract
Introduction Previous studies have found that miRNAs play a key role in drug resistance. Multiple reports show that miRNAs act as regulators in colorectal cancer (CRC) cells, but the role of miR-206 in CRC is still not well understood. The current study aimed to explore the potential function of miR-206 in 5-FU resistance. Methods To indentify the role of miR-206 in 5-FU resistance, the expression of miR-206 was examined by real-time polymerase chain reaction (RT-PCR) in 5-FU-resistant (FR) CRC (HCT116/FR and RKO/FR) and their parental cell lines. miR-206 mimic was transfected to 5-FU-FR CRC, and the 5-FU sensitivity was detected by MTS and flow cytometry. Using miRNA target prediction software, we found that miR-206 could target the 3′ untranslated region (3′UTR) sequence of Bcl-2. Results miR-206 was found to be downregulated in 5-FU-FR CRC in comparison with their parental cell lines, suggesting its crucial relevance for colon cancer biology. Downregulation of miR-206 promoted drug resistance and decreased apoptosis of parental cells, while overexpression of miR-206 promoted drug cytotoxicity and apoptosis of HCT116/FR cells. We also identified miR-206 targeting Bcl-2 directly in CRC, which is required for miR-206 mediated-5-FU resistance. Conclusion Our results show that miR-206 targets Bcl-2 to mediate chemoresistance, proliferation, and apoptosis in CRC. This study provides a novel promising candidate for colon cancer therapy.
Collapse
Affiliation(s)
- Xiaomin Meng
- Department of Applied Chemistry, Northeast Electric Power University, Jilin, People's Republic of China
| | - Rao Fu
- Department of Applied Chemistry, Northeast Electric Power University, Jilin, People's Republic of China
| |
Collapse
|
41
|
Morawska K, Goirand F, Marceau L, Devaux M, Cueff A, Bertaut A, Vincent J, Bengrine-Lefevre L, Ghiringhelli F, Schmitt A. 5-FU therapeutic drug monitoring as a valuable option to reduce toxicity in patients with gastrointestinal cancer. Oncotarget 2018; 9:11559-11571. [PMID: 29545919 PMCID: PMC5837758 DOI: 10.18632/oncotarget.24338] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Aims 5-FU is used as the main backbone of chemotherapy regimens for patients with colorectal and other gastrointestinal cancers. Despite development of new strategies that allowed enhancing clinical effectiveness and tolerability of 5-FU, 10-30% of patients treated with 5-FU-based regimens experience severe treatment-related toxicity. In our study, we evaluated the 5-FU exposure-toxicity relationship and investigated the efficacy of PK-guided dosing in increasing tolerability of 5-FU-based chemotherapy. Results 50.7% of patients required dose adjustments after cycle 1. Percentage of patients within 5-FU AUC range was 49.3%, 66.9%, 61.0% at cycle 1, 2 and 3 respectively (p = 0.002 cycle 1 vs cycle 2). At all 3 cycles, lower incidences of grade I/II toxicities were observed for patients below or within range compared with those above range (19.4% vs 41.3%, p < 0.001 respectively). Conclusions Our analysis confirms that the use of BSA-guided dosing results in highly variable 5-FU exposure and strongly suggests that PK-guided dosing can improve tolerability of 5-FU based chemotherapy in patients with gastrointestinal cancers, thus supporting 5-FU therapeutic drug monitoring. Methods 155 patients with gastrointestinal cancers, who were to receive 5-FU-based regimens were included in our study. At cycle 1, the 5-FU dose was calculated using patient's Body Surface Area (BSA) method. A blood sample was drawn on Day 2 to measure 5-FU concentration. At cycle 2, the 5-FU dose was adjusted using a PK-guided dosing strategy targeting a plasma AUC range of 18-28 mg·h/L, based on cycle 1 concentration. Assessments of toxicity was performed at the beginning of every cycle.
Collapse
Affiliation(s)
| | - Françoise Goirand
- Laboratoire de Pharmacologie/Toxicologie, CHU de Dijon, Dijon, France.,INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | | | | | - Adèle Cueff
- Centre Georges-François Leclerc, Dijon, France
| | - Aurélie Bertaut
- Centre Georges-François Leclerc, Dijon, France.,INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | | | | | - François Ghiringhelli
- Centre Georges-François Leclerc, Dijon, France.,INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| | - Antonin Schmitt
- Centre Georges-François Leclerc, Dijon, France.,INSERM U1231, University of Burgundy Franche-Comté, Dijon, France
| |
Collapse
|
42
|
Ghawanmeh AA, Chong KF, Sarkar SM, Bakar MA, Othaman R, Khalid RM. Colchicine prodrugs and codrugs: Chemistry and bioactivities. Eur J Med Chem 2017; 144:229-242. [PMID: 29274490 DOI: 10.1016/j.ejmech.2017.12.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023]
Abstract
Antimitotic colchicine possesses low therapeutic index due to high toxicity effects in non-target cell. However, diverse colchicine analogs have been derivatized as intentions for toxicity reduction and structure-activity relationship (SAR) studying. Hybrid system of colchicine structure with nontoxic biofunctional compounds modified further affords a new entity in chemical structure with enhanced activity and selectivity. Moreover, nanocarrier formulation strategies have been used for colchicine delivery. This review paper focuses on colchicine nanoformulation, chemical synthesis of colchicine prodrugs and codrugs with different linkers, highlights linker chemical nature and biological activity of synthesized compounds. Additionally, classification of colchicine prodrugs based on type of conjugates is discussed, as biopolymers prodrugs, fluorescent prodrug, metal complexes prodrug, metal-labile prodrug and bioconjugate prodrug. Finally, we briefly summarized the biological importance of colchicine nanoformulation, colchicine prodrugs and codrugs.
Collapse
Affiliation(s)
- Abdullah A Ghawanmeh
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia.
| | - Kwok Feng Chong
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Shaheen M Sarkar
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, 26300 Kuantan, Pahang, Malaysia
| | - Muntaz Abu Bakar
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rizafizah Othaman
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Rozida M Khalid
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
43
|
Hong C, Zheng J, Li X. Inhibition of GOT1 sensitizes colorectal cancer cells to 5-fluorouracil. Cancer Chemother Pharmacol 2017; 79:835-840. [PMID: 28314989 DOI: 10.1007/s00280-017-3282-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Almost all colorectal cancer (CRC) cell lines are known to overexpress aspartate aminotransferase (GOT1), which potentially regulates the intracellular levels of reactive oxygen species (ROS) via the production of NADPH, and supports tumor growth. In our study, the role of GOT1 in the anticancer efficacy of 5-fluorouracil (5-FU) was examined. METHODS HCT116, SW480, and HT-29 cells were transfected with lentiviral vectors expressing short hairpin RNA (shRNA) against GOT1. Following 5-FU treatment, cellular proliferation was evaluated, the NADP+/NADPH ratio was monitored, ROS was measured, and intracellular levels of glutamine (Gln), Aspartate (Asp), oxaloacetate (OAA), malate, and pyruvate were investigated using liquid chromatography-mass spectrometry (LC-MS). A CRC subcutaneous tumor model was performed to determine the impact of GOT1 inhibition on 5-FU efficacy in vivo. RESULTS In response to 5-FU administration, CRC cells undergo metabolic adaptation, resulting in increased glutamine flux for the synthesis of aspartate. GOT1 is responsible for the conversion of glutamine-derived aspartate into OAA, which subsequently can be converted into malate and pyruvate. The GOT1-mediated metabolic process is able to maintain the NADP+/NADPH ratio, which counteracts 5-FU-induced oxidative stress. Inhibition of GOT1 impaired the defense against 5-FU-induced ROS, thereby sensitizing cells to 5-FU. The importance of GOT1 in supporting tumor growth during 5-FU treatment was also indicated in an in vivo tumor model of CRC. CONCLUSION These findings show that GOT1 could serve as a promising target for increasing the anticancer efficacy of the conventional therapy in patients with CRC.
Collapse
Affiliation(s)
- Chengyu Hong
- Department of Medical Oncology (3), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Jian Zheng
- Department of Medical Oncology (3), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China
| | - Xiaoling Li
- Department of Medical Oncology (3), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, People's Republic of China.
| |
Collapse
|
44
|
Li X, Xun Z, Yang Y. Inhibition of phosphoserine phosphatase enhances the anticancer efficacy of 5-fluorouracil in colorectal cancer. Biochem Biophys Res Commun 2016; 477:633-639. [PMID: 27349874 DOI: 10.1016/j.bbrc.2016.06.112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023]
Abstract
Most colorectal cancer (CRC) cell lines are identified to overexpress phosphoserine phosphatase (PSPH), which regulates the intracellular synthesis of serine and glycine, and supports tumor growth. In this study, the effect of PSPH on 5-fluorouracil (5-FU) efficacy was evaluated. CRC cells exposed to 5-FU acquire metabolic remodeling, resulting in increased glucose flux for PSPH-mediated serine synthesis. Then serine is converted into GSH, which promotes cell survival through the detoxification of 5-FU-induced reactive oxygen species (ROS). Consequently, repression of PSPH by the use of shRNAs for PSPH impaired the defense against drug-induced oxidative stress, thereby sensitizing cells to 5-FU. The importance of the PSPH in supporting tumor growth during 5-FU treatment was also demonstrated in an in vivo tumor model of CRC. These findings indicate that the PSPH could serve as a target for increasing the anticancer efficacy of conventional therapy in patients with CRC.
Collapse
Affiliation(s)
- Xin Li
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Zhe Xun
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Yong Yang
- Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|