1
|
Li N, Hu Y, Wu L, An J. Clinicopathological correlations in 38 cases of gastroenteropancreatic high-grade neuroendocrine neoplasms. Front Oncol 2024; 14:1399079. [PMID: 39484039 PMCID: PMC11524794 DOI: 10.3389/fonc.2024.1399079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Objective Diagnosis and treatment of gastroenteropancreatic high-grade neuroendocrine neoplasms (GEP-HG-NENs), particularly G3 well-differentiated neuroendocrine tumours (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) relies on histopathological morphology, immunohistochemistry, and molecular biological markers, which are lacking especially in cases with ambiguous histomorphology. In this study to contribute to the development of more targeted treatment strategies, we examined various immunohistochemical and molecular biological markers and their association with clinicopathological features in GEP-HG-NENs. Methods We included 38 patients with GEP-HG-NENs in this study, with their retrospective follow-up data. The expression of tumour protein p53 (TP53), RB transcriptional corepressor 1 (RB1), somatostatin receptor 2 (SSTR2), clusterin (CLU), and marker of proliferation Ki-67 (MKI67) was immunohistochemically analysed. KRAS proto-oncogene, GTPase (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E expression was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between immunohistochemical and molecular biological markers and clinicopathological characteristics were examined using a Cox risk regression model, receiver operating characteristic (ROC) curve, and Kaplan-Meier survival analyses. Results SSTR2, RB, TP53, and CLU expression differed between NET G3 and NECs, with variations among the NET G3 and small- and large-cell NEC (SCNEC and LCNEC, respectively) groups (p < 0.05). The median MKI67 proliferative index was approximately 40% and 70% in G3 NETs and NECs, respectively. The NET G3 group exhibited a median survival of 25 months, indicating a relatively better prognosis than that of the NECs group (median survival, 11 months). Both Kaplan-Meier survival analysis and the Cox risk regression model indicated a statistical correlation among treatment methods, CLU expression, and prognosis (p < 0.05). The BRAF V600E mutation rate was 32.4% in G3 NETs and SCNEC, demonstrating a significant difference between both types (p = 0.0086). Furthermore, ROC curve analysis highlighted the diagnostic significance of the positive expression of the immunohistochemical markers CLU, SSTR2, and RB in identifying NET G3. Conclusion To guide more suitable treatment strategies, it is essential to develop and apply valuable and more targeted immunohistochemical and molecular pathological markers for a comprehensive analysis.
Collapse
Affiliation(s)
| | - Yanping Hu
- Department of Pathology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
2
|
Owaki S, Mori Y, Nakai S, Maeda H, Imazu M, Tomita Y, Kanaiwa H, Yamaguchi A, Kitagawa M, Hirano A, Kimura Y, Tsuchida K, Kataoka H. BRAF V600E-mutated Colorectal Neuroendocrine Carcinoma Effectively Treated with a Chemotherapy Protocol for BRAF-mutated Metastatic Colorectal Cancer. Intern Med 2024; 63:1995-1999. [PMID: 37981300 PMCID: PMC11309870 DOI: 10.2169/internalmedicine.2870-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 11/21/2023] Open
Abstract
Metastatic colorectal neuroendocrine carcinoma (NEC) is often treated using a chemotherapy protocol for small-cell lung cancer; however, the prognosis is extremely poor. A 55-year-old woman with BRAF V600E-mutated transverse colon NEC and liver metastases underwent colectomy followed by FOLFOXIRI plus bevacizumab. Consequently, the liver metastases markedly shrank. Owing to later worsening of the liver metastases, she received encorafenib and binimetinib plus cetuximab. Despite discontinuing binimetinib due to myalgia, she had a long-term response with a progression-free survival of 14 months and an overall survival of more than 27 months. A chemotherapy protocol for BRAF-mutated metastatic colorectal cancer may be a treatment option for BRAF V600E-mutated colorectal NEC.
Collapse
Affiliation(s)
- Seira Owaki
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
- Department of Medical Oncology, National Hospital Organization Nagoya Medical Center, Japan
| | - Yoshinori Mori
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Shunsuke Nakai
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Hideki Maeda
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Mitsuki Imazu
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Yusaku Tomita
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Hiroki Kanaiwa
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Ayana Yamaguchi
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Mika Kitagawa
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Atsuyuki Hirano
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Yoshihide Kimura
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Kenji Tsuchida
- Department of Gastroenterology, Nagoya City University West Medical Center, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
3
|
Angerilli V, Sabella G, Simbolo M, Lagano V, Centonze G, Gentili M, Mangogna A, Coppa J, Munari G, Businello G, Borga C, Schiavi F, Pusceddu S, Leporati R, Oldani S, Fassan M, Milione M. Comprehensive genomic and transcriptomic characterization of high-grade gastro-entero-pancreatic neoplasms. Br J Cancer 2024; 131:159-170. [PMID: 38729995 PMCID: PMC11231306 DOI: 10.1038/s41416-024-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High-grade gastro-entero-pancreatic neoplasms (HG GEP-NENs) can be stratified according to their morphology and Ki-67 values into three prognostic classes: neuroendocrine tumors grade 3 (NETs G3), neuroendocrine carcinomas with Ki-67 < 55% (NECs <55) and NECs with Ki-67 ≥ 55% (NECs ≥55). METHODS We analyzed a cohort of 49 HG GEP-NENs by targeted Next-Generation Sequencing (TrueSight Oncology 500), RNA-seq, and immunohistochemistry for p53, Rb1, SSTR-2A, and PD-L1. RESULTS Frequent genomic alterations affected TP53 (26%), APC (20%), KRAS and MEN1 (both 11%) genes. NET G3 were enriched in MEN1 (p = 0.02) mutations, while both NECs groups were enriched in TP53 (p = 0.001), APC (p = 0.002) and KRAS (p = 0.02) mutations and tumors with TMB ≥ 10 muts/Mb (p = 0.01). No differentially expressed (DE) gene was found between NECs <55% and NECs ≥55%, while 1129 DE genes were identified between NET G3 and NECs. A slight enrichment of CD4+ and CD8+ T cells in NECs and of cancer-associated fibroblasts and macrophages (M2-like) in NET G3. Multivariate analysis identified histologic type and Rb1 loss as independent prognostic factors for overall survival. CONCLUSIONS This study showed that GEP-NET G3 and GEP-NECs exhibit clear genomic and transcriptomic differences, differently from GEP-NECs <55% and GEP-NECs ≥55%, and provided molecular findings with prognostic and potentially predictive value.
Collapse
Affiliation(s)
| | - Giovanna Sabella
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Lagano
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gentili
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute of Pathological Anatomy, Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Jorgelina Coppa
- Hepatology and Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giada Munari
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Chiara Borga
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Sara Pusceddu
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rita Leporati
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Simone Oldani
- Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Massimo Milione
- First Pathology Unit, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
4
|
Uccella S. Molecular Classification of Gastrointestinal and Pancreatic Neuroendocrine Neoplasms: Are We Ready for That? Endocr Pathol 2024; 35:91-106. [PMID: 38470548 PMCID: PMC11176254 DOI: 10.1007/s12022-024-09807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, the increasing availability of technologies for molecular analyses has allowed an insight in the genomic alterations of neuroendocrine neoplasms (NEN) of the gastrointestinal tract and pancreas. This knowledge has confirmed, supported, and informed the pathological classification of NEN, clarifying the differences between neuroendocrine carcinomas (NEC) and neuroendocrine tumors (NET) and helping to define the G3 NET category. At the same time, the identification genomic alterations, in terms of gene mutation, structural abnormalities, and epigenetic changes differentially involved in the pathogenesis of NEC and NET has identified potential molecular targets for precision therapy. This review critically recapitulates the available molecular features of digestive NEC and NET, highlighting their correlates with pathological aspects and clinical characteristics of these neoplasms and revising their role as predictive biomarkers for targeted therapy. In this context, the feasibility and applicability of a molecular classification of gastrointestinal and pancreatic NEN will be explored.
Collapse
Affiliation(s)
- Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Pathology Service IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
5
|
Wang Z, Chen Q, Zhao F, Sun L, Qiu Y, Cheng H, Qin J, Wang H, Shi S, Cao S, Liu Q. Analysis of the Genetic Characteristics and Metastatic Pathways of G1 and G2 Colorectal Neuroendocrine Neoplasms. J Endocr Soc 2024; 8:bvad168. [PMID: 38205165 PMCID: PMC10776307 DOI: 10.1210/jendso/bvad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 01/12/2024] Open
Abstract
Objective G1 and G2 colorectal neuroendocrine neoplasms (NENs) are a group of rare and indolent diseases. We aimed to delineate their genetic characteristics and explore their metastatic mechanisms. Methods We used next-generation sequencing technology for targeted sequencing for 54 patients with G1 and G2 colorectal NENs. We delineated their genetic features and compared the genetic characteristics between metastatic NENs and nonmetastatic NENs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was utilized to explore their abnormal pathways and study their potential metastatic mechanisms. Results We collected 23 metastatic NENs and 31 nonmetastatic NENs. In the whole cohort, the common mutated genes were NCOR2, BRD4, MDC1, ARID1A, AXIN2, etc. The common copy number variations (CNVs) included amplification of HIST1H3D, amplification of HIST1H3E, and loss of PTEN. The KEGG enrichment analysis revealed that PI3K-Akt, MAPK, and Rap1 were the major abnormal pathways. There were significantly different genetic features between metastatic NENs and nonmetastatic NENs. The metastatic NENs shared only 47 (22.5%) mutated genes and 6 (13.3%) CNVs with nonmetastatic NENs. NCOR2, BRD4, CDKN1B, CYP3A5, and EIF1AX were the commonly mutated genes in metastatic NENs, while NCOR2, MDC1, AXIN2, PIK3C2G, and PTPRT were the commonly mutated genes in nonmetastatic NENs. Metastatic NENs presented a significantly higher proportion of abnormal pathways of cell senescence (56.5% vs 25.8%, P = .022) and lysine degradation (43.5% vs 16.1%, P = .027) than nonmetastatic NENs. Conclusion G1 and G2 colorectal NENs are a group of heterogeneous diseases that might obtain an increased invasive ability through aberrant cell senescence and lysine degradation pathways.
Collapse
Affiliation(s)
- Zhijie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qichen Chen
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fuqiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yixian Qiu
- Acornmed Biotechnology Co., Ltd, Beijing 100176, China
| | | | - Jiayue Qin
- Acornmed Biotechnology Co., Ltd, Beijing 100176, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd, Beijing 100176, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd, Beijing 100176, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
6
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
7
|
Riechelmann RP, Taboada RG, de Jesus VHF, Iglesia M, Trikalinos NA. Therapy Sequencing in Patients With Advanced Neuroendocrine Neoplasms. Am Soc Clin Oncol Educ Book 2023; 43:e389278. [PMID: 37257140 DOI: 10.1200/edbk_389278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise a beautifully complicated, exciting landscape of histologies and clinical behaviors. However, the nuanced complexity of low- and high-grade variants can easily overwhelm both patients and providers. In this chapter, we review the ever-expanding literature on both functioning and nonfunctioning small bowel and pancreatic NENs, touching on somatostatin analogs, hepatic-directed therapies, small molecules, radiopharmaceuticals, immunotherapy, cytotoxic chemotherapy, and new promising agents. Furthermore, we suggest some strategies to address the most challenging scenarios seen in clinical practice, including sequencing of agents, treatment of carcinoid syndrome, and options for well-differentiated high-grade disease.
Collapse
Affiliation(s)
| | - Rodrigo G Taboada
- Department of Clinical Oncology, A.C.Camargo Cancer Center, Sao Paulo, Brazil
| | | | - Michael Iglesia
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
8
|
Smith J, Barnett E, Rodger EJ, Chatterjee A, Subramaniam RM. Neuroendocrine Neoplasms: Genetics and Epigenetics. PET Clin 2023; 18:169-187. [PMID: 36858744 DOI: 10.1016/j.cpet.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Neuroendocrine neoplasms (NENs) are a group of rare, heterogeneous tumors of neuroendocrine cell origin, affecting a range of different organs. The clinical management of NENs poses significant challenges, as tumors are often diagnosed at an advanced stage where overall survival remains poor with current treatment regimens. In addition, a host of complex and often unique molecular changes underpin the pathobiology of each NEN subtype. Exploitation of the unique genetic and epigenetic signatures driving each NEN subtype provides an opportunity to enhance the diagnosis, treatment, and monitoring of NEN in an emerging era of individualized medicine.
Collapse
Affiliation(s)
- Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Te Whatu Ora - Southern, Dunedin Public Hospital, 270 Great King Street, PO Box 913, Dunedin, New Zealand.
| | - Edward Barnett
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Department of Radiology, Duke University, 2301 Erwin Rd, BOX 3808, Durham, NC 27705, USA
| |
Collapse
|
9
|
Xing J, Chen J, You T, Sun Z, Lu T, Cheng Y, Wu H, Bai C. Expression of p53 and Rb reveal subtypes of gastric neuroendocrine carcinoma with distinct prognosis. J Neuroendocrinol 2023; 35:e13257. [PMID: 36964649 DOI: 10.1111/jne.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/07/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Gastric neuroendocrine carcinoma (NEC) is a rare tumor with a poor prognosis. Due to its rarity and disparity in prevalence across populations, there is limited data on gastric NEC. TP53 and RB1 genetic alterations or expression were reported for predictive value in neuroendocrine neoplasm and classification in pulmonary large cell NEC. This study investigated the genetic alteration and protein expression of TP53 and RB1 in gastric NEC. Thirty-nine patients were categorized as type A and B subtypes by p53 and Rb expression. Patients with concurrent abnormal p53 and Rb expression were defined as the type A group, and the remainder were defined as the type B group. Significant differences in TNM stages, tumor size, and lymph node metastasis were observed between the two subtypes. Type A characteristic is an independent predictor for worse overall survival (HR: 3.27; 95% CI: 1.12-9.58; p = .022). We further evaluated and compared immunotherapy-related markers, including PD-L1 expression, CD8 T cell infiltration, tumor mutation burden, and microsatellite instability in these two subtypes, whereas no significant differences were detected.
Collapse
Affiliation(s)
- Jiazhang Xing
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingci Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting You
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
11
|
Wu H, Yu Z, Liu Y, Guo L, Teng L, Guo L, Liang L, Wang J, Gao J, Li R, Yang L, Nie X, Su D, Liang Z. Genomic characterization reveals distinct mutation landscapes and therapeutic implications in neuroendocrine carcinomas of the gastrointestinal tract. Cancer Commun (Lond) 2022; 42:1367-1386. [PMID: 36264285 PMCID: PMC9759768 DOI: 10.1002/cac2.12372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/24/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neuroendocrine carcinomas of the gastrointestinal tract (GI-NECs) remain a disease of grim prognosis with limited therapeutic options. Their molecular characteristics are still undefined. This study aimed to explore the underlying genetic basis and heterogeneity of GI-NECs. METHODS Comprehensive genomic analysis using whole-exome sequencing was performed on 143 formalin-fixed, paraffin-embedded samples of surgically resected GI-NEC with a thorough histological evaluation. Mutational signatures, somatic mutations, and copy number aberrations were analyzed and compared across anatomic locations and histological subtypes. Survival analysis was conducted to identify the independent factors. RESULTS In total, 143 GI-NECs were examined: the stomach, 87 cases (60.8%); the esophagus, 29 cases (20.3%); the colorectum, 20 cases (14.0%); and the small intestine, 7 cases (4.9%). Eighty-three (58.0%) and 60 (42.0%) cases were subclassified into small cell and large cell subtypes, respectively. GI-NECs showed distinct genetic alterations from their lung counterparts and non-neuroendocrine carcinomas in the same locations. Obvious heterogeneity of mutational signatures, somatic mutations, and copy number variations was revealed across anatomic locations rather than histological subtypes. Except for tumor protein p53 (TP53) and retinoblastoma 1 (RB1), the most frequently mutated genes in the stomach, esophagus, colorectum, and small intestine were low-density lipoprotein receptor-related protein 1B (LRP1B), notch receptor 1 (NOTCH1), adenomatosis polyposis coli (APC), catenin beta 1 (CTNNB1), respectively. Mutations in the WNT-β-catenin, NOTCH and erythroblastic leukemia viral oncogene B (ERBB) pathways were prevalently identified in gastric, esophageal, and colorectal NECs, respectively. Importantly, 104 (72.7%) GI-NECs harbored putative clinically relevant alterations, and non-gastric location and RB1 bi-allelic inactivation with copy number alterations were identified as two independent poor prognostic factors. Furthermore, we found that tumor cells in GI-NECs first gain clonal mutations in TP53, RB1, NOTCH1 and APC, followed by subsequent whole-genome doubling (WGD) and post-WGD clonal mutations in LRP1B, CUB and Sushi multiple domains 3 (CSMD3), FAT tumor suppressor homolog 4 (FAT4) and erb-b2 receptor tyrosine kinase 4 (ERBB4), and finally develop subclonal mutations. CONCLUSIONS GI-NECs harbor distinct genomic landscapes and demonstrate significant genetic heterogeneity across different anatomic locations. Moreover, potentially actionable alterations and prognostic factors were revealed for GI-NECs.
Collapse
Affiliation(s)
- Huanwen Wu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Zicheng Yu
- Geneplus‐BeijingBeijing102200P. R. China
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebei050011P. R. China
| | - Lei Guo
- Department of PathologyCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Lianghong Teng
- Department of PathologyXuanwu HospitalCapital Medical UniversityBeijing100053P. R. China
| | - Lingchuan Guo
- Department of PathologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsu215000P. R. China
| | - Li Liang
- Department of PathologySouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Jing Wang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Jie Gao
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Ruiyu Li
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| | - Ling Yang
- Geneplus‐BeijingBeijing102200P. R. China
| | - Xiu Nie
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430022P. R. China
| | - Dan Su
- Department of PathologyThe Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiang310022P. R. China
| | - Zhiyong Liang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730P. R. China
| |
Collapse
|
12
|
Sun TY, Zhao L, Hummelen PV, Martin B, Hornbacker K, Lee H, Xia LC, Padda SK, Ji HP, Kunz P. Exploratory genomic analysis of high-grade neuroendocrine neoplasms across diverse primary sites. Endocr Relat Cancer 2022; 29:665-679. [PMID: 36165930 PMCID: PMC10043760 DOI: 10.1530/erc-22-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
High-grade (grade 3) neuroendocrine neoplasms (G3 NENs) have poor survival outcomes. From a clinical standpoint, G3 NENs are usually grouped regardless of primary site and treated similarly. Little is known regarding the underlying genomics of these rare tumors, especially when compared across different primary sites. We performed whole transcriptome (n = 46), whole exome (n = 40), and gene copy number (n = 43) sequencing on G3 NEN formalin-fixed, paraffin-embedded samples from diverse organs (in total, 17 were lung, 16 were gastroenteropancreatic, and 13 other). G3 NENs despite arising from diverse primary sites did not have gene expression profiles that were easily segregated by organ of origin. Across all G3 NENs, TP53, APC, RB1, and CDKN2A were significantly mutated. The CDK4/6 cell cycling pathway was mutated in 95% of cases, with upregulation of oncogenes within this pathway. G3 NENs had high tumor mutation burden (mean 7.09 mutations/MB), with 20% having >10 mutations/MB. Two somatic copy number alterations were significantly associated with worse prognosis across tissue types: focal deletion 22q13.31 (HR, 7.82; P = 0.034) and arm amplification 19q (HR, 4.82; P = 0.032). This study is among the most diverse genomic study of high-grade neuroendocrine neoplasms. We uncovered genomic features previously unrecognized for this rapidly fatal and rare cancer type that could have potential prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Thomas Yang Sun
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, Stanford, CA
| | - Lan Zhao
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, Stanford, CA
| | - Paul Van Hummelen
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, Stanford, CA
| | - Brock Martin
- Stanford University School of Medicine, Department of Pathology, Stanford, CA
| | | | - HoJoon Lee
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, Stanford, CA
| | - Li C. Xia
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, Stanford, CA
- Albert Einstein College of Medicine, Division of Biostatistics, Department of Epidemiology and Public Health, Bronx, NY
| | - Sukhmani K. Padda
- Cedars-Sinai Medical Center, Department of Medical Oncology, Los Angeles, CA
| | - Hanlee P. Ji
- Stanford University School of Medicine, Division of Oncology, Department of Medicine, Stanford, CA
- Stanford Genome Technology Center, Stanford, CA
| | - Pamela Kunz
- Yale School of Medicine, Smilow Cancer Hospital, Yale Cancer Center, New Haven, CT
| |
Collapse
|
13
|
Frizziero M, Kilgour E, Simpson KL, Rothwell DG, Moore DA, Frese KK, Galvin M, Lamarca A, Hubner RA, Valle JW, McNamara MG, Dive C. Expanding Therapeutic Opportunities for Extrapulmonary Neuroendocrine Carcinoma. Clin Cancer Res 2022; 28:1999-2019. [PMID: 35091446 PMCID: PMC7612728 DOI: 10.1158/1078-0432.ccr-21-3058] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Poorly differentiated neuroendocrine carcinomas (PD-NEC) are rare cancers garnering interest as they become more commonly encountered in the clinic. This is due to improved diagnostic methods and the increasingly observed phenomenon of "NE lineage plasticity," whereby nonneuroendocrine (non-NE) epithelial cancers transition to aggressive NE phenotypes after targeted treatment. Effective treatment options for patients with PD-NEC are challenging for several reasons. This includes a lack of targetable, recurrent molecular drivers, a paucity of patient-relevant preclinical models to study biology and test novel therapeutics, and the absence of validated biomarkers to guide clinical management. Although advances have been made pertaining to molecular subtyping of small cell lung cancer (SCLC), a PD-NEC of lung origin, extrapulmonary (EP)-PD-NECs remain understudied. This review will address emerging SCLC-like, same-organ non-NE cancer-like and tumor-type-agnostic biological vulnerabilities of EP-PD-NECs, with the potential for therapeutic exploitation. The hypotheses surrounding the origin of these cancers and how "NE lineage plasticity" can be leveraged for therapeutic purposes are discussed. SCLC is herein proposed as a paradigm for supporting progress toward precision medicine in EP-PD-NECs. The aim of this review is to provide a thorough portrait of the current knowledge of EP-PD-NEC biology, with a view to informing new avenues for research and future therapeutic opportunities in these cancers of unmet need.
Collapse
Affiliation(s)
- Melissa Frizziero
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Elaine Kilgour
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Kathryn L. Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Dominic G. Rothwell
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - David A. Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, 72 Huntley St, London WC1E 6DD, United Kingdom
- Department of Cellular Pathology, University College London Hospital NHS Foundation Trust, 235 Euston Rd, London NW1 2BU, United Kingdom
| | - Kristopher K. Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Angela Lamarca
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Richard A. Hubner
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Juan W. Valle
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Mairéad G. McNamara
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| |
Collapse
|
14
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
15
|
Luan Z, Morimoto Y, Fushimi A, Yamashita N, Suo W, Bhattacharya A, Hagiwara M, Jin C, Kufe D. MUC1-C dictates neuroendocrine lineage specification in pancreatic ductal adenocarcinomas. Carcinogenesis 2022; 43:67-76. [PMID: 34657147 PMCID: PMC8832436 DOI: 10.1093/carcin/bgab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) and poorly differentiated pancreatic neuroendocrine (NE) carcinomas are KRAS mutant malignancies with a potential common cell of origin. PDAC ductal, but not NE, lineage traits have been associated with cell-intrinsic activation of interferon (IFN) pathways. The present studies demonstrate that the MUC1 C-terminal subunit (MUC1-C), which evolved to protect mammalian epithelia from loss of homeostasis, is aberrantly overexpressed in KRAS mutant PDAC tumors and cell lines. We show that MUC1-C is necessary for activation of the type I and II IFN pathways and for expression of the Yamanaka OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors. Our results demonstrate that MUC1-C integrates IFN signaling and pluripotency with NE dedifferentiation by forming a complex with MYC and driving the (i) achaete-scute homolog 1 and BRN2/POU3F2 neural, and (ii) NOTCH1/2 stemness transcription factors. Of translational relevance, targeting MUC1-C genetically and pharmacologically in PDAC cells (i) suppresses OSKM, NE dedifferentiation and NOTCH1/2, and (ii) inhibits self-renewal capacity and tumorigenicity. In PDAC tumors, we show that MUC1 significantly associates with activation of IFN signaling, MYC and NOTCH, and that upregulation of the MUC1-C → MYC pathway confers a poor prognosis. These findings indicate that MUC1-C dictates PDAC NE lineage specification and is a potential target for the treatment of recalcitrant pancreatic carcinomas with NE dedifferentiation.
Collapse
Affiliation(s)
- Zhou Luan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Molecular Epidemiology, Jikei University School of Medicine, Tokyo, Japan
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Wenhao Suo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, The First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | | | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Urology, Keio University Medical School, Tokyo, Japan
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Nakano M, Shimada Y, Matsumoto Y, Saiki T, Zhou Q, Sasaki K, Moriyama M, Yoshihara K, Natsumeda M, Kuriyama Y, Takii Y, Watanabe G, Umezu H, Okuda S, Ikeuchi T, Wakai T, Saijo Y. Efficacy of BRAF inhibitor and anti-EGFR antibody in colorectal neuroendocrine carcinoma. Clin J Gastroenterol 2022; 15:413-418. [PMID: 35133626 DOI: 10.1007/s12328-022-01599-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/25/2022] [Indexed: 01/16/2023]
Abstract
Neuroendocrine neoplasms of the colon and rectum are colorectal epithelial neoplasms with neuroendocrine differentiation. A platinum regimen used for small cell lung cancer is the currently recommended chemotherapy for gastroenteropancreatic neuroendocrine carcinomas (GEP-NECs), regardless of the organ. The BRAF V600E mutation has been recently reported as a druggable driver mutation in colorectal NECs. In BRAF V600E mutant colorectal cancer, a combination of BRAF inhibitor and anti-epidermal growth factor receptor (EGFR) antibody, with or without a MEK inhibitor, is recommended. Here, we report the case of 77-year-old man who had lymph node recurrence after surgery for primary ascending colonic NEC. Two cytotoxic regimens, cisplatin plus irinotecan and modified FOLFOX6, were administered as first- and second-line chemotherapies with no remarkable response observed. At this point, genetic analysis confirmed the tumor harbored a BRAF V600E mutation. Thus, a regimen of BRAF inhibitor plus anti-EGFR antibody was administered. After commencing this regimen, carcinoembryonic antigen levels decreased within normal range, and there was dramatic shrinkage of the lymph node metastases observed by chest and abdominal computed tomography scans. To our knowledge, this is the first reported case of a colorectal NEC responding to a BRAF inhibitor and anti-EGFR antibody.
Collapse
Affiliation(s)
- Mae Nakano
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 9518510, Japan
| | - Yoshifumi Shimada
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan. .,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 9518510, Japan.
| | - Yoshifumi Matsumoto
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Takuro Saiki
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Qiliang Zhou
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kenta Sasaki
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Masato Moriyama
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yoko Kuriyama
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Center for Medical Genetics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Yasumasa Takii
- Department of Surgery, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata, Japan
| | - Gen Watanabe
- Department of Pathology, Niigata Cancer Center Hospital, 2-15-3 Kawagishi-cho, Chuo-ku, Niigata, Japan
| | - Hajime Umezu
- Department of Pathology, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Shujiro Okuda
- Center for Genomic Data Management, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Medical AI Center/Bioinformatics Laboratory, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, Japan
| | - Takeshi Ikeuchi
- Center for Medical Genetics, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Toshifumi Wakai
- Medical Genome Center, Niigata University Medical and Dental Hospital, 1-754 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 9518510, Japan
| | - Yasuo Saijo
- Department of Medical Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
17
|
Prisciandaro M, Antista M, Raimondi A, Corti F, Morano F, Centonze G, Sabella G, Mangogna A, Randon G, Pagani F, Prinzi N, Niger M, Corallo S, Castiglioni di Caronno E, Massafra M, Bartolomeo MD, de Braud F, Milione M, Pusceddu S. Biomarker Landscape in Neuroendocrine Tumors With High-Grade Features: Current Knowledge and Future Perspective. Front Oncol 2022; 12:780716. [PMID: 35186729 PMCID: PMC8856722 DOI: 10.3389/fonc.2022.780716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
Neuroendocrine tumors (NETs) are classified based on morphology and are graded based on their proliferation rate as either well-differentiated low-grade (G1) to intermediate (G2–G3) or poorly differentiated high-grade neuroendocrine carcinomas (NEC G3). Recently, in gastroenteropancreatic (GEP) NETs, a new subgroup of well-differentiated high-grade tumors (NET G3) has been divided from NEC by WHO due to its different clinical–pathologic features. Although several mutational analyses have been performed, a molecular classification of NET is an unmet need in particular for G3, which tends to be more aggressive and have less benefit to the available therapies. Specifically, new possible prognostic and, above all, predictive factors are highly awaited, giving the basis for new treatments. Alteration of KRAS, TP53, and RB1 is mainly reported, but also druggable alterations, including BRAF and high microsatellite instability (MSI-H), have been documented in subsets of patients. In addition, PD-L1 demonstrated to be highly expressed in G3 NETs, probably becoming a new biomarker for G3 neuroendocrine neoplasm (NEN) discrimination and a predictive one for immunotherapy response. In this review, we describe the current knowledge available on a high-grade NET molecular landscape with a specific focus on those harboring potentially therapeutic targets in the advanced setting.
Collapse
Affiliation(s)
- Michele Prisciandaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Michele Prisciandaro,
| | - Maria Antista
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Corti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Centonze
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Giovanni Randon
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Natalie Prinzi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Corallo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Marco Massafra
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Milione
- First Pathology Division, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pusceddu
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
18
|
Wang Z, Shi S, Ren H, Liu Q. Tumor Differentiation is the Dominant Prognostic Factor for Patients with Colorectal Neuroendocrine Neoplasms with Distant Metastasis. Int J Endocrinol 2022; 2022:1720624. [PMID: 36578535 PMCID: PMC9792242 DOI: 10.1155/2022/1720624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Colorectal neuroendocrine neoplasms (NENs) are rare tumors. The prognosis and prognostic factors of metastatic colorectal NENs have not been fully elucidated. METHODS We retrospectively enrolled 77 consecutive patients diagnosed with colorectal NENs with synchronous distant metastases between 2000 and 2021. All patients were assigned to the neuroendocrine tumor (NET) group or the neuroendocrine carcinoma (NEC) group based on histological differentiation. Propensity score matching (PSM) was performed to minimize confounding bias. The Kaplan-Meier method was used to calculate the survival rates. Univariate and multivariate logistic regression analyses were performed to identify prognostic factors. RESULTS In total, 35 (45.5%) and 42 (54.5%) patients had well-differentiated NETs and poorly differentiated NECs, respectively. The median overall survival (OS) was 26 months for the entire cohort, and the 1-year, 3-year, and 5-year OS rates were 69.4%, 41.4%, and 27.8%, respectively. In the subgroup analysis, the median OS was 62 and 10 months for NETs and NECs, respectively. Univariate analysis demonstrated that patients with a primary tumor located in the colon, ulcerative tumors and poorly differentiated tumors were at higher risk for poorer progression-free survival (PFS) and OS. However, only histological differentiation was identified as an independent factor affecting OS (hazard ratio (HR) = 8.28, 95% confidence interval (CI): 2.98-23.01, P < 0.001) in multivariate analysis. After PSM, histological differentiation was further confirmed as the dominant factor affecting OS (HR = 6.09, 95% CI: 1.96-18.95, P=0.002)). CONCLUSION Histological differentiation was the most dominant prognostic factor in patients with metastatic colorectal NENs. Patients with well-differentiated NETs had a good chance of long-term survival.
Collapse
Affiliation(s)
- Zhijie Wang
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongchang Ren
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
19
|
Goto K, Kukita Y, Honma K, Ohike N, Komori T, Ishida Y, Ishikawa M, Nakatsuka T, Fumita S, Nakagawa K, Okabayashi A, Iwahashi Y, Tanino T, Kikuchi K, Kawahara Y, Hishima T, Uehara J, Oishi T, Isei T. Sweat-gland carcinoma with neuroendocrine differentiation (SCAND): a clinicopathologic study of 13 cases with genetic analysis. Mod Pathol 2022; 35:33-43. [PMID: 34518631 DOI: 10.1038/s41379-021-00921-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Low-grade neuroendocrine carcinoma of the skin (LGNECS) was proposed in 2017 as a new primary cutaneous neoplasm with neuroendocrine differentiation; however, it is not yet well known due to its rarity. Herein, we perform a detailed clinicopathologic analysis of 13 cases as well as panel DNA sequencing in three cases. The study included 12 males and 1 female with a median age of 71 (43-85) years. All lesions occurred on the ventral trunk. The mean tumor size was 2.2 (0.8-11.0) cm. The histopathology resembled that of well-differentiated neuroendocrine tumors (NETs) in other organs, but intraepidermal pagetoid spreading was seen in 8 (61.5%) cases and stromal mucin deposits in 4 (30.8%). Immunoreactivity for CK7, CK19, EMA, BerEP4, CEA, chromogranin A, synaptophysin, INSM1, GCDFP15, GATA3, ER, and bcl-2 were present in varying degrees in all tested cases. PTEN c.165-1G>A splice site mutation was detected by panel sequencing in one case, and GATA3 P409fs*99 and SETD2 R1708fs*4 in another case. Lymph node metastasis was seen significantly in cases with tumor size >2.0 cm [8/8 (100%) vs. 1/5 (20%)]. All three cases with size >3.0 cm were in unresectable advanced-stage [3/3 (100%) vs. 1/10 (10%)], and two of the three patients succumbed to the disease. The two cases of death revealed mild nuclear atypia (mitosis: 1/10 HPFs) and moderate nuclear atypia (2/10 HPFs). Thus, tumor size would be a better prognostic factor than nuclear atypia, mitotic count, and Ki67 index, unlike in NETs. These clinicopathologic and immunohistochemical features would represent the characteristics as skin adnexal tumors with apocrine/eccrine differentiation rather than NETs; therefore, we rename it as sweat-gland carcinoma with neuroendocrine differentiation (SCAND).
Collapse
Affiliation(s)
- Keisuke Goto
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan. .,Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan. .,Department of Pathology, Itabashi Central Clinical Laboratory, Tokyo, Japan. .,Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan. .,Department of Diagnostic Pathology, Osaka National Hospital, Osaka, Japan. .,Department of Dermatology, Hyogo Cancer Center, Akashi, Japan.
| | - Yoji Kukita
- Laboratory of Genomic Pathology, Research Center, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Nobuyuki Ohike
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Takaya Komori
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Ishida
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Misawo Ishikawa
- Department of Diagnostic Pathology, Kainan Hospital, Yatomi, Japan
| | - Takashi Nakatsuka
- Department of Plastic Surgery, JR Tokyo General Hospital, Tokyo, Japan
| | - Soichi Fumita
- Department of Medical Oncology, Kindai University, Osakasayama, Japan
| | - Koichi Nakagawa
- Department of Dermatology, Saiseikai Tondabayashi Hospital, Tondabayashi, Japan
| | - Aya Okabayashi
- Department of Dermatology, Izumi City General Hospital, Izumi, Japan
| | - Yoshifumi Iwahashi
- Department of Human Pathology and Diagnostic Pathology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyuki Tanino
- Department of Diagnostic Pathology, Tokyo Metropolitan Police Hospital, Tokyo, Japan
| | - Keisuke Kikuchi
- Department of Diagnostic Pathology, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
| | - Jiro Uehara
- Department of Dermatologic Oncology, Tokyo Metropolitan Cancer and Infectious Disease Center Komagome Hospital, Tokyo, Japan
| | - Takuma Oishi
- Department of Diagnostic Pathology, Shizuoka Cancer Center Hospital, Sunto, Japan
| | - Taiki Isei
- Department of Dermatologic Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
20
|
Chan DNS, Law BMH, Au DWH, So WKW, Fan N. A systematic review of the barriers and facilitators influencing the cancer screening behaviour among people with intellectual disabilities. Cancer Epidemiol 2021; 76:102084. [PMID: 34920342 DOI: 10.1016/j.canep.2021.102084] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
Individuals with intellectual disabilities (ID) may require assistance in accessing healthcare services, including cancer screening. A better understanding of the factors affecting cancer screening utilisation among these individuals is needed for the development of strategies to promote screening uptake in them. This review aimed to explore the facilitators of and barriers to cancer screening utilisation among people with ID. A literature search was conducted using five databases, and an additional snowball search yielded 16 studies for inclusion in the review. Overall, the methodological quality of these studies was good (43-100%). In this review, we noted barriers to screening among individuals with ID, including perceptions of fear, distress, and embarrassment; unpreparedness for screening; negative interactions with healthcare professionals; a lack of knowledge about cancer screening; mobility issues; a high severity of ID; and a lack of ability to provide consent and communicate verbally. Facilitators to screening among these individuals were also identified, including living in a supervised setting, prior use of other healthcare services, being educated about screening via social media, having carers accompany them to screening appointments, and having dual insurance coverage or a higher income. Our review highlights the current needs of individuals with ID undergoing cancer screening. Strategies should be developed to address these needs, such as the provision of training to healthcare professionals on how to conduct screening for people with ID.
Collapse
Affiliation(s)
- Dorothy N S Chan
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Bernard M H Law
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Doreen W H Au
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Winnie K W So
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ning Fan
- Yan Chai Hospital, Hospital Authority, Hong Kong SAR, China.
| |
Collapse
|
21
|
Depiction of the genomic and genetic landscape identifies CCL5 as a protective factor in colorectal neuroendocrine carcinoma. Br J Cancer 2021; 125:994-1002. [PMID: 34331023 PMCID: PMC8476633 DOI: 10.1038/s41416-021-01501-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/20/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal neuroendocrine carcinomas (CRNECs) are highly aggressive tumours with poor prognosis and low incidence. To date, the genomic landscape and molecular pathway alterations have not been elucidated. METHODS Tissue sections and clinical information of CRNEC (n = 35) and CR neuroendocrine tumours (CRNETs) (n = 25) were collected as an in-house cohort (2010-2020). Comprehensive genomic and expression panels (AmoyDx® Master Panel) were applied to identify the genomic and genetic alterations of CRNEC. Through the depiction of the genomic landscape and transcriptome profile, we compared the difference between CRNEC and CRNET. Reverse transcription-polymerase chain reaction and immunofluorescence staining were performed to confirm the genetic alterations. RESULTS High tumour mutation load was observed in CRNEC compared with CRNET. CRNECs showed a "cold" immune landscape and increased endothelial cell activity compared with NETs. Importantly, PAX5 was aberrantly expressed in CRNEC and predicted a poor prognosis of CRNECs. CCL5, a factor that is considered an immunosuppressive factor in several tumour types, was strongly expressed in CRNEC patients with long-term survival and correlated with high CD8+ T cell infiltration. CONCLUSION Through the depiction of the genomic landscape and transcriptome profile, we demonstrated alterations in molecular pathways and potential targets for immunotherapy in CRNEC.
Collapse
|
22
|
Uccella S, La Rosa S, Metovic J, Marchiori D, Scoazec JY, Volante M, Mete O, Papotti M. Genomics of High-Grade Neuroendocrine Neoplasms: Well-Differentiated Neuroendocrine Tumor with High-Grade Features (G3 NET) and Neuroendocrine Carcinomas (NEC) of Various Anatomic Sites. Endocr Pathol 2021; 32:192-210. [PMID: 33433884 DOI: 10.1007/s12022-020-09660-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
High-grade neuroendocrine neoplasms (HG-NENs) are clinically aggressive diseases, the classification of which has recently been redefined. They now include both poorly differentiated NENs (neuroendocrine carcinoma, NECs) and high proliferating well-differentiated NENs (called grade 3 neuroendocrine tumors, G3 NETs, in the digestive system). In the last decade, the "molecular revolution" that has affected all fields of medical oncology has also shed light in the understanding of HG NENs heterogeneity and has provided new diagnostic and therapeutic tools, useful in the management of these malignancies. Considering the kaleidoscopic aspects of HG NENs in various anatomical sites, this review systematically addresses the genomic landscape of such neoplasm throughout the more common thoracic and digestive locations, as well as it will consider other rare but not exceptional primary sites, including the skin, the head and neck, and the urogenital system. The revision of the available literature will then be oriented to understand the translational relevance of molecular data, by analyzing conceptual issues, clinicopathological correlations, and unmet needs in this field.
Collapse
Affiliation(s)
- Silvia Uccella
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Stefano La Rosa
- Institute of Pathology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jasna Metovic
- Department of Oncology, University of Turin, Torino, Italy
| | - Deborah Marchiori
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy Cancer Campus, Paris, France
| | - Marco Volante
- Department of Oncology, University of Turin, Torino, Italy
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mauro Papotti
- Department of Oncology, University of Turin, Torino, Italy
| |
Collapse
|