1
|
Mysore KR, Cheng K, Suri LA, Fawaz R, Mavis AM, Kogan-Liberman D, Mohammad S, Taylor SA. Recent advances in the management of pediatric cholestatic liver diseases. J Pediatr Gastroenterol Nutr 2025. [PMID: 39840645 DOI: 10.1002/jpn3.12462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025]
Abstract
Pediatric cholestatic liver diseases are rare conditions that can result from multiple specific underlying etiologies. Among the most common etiologies of pediatric cholestatic liver diseases are biliary atresia, Alagille syndrome (ALGS), and inherited disorders of bile acid transport. These diseases are characterized by episodic or chronic unremitting cholestasis. Due to the chronicity of these conditions, it is imperative to optimize medical management to improve patient quality of life, provide nutritional support, and reduce bile acid toxicity in efforts to slow disease progression. Cholestatic liver diseases remain the leading cause of pediatric liver transplantation, as many underlying disease etiologies have no curative medical therapies. In the present review, we provide an update on the nutritional, medical, and surgical management of pediatric cholestatic liver diseases. As recent advances have occurred in the field with the addition of ileal bile acid transporter (IBAT) inhibitors, we also review the results from prospective clinical trials, including their strengths and limitations. While recent clinical trials have demonstrated improved pruritus using IBAT inhibitors in ALGS and progressive familial intrahepatic cholestasis, establishing medical therapies proven to slow disease progression remains an area of unmet need.
Collapse
Affiliation(s)
- Krupa R Mysore
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Katherine Cheng
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | | | - Rima Fawaz
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alisha M Mavis
- Department of Pediatrics, Levine Children's Hospital, Atrium Health, Charlotte, North Carolina, USA
| | - Debora Kogan-Liberman
- Department of Pediatrics, Hassenfeld Children's Hospital at NYU Langone, New York, New York, USA
| | - Saeed Mohammad
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah A Taylor
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
2
|
Marx M, Hartleif S, Hilberath J, Berg CP, Tsiflikas I, Singer S, Sturm E. Practical Considerations for Odevixibat Treatment in Patients with Progressive Familial Intrahepatic Cholestasis: A Single-Center Case Series. J Clin Med 2024; 13:7508. [PMID: 39768432 PMCID: PMC11676709 DOI: 10.3390/jcm13247508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Patients with progressive familial intrahepatic cholestasis (PFIC) experience cholestasis-associated symptoms, including severe pruritus. Odevixibat is an ileal bile acid transporter inhibitor indicated for treatment of PFIC in the European Union and for the treatment of pruritus in PFIC in the United States. The aim of the current study was to characterize the real-world effectiveness and safety of odevixibat in patients with PFIC. Methods: This retrospective study included 9 patients with PFIC treated with odevixibat in a single center in Tübingen, Germany. Data were recorded using case report forms. Results: Of the 9 patients (PFIC1, n = 2; PFIC2, n = 7), 5 had improved serum bile acid levels, pruritus, liver function tests, and sleep with odevixibat treatment. Two siblings with periodic relapses of PFIC symptoms also had improved pruritus and sleep within 4 months of treatment. Two siblings with complete loss of bile salt export pump (BSEP) protein did not respond to treatment; both underwent liver transplantation (indications: hepatocellular carcinoma [HCC] manifestation [n = 1] and severe failure to thrive and refractory pruritus [n = 1]). Four patients reported abdominal complaints that were transient or responded to dose reduction; no other safety issues were reported. Conclusions: In this case series, clinical benefits were observed in most patients with PFIC1 and PFIC2 treated with odevixibat. In patients with periodic relapse of PFIC symptoms, ≥3 months of treatment with odevixibat may be required for symptom control. Patients with complete loss of BSEP did not have consistent symptom relief and require careful monitoring. Effectiveness and feasibility results from our cohort demonstrate potential for long-term benefits with odevixibat in real-world treatment of patients with PFIC.
Collapse
Affiliation(s)
- Milena Marx
- Pediatric Gastroenterology and Hepatology, University Children’s Hospital Tübingen, Hoppe-Seyler Str. 1, 72076 Tübingen, Germany
| | - Steffen Hartleif
- Pediatric Gastroenterology and Hepatology, University Children’s Hospital Tübingen, Hoppe-Seyler Str. 1, 72076 Tübingen, Germany
| | - Johannes Hilberath
- Pediatric Gastroenterology and Hepatology, University Children’s Hospital Tübingen, Hoppe-Seyler Str. 1, 72076 Tübingen, Germany
| | - Christoph P. Berg
- Internal Medicine I, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Ilias Tsiflikas
- Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Hoppe-Seyler Str. 3, 72076 Tübingen, Germany
| | - Stephan Singer
- Institute of Pathology, Department for General and Molecular Pathology, University Hospital of Tübingen, Liebermeisterstrasse 8, 72076 Tübingen, Germany
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children’s Hospital Tübingen, Hoppe-Seyler Str. 1, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Wang S, Liu Q, Sun X, Wei W, Ding L, Zhao X. Identification of novel ABCB4 variants and genotype-phenotype correlation in progressive familial intrahepatic cholestasis type 3. Sci Rep 2024; 14:27381. [PMID: 39521930 PMCID: PMC11550383 DOI: 10.1038/s41598-024-79123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe hepatic disorder characterized by cholestasis. Elucidating the genotype-phenotype correlations and expanding the mutational spectrum of the ABCB4 gene are crucial for enhancing diagnostic accuracy and therapeutic strategies.Clinical and genetic data from 2 original PFIC3 patients from our institution, along with 118 additional cases identified through a comprehensive literature review, were integrated for a comprehensive analysis. The study included statistical analysis of clinical information, genetic analysis, multi-species sequence alignment, protein structure modeling, and pathogenicity assessment. Machine learning techniques were applied to identify genotype-phenotype relationships. We identified three novel ABCB4 mutations: two missense mutations (c.904G > T and c.2493G > C) and one splicing mutation (c.1230 + 1G > A). Homozygous mutations were associated with significantly earlier disease onset compared to compound heterozygous mutations (p < 0.0001). Missense mutations were predominant (76.9%), with Exon 7 being the most frequently affected region. A random forest model indicated that Exon 10 had the highest feature importance score (9.9%). Liver transplantation remains the most effective treatment modality for PFIC3. This investigation broadens the known mutation spectrum of the ABCB4 gene and identifies key variant sites associated with clinical manifestations. These insights lay a foundation for early diagnosis, optimal treatment selection, and further research into PFIC3.
Collapse
Affiliation(s)
- Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Sun
- Department of Oncology, Henan Cancer Hospital, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China
| | - Leilei Ding
- Department of Obstetrics and Gynecology, Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
4
|
Abokandil MA, Waheeb S, Zaghloul W, Abdelgawad M, Abdelhady M, Mansy M, Kotb M. Progressive familial intrahepatic cholestasis type 4: a case report. J Med Case Rep 2024; 18:434. [PMID: 39243110 PMCID: PMC11380191 DOI: 10.1186/s13256-024-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/13/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis is an autosomal recessive genetic disorder that manifests primarily with jaundice and pruritus and can progresses from persistent cholestasis to cirrhosis and late childhood liver failure. Classically, progressive familial intrahepatic cholestasis is classified into three subtypes: 1, 2, and 3 and results from a defect in a biliary protein responsible for bile formation and circulation in the liver. In the last decade and with the increased use of genetic testing, more types have been known. CASE PRESENTATION A 6-month-old Afrocentric boy presented with progressive jaundice and pruritus that started since the age of 2 months. He was thoroughly investigated to be finally diagnosed as progressive familial intrahepatic cholestasis type 4. A low-fat diet, ursodeoxycholic acid, fat-soluble vitamins, and cholestyramine were started. He showed initial improvement then had refractory pruritus and impaired quality of life. He underwent surgical biliary diversion at the age of 1 year with marked improvement of manifestations. CONCLUSION Owing to the increased technology of genetic testing, more clinical subtypes of progressive familial intrahepatic cholestasis were diagnosed other than the classical three types. Surgical management using biliary diversion could be beneficial and delays or may even obviate the need for liver transplantation.
Collapse
Affiliation(s)
| | - Saber Waheeb
- Nile of Hope Hospital for Congenital Anomalies, Alexandria, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Wessam Zaghloul
- Nile of Hope Hospital for Congenital Anomalies, Alexandria, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Manal Abdelgawad
- Nile of Hope Hospital for Congenital Anomalies, Alexandria, Egypt
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mona Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Mansy
- Nile of Hope Hospital for Congenital Anomalies, Alexandria, Egypt
- Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Mostafa Kotb
- Nile of Hope Hospital for Congenital Anomalies, Alexandria, Egypt.
- Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
5
|
Hof WFJ, de Boer JF, Verkade HJ. Emerging drugs for the treatment of progressive familial intrahepatic cholestasis: a focus on phase II and III trials. Expert Opin Emerg Drugs 2024; 29:305-320. [PMID: 38571480 DOI: 10.1080/14728214.2024.2336986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Progressive familial intrahepatic cholestasis (PFIC) is a group of disorders characterized by inappropriate bile formation, causing hepatic accumulation of bile acids and, subsequently, liver injury. Until recently, no approved treatments were available for these patients. AREAS COVERED Recent clinical trials for PFIC treatment have focused on intestine-restricted ileal bile acid transporter (IBAT) inhibitors. These compounds aim to reduce the pool size of bile acids by interrupting their enterohepatic circulation. Other emerging treatments in the pipeline include systemic IBAT inhibitors, synthetic bile acid derivatives, compounds targeting bile acid synthesis via the FXR/FGF axis, and chaperones/potentiators that aim to enhance the residual activity of the mutated transporters. EXPERT OPINION Substantial progress has been made in drug development for PFIC patients during the last couple of years. Although data concerning long-term efficacy are as yet only scarcely available, new therapies have demonstrated robust efficacy in a considerable fraction of patients at least on the shorter term. However, a substantial fraction of PFIC patients do not respond to these novel therapies and thus still requires surgical treatment, including liver transplantation before adulthood. Hence, there is still an unmet medical need for long-term effective medical, preferably non-surgical, treatment for all PFIC patients.
Collapse
Affiliation(s)
- Willemien F J Hof
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Tsuruya K, Yokoyama K, Mishima Y, Ida K, Araki T, Ieda S, Ohtsuka M, Inagaki Y, Honda A, Kagawa T, Kamiya A. Abcb4-defect cholangitis mouse model with hydrophobic bile acid composition by in vivo liver-specific gene deletion. J Lipid Res 2024; 65:100616. [PMID: 39111549 PMCID: PMC11407928 DOI: 10.1016/j.jlr.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a liver disease that occurs during childhood and requires liver transplantation. ABCB4 is localized along the canalicular membranes of hepatocytes, transports phosphatidylcholine into bile, and its mutation causes PFIC3. Abcb4 gene-deficient mice established as animal models of PFIC3 exhibit cholestasis-induced liver injury. However, their phenotypes are often milder than those of human PFIC3, partly because of the existence of large amounts of less toxic hydrophilic bile acids synthesized by the rodent-specific enzymes Cyp2c70 and Cyp2a12. Mice with double deletions of Cyp2c70/Cyp2a12 (CYPDKO mice) have a human-like hydrophobic bile acid composition. PFIC-related gene mutations were induced in CYPDKO mice to determine whether these triple-gene-deficient mice are a better model for PFIC. To establish a PFIC3 mouse model using CYPDKO mice, we induced abcb4 gene deletion in vivo using adeno-associated viruses expressing SaCas9 under the control of a liver-specific promoter and abcb4-target gRNAs. Compared to Abcb4-deficient wild-type mice, Abcb4-deficient CYPDKO mice showed more pronounced liver injury along with an elevation of inflammatory and fibrotic markers. The proliferation of intrahepatic bile ductal cells and hematopoietic cell infiltration were also observed. CYPDKO/abcb4-deficient mice show a predominance of taurine-conjugated chenodeoxycholic acid and lithocholic acid in the liver. In addition, phospholipid levels in the gallbladder bile were barely detectable. Mice with both human-like bile acid composition and Abcb4-defect exhibit severe cholestatic liver injury and are useful for studying human cholestatic diseases and developing new treatments.
Collapse
Affiliation(s)
- Kota Tsuruya
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Keiko Yokoyama
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Mishima
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takuma Araki
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Satsuki Ieda
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|
7
|
Verkade HJ, Felzen A, Keitel V, Thompson R, Gonzales E, Strnad P, Kamath B, van Mil S. EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J Hepatol 2024; 81:303-325. [PMID: 38851996 DOI: 10.1016/j.jhep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/10/2024]
Abstract
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Collapse
|
8
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Miethke AG, Moukarzel A, Porta G, Covarrubias Esquer J, Czubkowski P, Ordonez F, Mosca A, Aqul AA, Squires RH, Sokal E, D'Agostino D, Baumann U, D'Antiga L, Kasi N, Laborde N, Arikan C, Lin CH, Gilmour S, Mittal N, Chiou FK, Horslen SP, Huber WD, Jaecklin T, Nunes T, Lascau A, Longpre L, Mogul DB, Garner W, Vig P, Hupertz VF, Gonzalez-Peralta RP, Ekong U, Hartley J, Laverdure N, Ovchinsky N, Thompson RJ. Maralixibat in progressive familial intrahepatic cholestasis (MARCH-PFIC): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol 2024; 9:620-631. [PMID: 38723644 DOI: 10.1016/s2468-1253(24)00080-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis (PFIC) is a group of autosomal recessive disorders, the most prevalent being BSEP deficiency, resulting in disrupted bile formation, cholestasis, and pruritus. Building on a previous phase 2 study, we aimed to evaluate the efficacy and safety of maralixibat-an ileal bile acid transporter inhibitor-in participants with all types of PFIC. METHODS MARCH-PFIC was a multicentre, randomised, double-blind, placebo-controlled, phase 3 study conducted in 29 community and hospital centres across 16 countries in Europe, the Americas, and Asia. We recruited participants aged 1-17 years with PFIC with persistent pruritus (>6 months; average of ≥1·5 on morning Itch-Reported Outcome [Observer; ItchRO(Obs)] during the last 4 weeks of screening) and biochemical abnormalities or pathological evidence of progressive liver disease, or both. We defined three analysis cohorts. The BSEP (or primary) cohort included only those with biallelic, non-truncated BSEP deficiency without low or fluctuating serum bile acids or previous biliary surgery. The all-PFIC cohort combined the BSEP cohort with participants with biallelic FIC1, MDR3, TJP2, or MYO5B deficiencies without previous surgery but regardless of bile acids. The full cohort had no exclusions. Participants were randomly assigned (1:1) to receive oral maralixibat (starting dose 142·5 μg/kg, then escalated to 570 μg/kg) or placebo twice daily for 26 weeks. The primary endpoint was the mean change in average morning ItchRO(Obs) severity score between baseline and weeks 15-26 in the BSEP cohort. The key secondary efficacy endpoint was the mean change in total serum bile acids between baseline and the average of weeks 18, 22, and 26 in the BSEP cohort. Efficacy analyses were done in the intention-to-treat population (all those randomly assigned) and safety analyses were done in all participants who received at least one dose of study drug. This completed trial is registered with ClinicalTrials.gov, NCT03905330, and EudraCT, 2019-001211-22. FINDINGS Between July 9, 2019, and March 4, 2022, 125 patients were screened, of whom 93 were randomly assigned to maralixibat (n=47; 14 in the BSEP cohort and 33 in the all-PFIC cohort) or placebo (n=46; 17 in the BSEP cohort and 31 in the all-PFIC cohort), received at least one dose of study drug, and were included in the intention-to-treat and safety populations. The median age was 3·0 years (IQR 2·0-7·0) and 51 (55%) of 93 participants were female and 42 (45%) were male. In the BSEP cohort, least-squares mean change from baseline in morning ItchRO(Obs) was -1·7 (95% CI -2·3 to -1·2) with maralixibat versus -0·6 (-1·1 to -0·1) with placebo, with a significant between-group difference of -1·1 (95% CI -1·8 to -0·3; p=0·0063). Least-squares mean change from baseline in total serum bile acids was -176 μmol/L (95% CI -257 to -94) for maralixibat versus 11 μmol/L (-58 to 80) for placebo, also representing a significant difference of -187 μmol/L (95% CI -293 to -80; p=0·0013). The most common adverse event was diarrhoea (27 [57%] of 47 patients on maralixibat vs nine [20%] of 46 patients on placebo; all mild or moderate and mostly transient). There were five (11%) participants with serious treatment-emergent adverse events in the maralixibat group versus three (7%) in the placebo group. No treatment-related deaths occurred. INTERPRETATION Maralixibat improved pruritus and predictors of native liver survival in PFIC (eg, serum bile acids). Maralixibat represents a non-surgical, pharmacological option to interrupt the enterohepatic circulation and improve the standard of care in patients with PFIC. FUNDING Mirum Pharmaceuticals.
Collapse
Affiliation(s)
- Alexander G Miethke
- UC Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Adib Moukarzel
- Pediatric Gastroenterology, Hepatology and Nutrition, Hotel Dieu De France Saint Joseph University Hospital, Beirut, Lebanon
| | - Gilda Porta
- Gastroenterology and Pediatrics, Hospital Sirio Libanes, Sao Paulo, Brazil
| | | | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology, and Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Felipe Ordonez
- Pediatric Gastroenterology, Cardioinfantil Foundation-Lacardio, Bogota, Colombia
| | - Antonella Mosca
- Transplant Department, Ospedale Pediatrico Bambino Gesu Irccs, Lazio, Italy
| | - Amal A Aqul
- Pediatric Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert H Squires
- Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sokal
- Gastroenterology and Hepatology, UClouvain, Cliniques Universitaires St Luc, Brussels, Belgium
| | - Daniel D'Agostino
- Department of Pediatric Gastro-hepatology, Hospital Italiano De Buenos Aires, Buenos Aires, Argentina
| | - Ulrich Baumann
- Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Lorenzo D'Antiga
- Paediatric Hepatology, Gastroenterology and Transplantation, Hospital Papa Giovanni XXIII, Bergamo, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Nagraj Kasi
- Pediatric Gastroenterology, Medical University of South Carolina, Charleston, SC, USA
| | - Nolwenn Laborde
- Pediatric Hereditary Metabolic Diseases, Hôpital Des Enfants-CHU Toulouse, Toulouse, France
| | - Cigdem Arikan
- Pediatrics Department, Koc University School of Medicine, Istanbul, Turkey
| | - Chuan-Hao Lin
- Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Susan Gilmour
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Naveen Mittal
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Fang Kuan Chiou
- Paediatric Gastroenterology, Hepatology and Nutrition, KK Women's and Children's Hospital, Singapore
| | - Simon P Horslen
- Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Wolf-Dietrich Huber
- Department of Pediatric Nephrology and Gastroentereology, Medical University of Vienna, Vienna, Austria
| | | | - Tiago Nunes
- Clinical Development, Scientific Affairs and Engagement, Biometrics, and Research Departments, Mirum Pharmaceuticals, Foster City, CA, USA
| | - Anamaria Lascau
- Clinical Development, Scientific Affairs and Engagement, Biometrics, and Research Departments, Mirum Pharmaceuticals, Foster City, CA, USA
| | - Lara Longpre
- Clinical Development, Scientific Affairs and Engagement, Biometrics, and Research Departments, Mirum Pharmaceuticals, Foster City, CA, USA
| | - Douglas B Mogul
- Clinical Development, Scientific Affairs and Engagement, Biometrics, and Research Departments, Mirum Pharmaceuticals, Foster City, CA, USA
| | - Will Garner
- Clinical Development, Scientific Affairs and Engagement, Biometrics, and Research Departments, Mirum Pharmaceuticals, Foster City, CA, USA
| | - Pamela Vig
- Clinical Development, Scientific Affairs and Engagement, Biometrics, and Research Departments, Mirum Pharmaceuticals, Foster City, CA, USA
| | - Vera F Hupertz
- Pediatric Gastroenterology, Hepatology, and Nutrition, Cleveland Clinic Children's, Cleveland, OH, USA
| | - Regino P Gonzalez-Peralta
- Pediatric Gastroenterology, AdventHealth for Children and AdventHealth Transplant Institute, Orlando, FL, USA
| | - Udeme Ekong
- Transplant Hepatology, Pediatric Hepatology, Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC, USA
| | - Jane Hartley
- Paediatric Hepatology, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Noemie Laverdure
- Pediatric Hepatology, Gastroenterology, and Nutrition Unit, Hopital Femme Mere Enfant, Hospices Civils De Lyon, Lyon, France
| | - Nadia Ovchinsky
- Pediatric Gastroenterology and Hepatology, New York University Grossman School of Medicine, New York, NY, USA
| | - Richard J Thompson
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
10
|
Nayagam JS, Miquel R, Thompson RJ, Joshi D. Genetic cholestasis in children and adults. J Hepatol 2024; 80:670-672. [PMID: 38296707 DOI: 10.1016/j.jhep.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 02/02/2024]
Affiliation(s)
- Jeremy S Nayagam
- Institute of Liver Studies, King's College Hospital, London, UK; Institute of Liver Studies, Immunology & Microbial Sciences, King's College London, London, UK.
| | - Rosa Miquel
- Institute of Liver Studies, Liver Histopathology Laboratory, King's College Hospital, London, UK
| | - Richard J Thompson
- Institute of Liver Studies, King's College Hospital, London, UK; Institute of Liver Studies, Immunology & Microbial Sciences, King's College London, London, UK
| | - Deepak Joshi
- Institute of Liver Studies, King's College Hospital, London, UK; Institute of Liver Studies, Immunology & Microbial Sciences, King's College London, London, UK
| |
Collapse
|
11
|
Maki K, Katsumi T, Hanatani T, Uchiyama F, Suzuki F, Hoshikawa K, Haga H, Saito T, Ueno Y. Elucidation of pericholangitis and periductal fibrosis in cholestatic liver diseases via extracellular vesicles released by polarized biliary epithelial cells. Am J Physiol Cell Physiol 2024; 326:C1094-C1105. [PMID: 38344767 DOI: 10.1152/ajpcell.00655.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Cholestatic liver diseases causes inflammation and fibrosis around bile ducts. However, the pathological mechanism has not been elucidated. Extracellular vesicles (EVs) are released from both the basolateral and apical sides of polarized biliary epithelial cells. We aimed to investigate the possibility that EVs released from the basolateral sides of biliary epithelial cells by bile acid stimulation induce inflammatory cells and fibrosis around bile ducts, and they may be involved in the pathogenesis of cholestatic liver disease. Human biliary epithelial cells (H69) were grown on cell culture inserts and stimulated with chenodeoxycholic acid + IFN-γ. Human THP-1-derived M1-macrophages, LX-2 cells, and KMST-6 cells were treated with the extracted basolateral EVs, and inflammatory cytokines and fibrosis markers were detected by RT-PCR. Highly expressed proteins from stimulated EVs were identified, and M1-macrophages, LX-2, KMST-6 were treated with these recombinant proteins. Stimulated EVs increased the expression of TNF, IL-1β, and IL-6 in M1-macrophages, TGF-β in LX-2 and KMST-6 compared with the corresponding expression levels in unstimulated EVs. Nucleophosmin, nucleolin, and midkine levels were increased in EVs from stimulated cells compared with protein expression in EVs from unstimulated cells. Leukocyte cell-derived chemotaxin-2 (LECT2) is highly expressed only in EVs from stimulated cells. Stimulation of M1-macrophages with recombinant nucleophosmin, nucleolin, and midkine significantly increased the expression of inflammatory cytokines. Stimulation of LX-2 and KMST-6 with recombinant LECT2 significantly increased the expression of fibrotic markers. These results suggest that basolateral EVs are related to the development of pericholangitis and periductal fibrosis in cholestatic liver diseases.NEW & NOTEWORTHY Our research elucidated that the composition of basolateral EVs from the biliary epithelial cells changed under bile acid exposure and the basolateral EVs contained the novel inflammation-inducing proteins NPM, NCL, and MK and the fibrosis-inducing protein LECT2. We report that these new results are possible to lead to the potential therapeutic target of cholestatic liver diseases in the future.
Collapse
Affiliation(s)
- Keita Maki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Tomohiro Katsumi
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takumi Hanatani
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumi Uchiyama
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Fumiya Suzuki
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kyoko Hoshikawa
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hiroaki Haga
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takafumi Saito
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
12
|
Joshi D, Nayagam J, Clay L, Yerlett J, Claridge L, Day J, Ferguson J, Mckie P, Vara R, Pargeter H, Lockyer R, Jones R, Heneghan M, Samyn M. UK guideline on the transition and management of childhood liver diseases in adulthood. Aliment Pharmacol Ther 2024; 59:812-842. [PMID: 38385884 DOI: 10.1111/apt.17904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Improved outcomes of liver disease in childhood and young adulthood have resulted in an increasing number of young adults (YA) entering adult liver services. The adult hepatologist therefore requires a working knowledge in diseases that arise almost exclusively in children and their complications in adulthood. AIMS To provide adult hepatologists with succinct guidelines on aspects of transitional care in YA relevant to key disease aetiologies encountered in clinical practice. METHODS A systematic literature search was undertaken using the Pubmed, Medline, Web of Knowledge and Cochrane database from 1980 to 2023. MeSH search terms relating to liver diseases ('cholestatic liver diseases', 'biliary atresia', 'metabolic', 'paediatric liver diseases', 'autoimmune liver diseases'), transition to adult care ('transition services', 'young adult services') and adolescent care were used. The quality of evidence and the grading of recommendations were appraised using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. RESULTS These guidelines deal with the transition of YA and address key aetiologies for the adult hepatologist under the following headings: (1) Models and provision of care; (2) screening and management of mental health disorders; (3) aetiologies; (4) timing and role of liver transplantation; and (5) sexual health and fertility. CONCLUSIONS These are the first nationally developed guidelines on the transition and management of childhood liver diseases in adulthood. They provide a framework upon which to base clinical care, which we envisage will lead to improved outcomes for YA with chronic liver disease.
Collapse
Affiliation(s)
- Deepak Joshi
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Jeremy Nayagam
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Lisa Clay
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Jenny Yerlett
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Lee Claridge
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Jemma Day
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Ferguson
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Paul Mckie
- Department of Social Work, King's College Hospital NHS Foundation Trust, London, UK
| | - Roshni Vara
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
- Evelina London Children's Hospital, London, UK
| | | | | | - Rebecca Jones
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Michael Heneghan
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Marianne Samyn
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Wakasa K, Tamura R, Osaka S, Takei H, Asai A, Nittono H, Kusuhara H, Hayashi H. Rapid in vivo evaluation system for cholestasis-related genes in mice with humanized bile acid profiles. Hepatol Commun 2024; 8:e0382. [PMID: 38517206 PMCID: PMC10962888 DOI: 10.1097/hc9.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Pediatric cholestatic liver diseases (Ped-CLD) comprise many ultrarare disorders with a genetic basis. Pharmacologic therapy for severe cases of Ped-CLD has not been established. Species differences in bile acid (BA) metabolism between humans and rodents contribute to the lack of phenocopy of patients with Ped-CLD in rodents and hinder the development of therapeutic strategies. We aimed to establish an efficient in vivo system to understand BA-related pathogenesis, such as Ped-CLD. METHODS We generated mice that express spCas9 specifically in the liver (L-Cas9Tg/Tg [liver-specific Cas9Tg/Tg] mice) and designed recombinant adeno-associated virus serotype 8 encoding small-guide RNA (AAV8 sgRNA) targeting Abcc2, Abcb11, and Cyp2c70. In humans, ABCC2 and ABCB11 deficiencies cause constitutional hyperbilirubinemia and most severe Ped-CLD, respectively. Cyp2c70 encodes an enzyme responsible for the rodent-specific BA profile. Six-week-old L-Cas9Tg/Tg mice were injected with this AAV8 sgRNA and subjected to biochemical and histological analysis. RESULTS Fourteen days after the injection with AAV8 sgRNA targeting Abcc2, L-Cas9Tg/Tg mice exhibited jaundice and phenocopied patients with ABCC2 deficiency. L-Cas9Tg/Tg mice injected with AAV8 sgRNA targeting Abcb11 showed hepatomegaly and cholestasis without histological evidence of liver injury. Compared to Abcb11 alone, simultaneous injection of AAV8 sgRNA for Abcb11 and Cyp2c70 humanized the BA profile and caused higher transaminase levels and parenchymal necrosis, resembling phenotypes with ABCB11 deficiency. CONCLUSIONS This study provides proof of concept for efficient in vivo assessment of cholestasis-related genes in humanized bile acid profiles. Our platform offers a more time- and cost-effective alternative to conventional genetically engineered mice, increasing our understanding of BA-related pathogenesis such as Ped-CLD and expanding the potential for translational research.
Collapse
Affiliation(s)
- Kihiro Wakasa
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Tamura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Osaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Akihiro Asai
- Department of Gastroenterology, and Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Guerrero L, Vindel-Alfageme J, Hierro L, Stark L, Vicent D, Sorzano CÓS, Corrales FJ. Discrimination of Etiologically Different Cholestasis by Modeling Proteomics Datasets. Int J Mol Sci 2024; 25:3684. [PMID: 38612495 PMCID: PMC11011353 DOI: 10.3390/ijms25073684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Cholestasis is characterized by disrupted bile flow from the liver to the small intestine. Although etiologically different cholestasis displays similar symptoms, diverse factors can contribute to the progression of the disease and determine the appropriate therapeutic option. Therefore, stratifying cholestatic patients is essential for the development of tailor-made treatment strategies. Here, we have analyzed the liver proteome from cholestatic patients of different etiology. In total, 7161 proteins were identified and quantified, of which 263 were differentially expressed between control and cholestasis groups. These differential proteins point to deregulated cellular processes that explain part of the molecular framework of cholestasis progression. However, the clustering of different cholestasis types was limited. Therefore, a machine learning pipeline was designed to identify a panel of 20 differential proteins that segregate different cholestasis groups with high accuracy and sensitivity. In summary, proteomics combined with machine learning algorithms provides valuable insights into the molecular mechanisms of cholestasis progression and a panel of proteins to discriminate across different types of cholestasis. This strategy may prove useful in developing precision medicine approaches for patient care.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| | - Jorge Vindel-Alfageme
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| | - Loreto Hierro
- IdiPAZ, Instituto de Investigación Sanitaria (Health Research Institute), Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (L.H.); (L.S.); (D.V.)
| | - Luiz Stark
- IdiPAZ, Instituto de Investigación Sanitaria (Health Research Institute), Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (L.H.); (L.S.); (D.V.)
| | - David Vicent
- IdiPAZ, Instituto de Investigación Sanitaria (Health Research Institute), Hospital Universitario La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain; (L.H.); (L.S.); (D.V.)
| | - Carlos Óscar S. Sorzano
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin, 3, 28049 Madrid, Spain; (L.G.); (J.V.-A.); (C.Ó.S.S.)
| |
Collapse
|
15
|
Lashgari NA, Khayatan D, Roudsari NM, Momtaz S, Dehpour AR, Abdolghaffari AH. Therapeutic approaches for cholestatic liver diseases: the role of nitric oxide pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1433-1454. [PMID: 37736835 DOI: 10.1007/s00210-023-02684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Cholestasis describes bile secretion or flow impairment, which is clinically manifested with fatigue, pruritus, and jaundice. Neutrophils play a crucial role in many diseases such as cholestasis liver diseases through mediating several oxidative and inflammatory pathways. Data have been collected from clinical, in vitro, and in vivo studies published between 2000 and December 2021 in English and obtained from the PubMed, Google Scholar, Scopus, and Cochrane libraries. Although nitric oxide plays an important role in the pathogenesis of cholestatic liver diseases, excessive levels of NO in serum and affected tissues, mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme, can exacerbate inflammation. NO induces the inflammatory and oxidative processes, which finally leads to cell damage. We found that natural products such as baicalin, curcumin, resveratrol, and lycopene, as well as chemical likes ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil, are able to markedly attenuate the NO production and iNOS expression, mainly through inducing the nuclear factor κB (NF-κB), Janus kinase and signal transducer and activator of transcription (JAK/STAT), and toll like receptor-4 (TLR4) signaling pathways. This study summarizes the latest scientific data about the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the role of NO in cholestasis liver diseases. Literature review directed us to propose that suppression of NO and its related pathways could be a therapeutic option for preventing or treating cholestatic liver diseases.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St., Tehran, Iran, P. O. Box: 19419-33111.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
16
|
Sutton H, Karpen SJ, Kamath BM. Pediatric Cholestatic Diseases: Common and Unique Pathogenic Mechanisms. ANNUAL REVIEW OF PATHOLOGY 2024; 19:319-344. [PMID: 38265882 DOI: 10.1146/annurev-pathmechdis-031521-025623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Cholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis. Disruption of one or several of these steps can result in the accumulation of toxic BAs in bile ducts and hepatocytes leading to inflammation, fibrosis, and, over time, biliary and hepatic cirrhosis. Biliary atresia, progressive familial intrahepatic cholestasis, primary sclerosing cholangitis, and Alagille syndrome are four of the most common pediatric cholestatic conditions. Through understanding the commonalities and differences in these diseases, the important cellular mechanistic underpinnings of cholestasis can be greater appreciated.
Collapse
Affiliation(s)
- Harry Sutton
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada;
| | - Saul J Karpen
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Binita M Kamath
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
17
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Cheng K, Rosenthal P. Diagnosis and management of Alagille and progressive familial intrahepatic cholestasis. Hepatol Commun 2023; 7:e0314. [PMID: 38055640 PMCID: PMC10984671 DOI: 10.1097/hc9.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 12/08/2023] Open
Abstract
Alagille syndrome and progressive familial intrahepatic cholestasis are conditions that can affect multiple organs. Advancements in molecular testing have aided in the diagnosis of both. The impairment of normal bile flow and secretion leads to the various hepatic manifestations of these diseases. Medical management of Alagille syndrome and progressive familial intrahepatic cholestasis remains mostly targeted on supportive care focusing on quality of life, cholestasis, and fat-soluble vitamin deficiency. The most difficult therapeutic issue is typically related to pruritus, which can be managed by various medications such as ursodeoxycholic acid, rifampin, cholestyramine, and antihistamines. Surgical operations were previously used to disrupt enterohepatic recirculation, but recent medical advancements in the use of ileal bile acid transport inhibitors have shown great efficacy for the treatment of pruritus in both Alagille syndrome and progressive familial intrahepatic cholestasis.
Collapse
Affiliation(s)
- Katherine Cheng
- Department of Pediatrics Gastroenterology, Hepatology and Nutrition, University of California San Francisco, San Francisco, California, USA
| | - Philip Rosenthal
- Department of Pediatrics Gastroenterology, Hepatology and Nutrition, University of California San Francisco, San Francisco, California, USA
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Tamura R, Sabu Y, Mizuno T, Mizuno S, Nakano S, Suzuki M, Abukawa D, Kaji S, Azuma Y, Inui A, Okamoto T, Shimizu S, Fukuda A, Sakamoto S, Kasahara M, Takahashi S, Kusuhara H, Zen Y, Ando T, Hayashi H. Intestinal Atp8b1 dysfunction causes hepatic choline deficiency and steatohepatitis. Nat Commun 2023; 14:6763. [PMID: 37990006 PMCID: PMC10663612 DOI: 10.1038/s41467-023-42424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
Choline is an essential nutrient, and its deficiency causes steatohepatitis. Dietary phosphatidylcholine (PC) is digested into lysoPC (LPC), glycerophosphocholine, and choline in the intestinal lumen and is the primary source of systemic choline. However, the major PC metabolites absorbed in the intestinal tract remain unidentified. ATP8B1 is a P4-ATPase phospholipid flippase expressed in the apical membrane of the epithelium. Here, we use intestinal epithelial cell (IEC)-specific Atp8b1-knockout (Atp8b1IEC-KO) mice. These mice progress to steatohepatitis by 4 weeks. Metabolomic analysis and cell-based assays show that loss of Atp8b1 in IEC causes LPC malabsorption and thereby hepatic choline deficiency. Feeding choline-supplemented diets to lactating mice achieves complete recovery from steatohepatitis in Atp8b1IEC-KO mice. Analysis of samples from pediatric patients with ATP8B1 deficiency suggests its translational potential. This study indicates that Atp8b1 regulates hepatic choline levels through intestinal LPC absorption, encouraging the evaluation of choline supplementation therapy for steatohepatitis caused by ATP8B1 dysfunction.
Collapse
Affiliation(s)
- Ryutaro Tamura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sabu
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiki Abukawa
- Department of Gastroenterology and Hepatology, Miyagi Children's Hospital, Miyagi, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Okayama, Japan
| | - Yoshihiro Azuma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Eastern Hospital, Kanagawa, Japan
| | - Tatsuya Okamoto
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital & King's College London, London, UK
| | - Tomohiro Ando
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Heinz N, Vittorio J. Treatment of Cholestasis in Infants and Young Children. Curr Gastroenterol Rep 2023; 25:344-354. [PMID: 37651067 DOI: 10.1007/s11894-023-00891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Cholestasis is characterized by a conjugated hyperbilirubinemia secondary to impaired bile synthesis, transport, or excretion from the liver. It is always pathologic and can be indicative of an underlying hepatobiliary, genetic, or metabolic disorder, several of which require timely diagnosis to ensure proper management and optimal outcomes. This review provides an overview of the evaluation of cholestasis with a focus on current and emerging treatment strategies. RECENT FINDINGS Increased accessibility of next generation sequencing (NGS) allows for utilization of genetic testing early in the diagnostic process. This may alter the clinical algorithm for diagnosis of cholestatic disorders. An enhanced understanding of the underlying pathophysiology may help guide future development of targeted therapies, such as ileal bile acid transporter (IBAT) inhibitors. These were recently approved for treatment of cholestatic pruritus in patients with Alagille syndrome and Progressive Familial Intrahepatic Cholestasis. Current management of cholestasis is aimed at the biochemical consequences of impaired bile flow, including malnutrition, pruritus, and progressive fibrosis. NGS has led to an enhanced understanding of biliary pathology and may guide development of future treatment modalities based on specific gene mutations. Rapid discernment of the underlying etiology is essential as new treatment modalities emerge.
Collapse
Affiliation(s)
- Nicole Heinz
- New York University (NYU) Transplant Institute, NYU Langone Health, 160 East 32nd Street, Suite L3 Medical Level, New York, NY, USA
| | - Jennifer Vittorio
- New York University (NYU) Transplant Institute, NYU Langone Health, 160 East 32nd Street, Suite L3 Medical Level, New York, NY, USA.
| |
Collapse
|
21
|
Uchida H, Sakamoto S, Komine R, Kodama T, Nakao T, Yanagi Y, Shimizu S, Abbas SH, Fukuda A, Kasahara M. Optimal liver transplant procedure in progressive familial intrahepatic cholestasis type 1 treated with biliary diversion or intestinal transplantation: Lessons learned from three cases treated with different approaches. Pediatr Transplant 2023; 27:e14566. [PMID: 37417206 DOI: 10.1111/petr.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 1 (PFIC1) is an autosomal recessive cholestatic liver disorder caused by ATP8B1 gene mutations. Although liver transplantation (LT) is indicated for progressive liver disease, postoperative complications, including severe diarrhea and graft steatohepatitis leading to graft loss, have been reported. CASES The first patient had jaundice, pruritus, diarrhea, and growth retardation (weight z-score: -2.5; height z-score: -3.7). She underwent LT with total internal biliary diversion (TIBD) to the colon at 2 years of age. Graft biopsy at the 7-year follow-up examination revealed microvesicular steatosis (60%). Her diarrhea improved, and her growth failure was recovering (weight z-score: -1.0; height z-score: -1.7). The second patient underwent sequential intestine-liver transplantation at 8 years of age due to end-stage liver disease (ESLD) and short bowel syndrome caused by massive bowel resection for internal hernia after partial external biliary diversion (PEBD) at 21 months of age. She developed severe pancreatitis induced by steroid-bolus therapy for rejection after transplantation. She died 1.7 years after intestinal transplantation due to an uncontrollable pancreatic abscess and acute respiratory distress syndrome. The third patient underwent PEBD at 15 months of age and received LT with TEBD at 15 years of age due to ESLD with hepatic encephalopathy. Throughout the perioperative period, she showed no abdominal symptoms, including diarrhea and pancreatitis. Graft biopsy at the 2-year follow-up examination revealed macrovesicular steatosis (60%) with inflammation. CONCLUSIONS The patients showed different outcomes. Effective therapeutic options to mitigate post-LT complications in patients with PFIC1 must be considered individually.
Collapse
Affiliation(s)
- Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Ryuji Komine
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tasuku Kodama
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Toshimasa Nakao
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Syed Hasnain Abbas
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
- Organ Transplantation and HPB Department, Pir Abdul Qadir Shah Jeelani Institute of Medical Sciences, Gambat, Sindh, Pakistan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
22
|
Qin T, Hasnat M, Wang Z, Hassan HM, Zhou Y, Yuan Z, Zhang W. Geniposide alleviated bile acid-associated NLRP3 inflammasome activation by regulating SIRT1/FXR signaling in bile duct ligation-induced liver fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154971. [PMID: 37494875 DOI: 10.1016/j.phymed.2023.154971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/14/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Geniposide (GE), the active compound derived from Gardeniae Fructus, possesses valuable bioactivity for liver diseases, but GE effects on bile duct ligation (BDL)-induced cholestasis remain unclear. This study aimed to elucidate the influence of GE on BDL-induced liver fibrosis and to investigate the underlying mechanisms. METHODS GE (25 or 50 mg/kg) were intragastrical administered to C57BL/6 J mice for two weeks to characterize the hepatoprotective effect of GE on BDL-induced liver fibrosis. NLRP3 inflammasome activation was detected in vivo, and BMDMs were isolated to explore whether GE directly inhibited NLRP3 inflammasome activation. Serum bile acid (BA) profiles were assessed utilizing UPLC-MS/MS, and the involvement of SIRT1/FXR pathways was identified to elucidate the role of SIRT1/FXR in the hepaprotective effect of GE. The veritable impact of SIRT1/FXR signaling was further confirmed by administering the SIRT1 inhibitor EX527 (10 mg/kg) to BDL mice treated with GE. RESULTS GE treatment protected mice from BDL-induced liver fibrosis, with NLRP3 inflammasome inhibition. However, development in vitro experiments revealed that GE could not directly inhibit NLRP3 activation under ATP, monosodium urate, and nigericin stimulation. Further mechanistic data showed that GE activated SIRT1, which subsequently deacetylated FXR and restored CDCA, TUDCA, and TCDCA levels, thereby contributing to the observed hepaprotective effect of GE. Notably, EX527 treatment diminished the hepaprotective effect of GE on BDL-induced liver fibrosis. CONCLUSION This study first proved the hepaprotective effect of GE on liver fibrosis in BDL mice, which was closely associated with the restoration of BA homeostasis and NLRP3 inflammasome inhibition. The activation of SIRT1 and the subsequent FXR deacetylation restored the BA profiles, especially CDCA, TUDCA, and TCDCA contents, which was the main contributor to NLRP3 inhibition and the hepaprotective effect of GE. Overall, our work provides novel insights that GE as well as Gardeniae Fructus might be the potential attractive candidate for ameliorating BDL-induced liver fibrosis.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Muhammad Hasnat
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China; Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, PR China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, PR China
| | - Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
23
|
Thompson RJ, Artan R, Baumann U, Calvo PL, Czubkowski P, Dalgic B, D’Antiga L, Di Giorgio A, Durmaz Ö, Gonzalès E, Grammatikopoulos T, Gupte G, Hardikar W, Houwen RH, Kamath BM, Karpen SJ, Lacaille F, Lachaux A, Lainka E, Loomes KM, Mack CL, Mattsson JP, McKiernan P, Ni Q, Özen H, Rajwal SR, Roquelaure B, Shteyer E, Sokal E, Sokol RJ, Soufi N, Sturm E, Tessier ME, van der Woerd WL, Verkade HJ, Vittorio JM, Wallefors T, Warholic N, Yu Q, Horn P, Kjems L. Interim results from an ongoing, open-label, single-arm trial of odevixibat in progressive familial intrahepatic cholestasis. JHEP Rep 2023; 5:100782. [PMID: 37456676 PMCID: PMC10338319 DOI: 10.1016/j.jhepr.2023.100782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/28/2023] [Accepted: 04/16/2023] [Indexed: 07/18/2023] Open
Abstract
Background & Aims PEDFIC 2, an ongoing, open-label, 72-week study, evaluates odevixibat, an ileal bile acid transporter inhibitor, in patients with progressive familial intrahepatic cholestasis. Methods PEDFIC 2 enrolled and dosed 69 patients across two cohorts; all received odevixibat 120 μg/kg per day. Cohort 1 comprised children from PEDFIC 1, and cohort 2 comprised new patients (any age). We report data through 15 July 2020, with Week 24 of PEDFIC 2 the main time point analysed. This represents up to 48 weeks of cumulative exposure for patients treated with odevixibat from the 24-week PEDFIC 1 study (cohort 1A) and up to 24 weeks of treatment for those who initiated odevixibat in PEDFIC 2 (patients who received placebo in PEDFIC 1 [cohort 1B] or cohort 2 patients). Primary endpoints for this prespecified interim analysis were change from baseline to Weeks 22-24 in serum bile acids (sBAs) and proportion of positive pruritus assessments (≥1-point drop from PEDFIC 2 baseline in pruritus on a 0-4 scale or score ≤1) over the 24-week period. Safety monitoring included evaluating treatment-emergent adverse events (TEAEs). Results In cohort 1A, mean change from PEDFIC 1 baseline to Weeks 22-24 of PEDFIC 2 in sBAs was -201 μmol/L (p <0.0001). For cohort 1B and cohort 2, mean changes from odevixibat initiation to weeks 22-24 in sBAs were -144 and -104 μmol/L, respectively. The proportion of positive pruritus assessments in the first 24-week period of PEDFIC 2 was 33%, 56%, and 62% in cohorts 1A, 1B, and 2, respectively. Most TEAEs were mild or moderate. No drug-related serious TEAEs occurred. Conclusions Odevixibat in patients with progressive familial intrahepatic cholestasis was generally well tolerated and associated with sustained reductions in sBAs and pruritus. Clinical Trials Registration This study is registered at ClinicalTrials.gov (NCT03659916). Impact and Implications Disrupted bile flow is a hallmark feature of patients with progressive familial intrahepatic cholestasis and can result in build-up of bile constituents in the liver with spill over into the bloodstream; other effects that patients can experience include extremely itchy skin, and because not enough bile reaches the gut, patients can have problems digesting food, which may lead to poor growth. Odevixibat is an orally administered medication that shunts bile acids away from the liver. The current study, called PEDFIC 2, suggested that odevixibat can improve the problematic signs and symptoms of progressive familial intrahepatic cholestasis and was generally safe for patients.
Collapse
Affiliation(s)
| | - Reha Artan
- Department of Pediatric Gastroenterology, Akdeniz University, Antalya, Turkey
| | - Ulrich Baumann
- Pediatric Gastroenterology and Hepatology, Hannover Medical School, Hannover, Germany
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Città della Salute e della Scienza di Torino, Turin, Italy
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology, Nutritional Disorders, and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Buket Dalgic
- Department of Pediatric Gastroenterology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Lorenzo D’Antiga
- Pediatric Hepatology, Gastroenterology, and Transplantation, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Angelo Di Giorgio
- Pediatric Hepatology, Gastroenterology, and Transplantation, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Özlem Durmaz
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Emmanuel Gonzalès
- Hépatologie et Transplantation Hépatique Pédiatriques, Centre de Référence de l’Atrésie des Voies Biliaires et des Cholestases Génétiques, FSMR FILFOIE, ERN RARE LIVER, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Hépatinov, Inserm U 1193, Paris, France
| | - Tassos Grammatikopoulos
- Institute of Liver Studies, King’s College London, London, UK
- Pediatric Liver, GI, and Nutrition Center and MowatLabs, King’s College Hospital NHS Trust, London, UK
| | - Girish Gupte
- Liver Unit and Small Bowel Transplantation, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Winita Hardikar
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Australia
| | - Roderick H.J. Houwen
- Department of Pediatric Gastroenterology at the Wilhelmina Children’s Hospital and University Medical Center, Utrecht, The Netherlands
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Saul J. Karpen
- Pediatrics Department, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Florence Lacaille
- Pediatric Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Alain Lachaux
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service D’hépatogastoentérologie et Nutrition Pédiatrique, Lyon, France
| | - Elke Lainka
- Department of Pediatric Gastroenterology, Hepatology, and Liver Transplantation, University Children’s Hospital, Essen, Germany
| | - Kathleen M. Loomes
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara L. Mack
- Pediatric Gastroenterology, Hepatology, & Nutrition, Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Patrick McKiernan
- Liver Unit and Small Bowel Transplantation, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | | | - Hasan Özen
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sanjay R. Rajwal
- Children’s Liver Unit, Leeds Teaching Hospitals NHS Trust, Leeds Children’s Hospital, Leeds, UK
| | | | - Eyal Shteyer
- Faculty of Medicine, Hebrew University of Jerusalem, Juliet Keidan Department of Pediatric Gastroenterology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Etienne Sokal
- Université Catholique de Louvain, Cliniques St Luc, Brussels, Belgium
| | - Ronald J. Sokol
- University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO, USA
| | - Nisreen Soufi
- Pediatrics Department, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children’s Hospital Tübingen, Tübingen, Germany
| | - Mary Elizabeth Tessier
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine/Texas Children’s Hospital, Houston, TX, USA
| | - Wendy L. van der Woerd
- Department of Pediatric Gastroenterology at the Wilhelmina Children’s Hospital and University Medical Center, Utrecht, The Netherlands
| | - Henkjan J. Verkade
- Department of Pediatrics, University of Groningen, Beatrix Children’s Hospital/University Medical Center Groningen, Groningen, The Netherlands
| | - Jennifer M. Vittorio
- Department of Surgery, Center for Liver Disease and Transplantation, Columbia University Medical Center, New York, NY, USA
| | | | | | - Qifeng Yu
- Albireo Pharma, Inc., Boston, MA, USA
| | | | | |
Collapse
|
24
|
Chen LC, Huang SP, Shih CT, Li CY, Chen YT, Huang CY, Yu CC, Lin VC, Lee CH, Geng JH, Bao BY. ATP8B1: A prognostic prostate cancer biomarker identified via genetic analysis. Prostate 2023; 83:602-611. [PMID: 36794287 DOI: 10.1002/pros.24495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Controlling the asymmetric distribution of phospholipids across biological membranes plays a pivotal role in the life cycle of cells; one of the most important contributors that maintain this lipid asymmetry are phospholipid-transporting adenosine triphosphatases (ATPases). Although sufficient information regarding their association with cancer exists, there is limited evidence linking the genetic variants of phospholipid-transporting ATPase family genes to prostate cancer in humans. METHODS In this study, we investigated the association of 222 haplotype-tagging single-nucleotide polymorphisms (SNPs) in eight phospholipid-transporting ATPase genes with cancer-specific survival (CSS) and overall survival (OS) of 630 patients treated with androgen-deprivation therapy (ADT) for prostate cancer. RESULTS After multivariate Cox regression analysis and multiple testing correction, we found that ATP8B1 rs7239484 was remarkably associated with CSS and OS after ADT. A pooled analysis of multiple independent gene-expression datasets demonstrated that ATP8B1 was under-expressed in tumor tissues and that a higher ATP8B1 expression was associated with a better patient prognosis. Moreover, we established highly invasive sublines using two human prostate cancer cell lines to mimic cancer progression traits in vitro. The expression of ATP8B1 was consistently downregulated in both highly invasive sublines. CONCLUSION Our study indicates that rs7239484 is a prognostic factor for patients treated with ADT and that ATP8B1 can potentially attenuate prostate cancer progression.
Collapse
Affiliation(s)
- Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chieh-Tien Shih
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan
- Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
25
|
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci 2023; 13:77. [PMID: 37120573 PMCID: PMC10149012 DOI: 10.1186/s13578-023-01035-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
26
|
Fiorotto R, Mariotti V, Taleb SA, Zehra SA, Nguyen M, Amenduni M, Strazzabosco M. Cell-matrix interactions control biliary organoid polarity, architecture, and differentiation. Hepatol Commun 2023; 7:e0094. [PMID: 36972396 PMCID: PMC10503667 DOI: 10.1097/hc9.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND AIMS Cholangiopathies are an important cause of morbidity and mortality. Their pathogenesis and treatment remain unclear in part because of the lack of disease models relevant to humans. Three-dimensional biliary organoids hold great promise; however, the inaccessibility of their apical pole and the presence of extracellular matrix (ECM) limits their application. We hypothesized that signals coming from the extracellular matrix regulate organoids' 3-dimensional architecture and could be manipulated to generate novel organotypic culture systems. APPROACH AND RESULTS Biliary organoids were generated from human livers and grown embedded into Culturex Basement Membrane Extract as spheroids around an internal lumen (EMB). When removed from the EMC, biliary organoids revert their polarity and expose the apical membrane on the outside (AOOs). Functional, immunohistochemical, and transmission electron microscope studies, along with bulk and single-cell transcriptomic, demonstrate that AOOs are less heterogeneous and show increased biliary differentiation and decreased expression of stem cell features. AOOs transport bile acids and have competent tight junctions. When cocultured with liver pathogenic bacteria (Enterococcus spp.), AOOs secrete a range of proinflammatory chemokines (ie, MCP1, IL8, CCL20, and IP-10). Transcriptomic analysis and treatment with a beta-1-integrin blocking antibody identified beta-1-integrin signaling as a sensor of the cell-extracellular matrix interaction and a determinant of organoid polarity. CONCLUSIONS This novel organoid model can be used to study bile transport, interactions with pathobionts, epithelial permeability, cross talk with other liver and immune cell types, and the effect of matrix changes on the biliary epithelium and obtain key insights into the pathobiology of cholangiopathies.
Collapse
Affiliation(s)
- Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Valeria Mariotti
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Syeda A. Zehra
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mytien Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mariangela Amenduni
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mario Strazzabosco
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Yazdizadeh M, Sharifi M, Torabi Parizi A, Alipour F, Ghasempuor M, Zanguei E, Yazdizadeh M. Dental management of a pediatric patient with progressive familial intrahepatic cholestasis having dental anomalies: a case report and brief review of the literature. BMC Oral Health 2023; 23:10. [PMID: 36624442 PMCID: PMC9827620 DOI: 10.1186/s12903-022-02593-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/13/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis is a heterogeneous group of disorders, leading to intrahepatic cholestasis, with the possibility of chronic liver failure and biliary cirrhosis. Oligodontia is either the manifestation of a specific syndrome or is non-syndromic. To the best of our knowledge, this is the first case report of type 3 progressive familial intrahepatic cholestasis and concurrent oligodontia, craniosynostosis, dens in dente, taurodontism, and delayed permanent dentition in the medical and dental literature. CASE PRESENTATION We present the dental and medical histories and comprehensive dental management of a girl with type 3 progressive familial intrahepatic cholestasis and several dental anomalies, who was referred to a dental clinic due to severe dental caries and pain. CONCLUSION Our findings suggest that PFIC with manifestations as oligodontia, craniosynostosis, dens in dente, taurodontism, and delayed permanent dentition, might indicate an unknown syndrome; otherwise, the craniofacial anomalies are the manifestations of an independent disease coinciding with PFIC. Moreover, our case is a good example of the importance of timely medical and dental care in confining further health-related complications. The patient was able to ingest without any pain or discomfort after receiving proper dental management.
Collapse
Affiliation(s)
- Mina Yazdizadeh
- grid.411495.c0000 0004 0421 4102Oral Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Sharifi
- grid.412105.30000 0001 2092 9755Department of Pediatric Dentistry, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - Arefeh Torabi Parizi
- grid.412571.40000 0000 8819 4698Department of Operative Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoozeh Alipour
- grid.411705.60000 0001 0166 0922Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghasempuor
- grid.411495.c0000 0004 0421 4102Department of Pediatric Dentistry, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Elham Zanguei
- grid.411600.2Department of Operative Dentistry, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdizadeh
- grid.411746.10000 0004 4911 7066Department of Obstetrics and Gynecology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Chen R, Yang FX, Tan YF, Deng M, Li H, Xu Y, Ouyang WX, Song YZ. Clinical and genetic characterization of pediatric patients with progressive familial intrahepatic cholestasis type 3 (PFIC3): identification of 14 novel ABCB4 variants and review of the literatures. Orphanet J Rare Dis 2022; 17:445. [PMID: 36550572 PMCID: PMC9773540 DOI: 10.1186/s13023-022-02597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 3 (PFIC3) is an autosomal recessive disease caused by pathogenic variants of the gene ABCB4. This study aimed to investigate the ABCB4 genotypic and the clinical phenotypic features of PFIC3 patients. METHODS The clinical and molecular genetic data of 13 new pediatric patients with PFIC3 as well as 82 reported ones in the PubMed and CNKI databases were collected and analyzed. RESULTS The 13 new PFIC3 patients included six females and seven males, and the main presentations were hepatomegaly, splenomegaly, jaundice, and pruritus, as well as increased levels of gamma-glutamyl transpeptidase (GGT). Fourteen new ABCB4 variants were detected, including eight diagnosed to be likely-pathogenic and six, pathogenic. Among all the 95 PFIC3 cases, hepatomegaly was observed in 85.3% (81/95), pruritus in 67.4% (64/95), splenomegaly in 52.6% (50/95), jaundice in 48.4% (46/95), portal hypertension in 34.7% (33/95) and GGT elevation in 100% (88/88) of the patients. Positive responses at varied degrees to oral ursodeoxycholic acid (UDCA) treatment were observed in 66.1% (39/59) of the patients, among whom 38.5% (15/39) fully recovered in terms of the laboratory changes. Although the condition remained stable in 53 patients (58.9%, 53/90), the clinical outcomes were not promising in the rest 37 cases (41.1%, 37/90), including 7 died, 27 having undergone while another 3 waiting for liver transplantation. A total of 96 ABCB4 variants were detected in the 95 patients. PFIC3 patients with biallelic null variants exhibited earlier onset ages [10.5 (2, 18) vs. 19 (8, 60) months, p = 0.007], lower UDCA response rate [18.2% (2/11) vs. 77.1% (37/48), p = 0.001], and more unpromising clinical outcomes [80% (12/15) vs. 33.3% (25/75), p = 0.001], compared with those with non-biallelic null variants. CONCLUSIONS PFIC3 presented with hepatomegaly, pruritus, splenomegaly and jaundice with increased serum GGT level as a biochemistry hallmark. Although varying degrees of improvement in response to UDCA therapy were observed, 41.1% of PFIC3 patients exhibited unfavorable prognosis. ABCB4 genotypes of biallelic null variants were associated with severer PFIC3 phenotypes. Moreover, the 14 novel variants in this study expanded the ABCB4 mutation spectrum, and provided novel molecular biomarkers for diagnosis of PFIC3 patients.
Collapse
Affiliation(s)
- Rong Chen
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| | - Feng-Xia Yang
- grid.413428.80000 0004 1757 8466Department of Infectious Diseases, Guangzhou Women and Children’s Medical Center, Guangzhou, 510120 China
| | - Yan-Fang Tan
- grid.440223.30000 0004 1772 5147Department of Hepatopathy, Hunan Children’s Hospital, Changsha, 410007 China
| | - Mei Deng
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| | - Hua Li
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| | - Yi Xu
- grid.413428.80000 0004 1757 8466Department of Infectious Diseases, Guangzhou Women and Children’s Medical Center, Guangzhou, 510120 China
| | - Wen-Xian Ouyang
- grid.440223.30000 0004 1772 5147Department of Hepatopathy, Hunan Children’s Hospital, Changsha, 410007 China
| | - Yuan-Zong Song
- grid.258164.c0000 0004 1790 3548Department of Pediatrics, The First Affiliated Hospital, Jinan University, Guangzhou, 510630 China
| |
Collapse
|
29
|
Kavallar AM, Messner F, Scheidl S, Oberhuber R, Schneeberger S, Aldrian D, Berchtold V, Sanal M, Entenmann A, Straub S, Gasser A, Janecke AR, Müller T, Vogel GF. Internal Ileal Diversion as Treatment for Progressive Familial Intrahepatic Cholestasis Type 1-Associated Graft Inflammation and Steatosis after Liver Transplantation. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121964. [PMID: 36553407 PMCID: PMC9777440 DOI: 10.3390/children9121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Progressive Familial Intrahepatic cholestasis type I (PFIC1) is a rare congenital hepatopathy causing cholestasis with progressive liver disease. Surgical interruption of the enterohepatic circulation, e.g., surgical biliary diversion (SBD) can slow down development of liver cirrhosis. Eventually, end stage liver disease necessitates liver transplantation (LT). PFIC1 patients might develop diarrhea, graft steatosis and inflammation after LT. SBD after LT was shown to be effective in the alleviation of liver steatosis and graft injury. CASE REPORT Three PFIC1 patients received LT at the ages of two, two and a half and five years. Shortly after LT diarrhea and graft steatosis was recognized, SBD to the terminal ileum was opted to prevent risk for ascending cholangitis. After SBD, inflammation and steatosis was found to be reduced to resolved, as seen by liver biochemistry and ultrasounds. Diarrhea was reported unchanged. CONCLUSION We present three PFIC1 cases for whom SBD to the terminal ileum successfully helped to resolve graft inflammation and steatosis.
Collapse
Affiliation(s)
- Anna M. Kavallar
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Franka Messner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Scheidl
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Denise Aldrian
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Valeria Berchtold
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Murat Sanal
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Entenmann
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Simon Straub
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna Gasser
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas R. Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Human Genetics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Georg F. Vogel
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence: ; Tel.: +43-(0)-512-504-23501; Fax: +43-(0)-512-504-23491
| |
Collapse
|
30
|
Mechanism and Active Components of Qingre Lidan Tablets Alleviate Intrahepatic Cholestasis by Activating the Farnesoid X Receptor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1589388. [PMID: 36506808 PMCID: PMC9729052 DOI: 10.1155/2022/1589388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Background Qingre Lidan tablets (QLTs) are a compound preparation of Chinese medicine that have long been used clinically to treat poor bile circulation caused by the inflammation and obstruction of the gallbladder and bile duct and to relieve jaundice and other symptoms. However, its material basis and mechanism are still unclear. The purpose of this study was to investigate the mechanism and active components of QLTs for treating intrahepatic cholestasis (IHC) in rat models. Methods In vivo experiments verified the effect of QLTs on alpha-naphthyl isothiocyanate (ANIT)-induced IHC models in rats. The mRNA and protein expression levels of farnesoid X receptor (FXR), bile salt export pump (BSEP), and multidrug-associated protein 2 (MRP2) in the rat liver were detected. UPLC/Q-TOF-MS was used to separate and identify the monomers in QLTs, and a dual-luciferase reporter assay was used to select effective the monomers that stimulate FXR. Among the selected monomers, baicalein was used as a representative to verify the effect on rat IHC models. Results QLTs and baicalein significantly reduced the serum biochemical indicators reflecting the changes in liver function among IHC rats and remitted the ANIT-induced liver histopathological changes. The expression levels of FXR, BSEP, and MRP2 in the liver were significantly increased after QLT treatment in a dose-dependent manner. Moreover, six types of active components that activate FXR were selected in QLTs, namely baicalein, wogonin, baicalein II, emodin, dibutyl phthalate, and diisooctyl phthalate. Conclusions QLTs and the active component, baicalein, can alleviate IHC in model rats.
Collapse
|
31
|
Quelhas P, Jacinto J, Cerski C, Oliveira R, Oliveira J, Carvalho E, dos Santos J. Protocols of Investigation of Neonatal Cholestasis-A Critical Appraisal. Healthcare (Basel) 2022; 10:2012. [PMID: 36292464 PMCID: PMC9602084 DOI: 10.3390/healthcare10102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/04/2022] Open
Abstract
Neonatal cholestasis (NC) starts during the first three months of life and comprises extrahepatic and intrahepatic groups of diseases, some of which have high morbimortality rates if not timely identified and treated. Prolonged jaundice, clay-colored or acholic stools, and choluria in an infant indicate the urgent need to investigate the presence of NC, and thenceforth the differential diagnosis of extra- and intrahepatic causes of NC. The differential diagnosis of NC is a laborious process demanding the accurate exclusion of a wide range of diseases, through the skillful use and interpretation of several diagnostic tests. A wise integration of clinical-laboratory, histopathological, molecular, and genetic evaluations is imperative, employing extensive knowledge about each evaluated disease as well as the pitfalls of each diagnostic test. Here, we review the difficulties involved in correctly diagnosing the cause of cholestasis in an affected infant.
Collapse
Affiliation(s)
- Patricia Quelhas
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilha, Portugal
| | - Joana Jacinto
- Medicine Department, University of Beira Interior (UBI), Faculty of Health Sciences, 6201-001 Covilha, Portugal
| | - Carlos Cerski
- Pathology Department of Universidade Federal do Rio Grande do Sul (UFRGS), Pathology Service of Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Rui Oliveira
- Centro de Diagnóstico Histopatológico (CEDAP), 3000-377 Coimbra, Portugal
| | - Jorge Oliveira
- Center for Predictive and Preventive Genetics (CGPP), IBMC, UnIGENe, i3S, University of Porto, 4200-135 Porto, Portugal
| | - Elisa Carvalho
- Department of Gastroenterology and Hepatology, Hospital de Base do Distrito Federal, Hospital da Criança de Brasília, Brasília 70330-150, Brazil
| | - Jorge dos Santos
- Faculty of Health Sciences, Health Science Investigation Center of University of Beira Interior (CICS-UBI), 6200-506 Covilha, Portugal
| |
Collapse
|
32
|
Nayagam JS, Foskett P, Strautnieks S, Agarwal K, Miquel R, Joshi D, Thompson RJ. Clinical phenotype of adult-onset liver disease in patients with variants in ABCB4, ABCB11, and ATP8B1. Hepatol Commun 2022; 6:2654-2664. [PMID: 35894240 PMCID: PMC9512461 DOI: 10.1002/hep4.2051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Variants in ATP8B1, ABCB11, and ABCB4 underlie the most prevalent forms of progressive familial intrahepatic cholestasis. We aim to describe variants in these genes in a cohort of patients with adult-onset liver disease, and explore a genotype-phenotype correlation. Patients with onset of liver disease aged above 18 who underwent sequencing of cholestasis genes for clinical purposes over a 5-year period were identified. Bioinformatic analysis of variants was performed. Liver histology was evaluated in patients with variants. Of the 356 patients tested, at least one variant was identified in 101 (28.4%): 46 ABCB4, 35 ABCB11, and 28 ATP8B1. Patients with ABCB4 variants had chronic liver disease (71.7%) and pregnancy-associated liver dysfunction (75%), with a younger age of onset in more severe genotypes (p = 0.046). ABCB11 variants presented with pregnancy-associated liver dysfunction (82.4%) and acute/episodic cholestasis (40%), with no association between age of onset and genotype severity. ATP8B1 variants were associated with chronic liver disease (75%); however, they were commonly seen in patients with an alternate etiology of liver disease and variants were of low predicted pathogenicity. In adults with suspected genetic cholestasis, variants in cholestasis genes were frequently identified and were likely to contribute to the development of liver disease, particularly ABCB4 and ABCB11. Variants were often in heterozygous state, and they should no longer be considered recessive Mendelian traits. Sequencing cholestasis genes in selected patients with adult-onset disease should be considered, with interpretation in close collaboration with histopathologists and geneticists.
Collapse
Affiliation(s)
- Jeremy S. Nayagam
- Institute of Liver StudiesKing's College HospitalLondonUK
- Institute of Liver Studies, Immunology & Microbial SciencesKing's College LondonLondonUK
| | - Pierre Foskett
- Institute of Liver StudiesKing's College HospitalLondonUK
| | | | - Kosh Agarwal
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Rosa Miquel
- Liver Histopathology LaboratoryInstitute of Liver StudiesKing's College HospitalLondonUK
| | - Deepak Joshi
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Richard J. Thompson
- Institute of Liver StudiesKing's College HospitalLondonUK
- Institute of Liver Studies, Immunology & Microbial SciencesKing's College LondonLondonUK
| |
Collapse
|
33
|
Vij M, Shah V. Compound Heterozygous Myosin 5B (Myo5b) Mutation with Early Onset Progressive Cholestasis and No Intestinal Failure. Fetal Pediatr Pathol 2022; 41:811-817. [PMID: 34338607 DOI: 10.1080/15513815.2021.1959690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: Exome sequencing studies have recently identified novel genes implicated in normal or low GGT pediatric cholestasis including myosin 5B (MYO5B). Case report: We identified novel compound heterozygote mutations in exon 14 and exon 19 of the MYO5B gene in an 18-month-old Indian child with history of fluctuating jaundice and severe pruritus. His liver biopsy showed portal and perivenular fibrosis with focal bridging septa and mild activity. He is currently on UDCA, cholestyramine and vitamin supplements. There is no history of diarrhea. His asymptomatic mother showed heterozygous mutation in exon 19 of the MYO5B gene and his asymptomatic father showed heterozygous mutation in exon 14 of the MYO5B gene. Conclusion: Our report confirms that patients with compound heterozygote mutations in MYO5B develop progressive cholestasis with no intestinal disease.
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical Centre, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Vaibhav Shah
- Gujarat Superspeciality Clinic Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
34
|
Xu J, Kausalya PJ, Ong AGM, Goh CMF, Mohamed Ali S, Hunziker W. ZO-2/Tjp2 suppresses Yap and Wwtr1/Taz-mediated hepatocyte to cholangiocyte transdifferentiation in the mouse liver. NPJ Regen Med 2022; 7:55. [PMID: 36151109 PMCID: PMC9508083 DOI: 10.1038/s41536-022-00251-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
TJP2/ZO-2-inactivating mutations in humans cause progressive cholestatic liver disease. Liver-specific deletion of Tjp2 in the mouse (Tjp2 cKO mice) leads to mild progressive cholestasis without an overt degradation of the bile-blood barrier (BBB). These mice are more susceptible to cholic acid (CA) induced liver injury. Interestingly, while initially also more susceptible, Tjp2 cKO mice develop tolerance to a DDC-supplemented diet. The DDC diet induces an exacerbated ductular reaction in Tjp2 cKO mice, which arises from the transdifferentiation of hepatocytes to cholangiocytes. Consequently, this transdifferentiation is only observed if Tjp2 is inactivated in hepatocytes, but not if deleted in cholangiocytes. The DDC-diet-induced hepatocyte transdifferentiation in Tjp2 cKO mice requires Yap and Wwtr1/Taz, whose protein expression is upregulated in hepatocytes lacking Tjp2, but is independent of Notch2. Although inactivating Tjp2 is sufficient for the upregulation of Yap and Wwtr1/Taz protein, efficient transdifferentiation requires the DDC-diet insult. Thus, Tjp2 negatively regulates Yap/Taz-mediated transdifferentiation of hepatocytes to cholangiocytes in response to DDC-diet-induced liver injury. Furthermore, transdifferentiation is regulated at multiple levels and the type of injury inflicted on the Tjp2 deficient liver plays an important role in the resulting pathophysiology.
Collapse
Affiliation(s)
- Jianliang Xu
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
| | - P Jaya Kausalya
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,M Diagnostics Pte. Ltd. (MiRXES), 30 Biopolis Road, #09-05/06 Matrix, Singapore, 138671, Singapore
| | - Alicia Ghia Min Ong
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Christine Meng Fan Goh
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Safiah Mohamed Ali
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Walter Hunziker
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive MD9, Singapore, 117593, Singapore.
| |
Collapse
|
35
|
Hsu SH, Chen HL. The first new drug for progressive familial intrahepatic cholestasis. Lancet Gastroenterol Hepatol 2022; 7:782-783. [PMID: 35780808 DOI: 10.1016/s2468-1253(22)00158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Shu-Hao Hsu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan.
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100, Taiwan; Department of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
36
|
Guerrero L, Paradela A, Corrales FJ. Targeted Proteomics for Monitoring One-Carbon Metabolism in Liver Diseases. Metabolites 2022; 12:metabo12090779. [PMID: 36144184 PMCID: PMC9501948 DOI: 10.3390/metabo12090779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Liver diseases cause approximately 2 million deaths per year worldwide and had an increasing incidence during the last decade. Risk factors for liver diseases include alcohol consumption, obesity, diabetes, the intake of hepatotoxic substances like aflatoxin, viral infection, and genetic determinants. Liver cancer is the sixth most prevalent cancer and the third in mortality (second in males). The low survival rate (less than 20% in 5 years) is partially explained by the late diagnosis, which remarks the need for new early molecular biomarkers. One-carbon metabolism integrates folate and methionine cycles and participates in essential cell processes such as redox homeostasis maintenance and the regulation of methylation reactions through the production of intermediate metabolites such as cysteine and S-Adenosylmethionine. One-carbon metabolism has a tissue specific configuration, and in the liver, the participating enzymes are abundantly expressed—a requirement to maintain hepatocyte differentiation. Targeted proteomics studies have revealed significant differences in hepatocellular carcinoma and cirrhosis, suggesting that monitoring one-carbon metabolism enzymes can be useful for stratification of liver disease patients and to develop precision medicine strategies for their clinical management. Here, reprogramming of one-carbon metabolism in liver diseases is described and the role of mass spectrometry to follow-up these alterations is discussed.
Collapse
Affiliation(s)
- Laura Guerrero
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-585-46-96
| |
Collapse
|
37
|
Dixon PH, Levine AP, Cebola I, Chan MMY, Amin AS, Aich A, Mozere M, Maude H, Mitchell AL, Zhang J, Chambers J, Syngelaki A, Donnelly J, Cooley S, Geary M, Nicolaides K, Thorsell M, Hague WM, Estiu MC, Marschall HU, Gale DP, Williamson C. GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements. Nat Commun 2022; 13:4840. [PMID: 35977952 PMCID: PMC9385867 DOI: 10.1038/s41467-022-29931-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5-2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility.
Collapse
Affiliation(s)
- Peter H Dixon
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Adam P Levine
- Department of Renal Medicine, University College London, London, UK
- Research Department of Pathology, University College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Melanie M Y Chan
- Department of Renal Medicine, University College London, London, UK
| | - Aliya S Amin
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Anshul Aich
- Department of Renal Medicine, University College London, London, UK
| | - Monika Mozere
- Department of Renal Medicine, University College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alice L Mitchell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Jun Zhang
- Department of Renal Medicine, University College London, London, UK
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jenny Chambers
- ICP Support, 69 Mere Green Road, Sutton Coldfield, UK
- Women's Health Research Centre, Imperial College London, London, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | | | | | | | - Kypros Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | | | - William M Hague
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.
| |
Collapse
|
38
|
Hang C, Jin Y, Luo Y, Feng M, Zhou T, Zhu J, Zhang J, Liu Y, Xia Q. Long-Term Results of Pediatric Liver Transplantation for Progressive Familial Intrahepatic Cholestasis. J Clin Med 2022; 11:jcm11164684. [PMID: 36012923 PMCID: PMC9410346 DOI: 10.3390/jcm11164684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed the long-term survival rate and development of progressive familial intrahepatic cholestasis (PFIC) patients after liver transplantation (LT). From October 2007 to May 2019, 41 patients were diagnosed as PFIC (type I-III) and received LT in Ren Ji Hospital due to end-stage liver diseases. The median age at LT was 2.93 years, with 75.6% of patients receiving living donor liver transplantation (LDLT). The 5- and 10-year patient survival rates after LT were 92.7% and 92.7%, respectively, and no difference was found among the three subtypes of PFIC. Two PFIC type II patients received re-transplantation due to vascular complications. Liver function and bile acid metabolism returned to normal levels in all living recipients. Catch-up growth was recorded as the height and weight Z scores increased from −2.53 and −1.54 to −0.55 and −0.27 with a median follow-up time of 5.55 years. Improved psychomotor ability and age-appropriate study ability was also observed. A total of 72.4% of school-aged recipients exhibited average academic performance. Diarrhea was reported in all PFIC type I recipients but resolved after resin absorptive treatment. However, allograft steatosis occurred in one PFIC type I patient and exhibited a “remission–relapse circle” under the treatment of cholestyramine. In conclusion, LT is an effective treatment for end-stage PFIC patients with encouraging long-term survival rate and development. However, allograft steatosis should be closely monitored in PFIC type I patients even if diarrhea has been well treated.
Collapse
Affiliation(s)
- Chenyue Hang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yijie Jin
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Luo
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mingxuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tao Zhou
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Zhu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Liu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence: (Y.L.); (Q.X.); Tel.: +86-21-68383775 (Y.L. & Q.X.)
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
- Correspondence: (Y.L.); (Q.X.); Tel.: +86-21-68383775 (Y.L. & Q.X.)
| |
Collapse
|
39
|
Abstract
Bile acid transport is a complex physiologic process, of which disruption at any step can lead to progressive intrahepatic cholestasis (PFIC). The first described PFIC disorders were originally named as such before identification of a genetic cause. However, advances in clinical molecular genetics have led to the identification of additional disorders that can cause these monogenic inherited cholestasis syndromes, and they are now increasingly referred to by the affected protein causing disease. The list of PFIC disorders is expected to grow as more causative genes are discovered. Here forth, we present a comprehensive overview of known PFIC disorders.
Collapse
Affiliation(s)
- Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA. https://twitter.com/SaraHassanMD
| | - Paula Hertel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol 2022; 13:916866. [PMID: 35924060 PMCID: PMC9342652 DOI: 10.3389/fphar.2022.916866] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of bile acids in the liver leads to the development of cholestasis and hepatocyte injury. Nuclear receptors control the synthesis and transport of bile acids in the liver. Among them, the farnesoid X receptor (FXR) is the most common receptor studied in treating cholestasis. The activation of this receptor can reduce the amount of bile acid synthesis and decrease the bile acid content in the liver, alleviating cholestasis. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR excitatory effect, but the unresponsiveness of some patients and the side effect of pruritus seriously affect the results of UDCA or OCA treatment. The activator of peroxisome proliferator-activated receptor alpha (PPARα) has emerged as a new target for controlling the synthesis and transport of bile acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can effectively reduce cholestatic liver injury, thereby improving patients’ physiological status. Here, we will focus on the function of PPARα and its involvement in the regulation of bile acid transport and metabolism. In addition, the anti-inflammatory effects of PPARα will be discussed in some detail. Finally, we will discuss the application of PPARα agonists for cholestatic liver disorders.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| |
Collapse
|
41
|
Vitale G, Mattiaccio A, Conti A, Turco L, Seri M, Piscaglia F, Morelli MC. Genetics in Familial Intrahepatic Cholestasis: Clinical Patterns and Development of Liver and Biliary Cancers: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14143421. [PMID: 35884482 PMCID: PMC9322180 DOI: 10.3390/cancers14143421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The family of inherited intrahepatic cholestasis includes autosomal recessive cholestatic rare diseases of childhood involved in bile acids secretion or bile transport defects. Specific genetic pathways potentially cause many otherwise unexplained cholestasis or hepatobiliary tumours in a healthy liver. Lately, next-generation sequencing and whole-exome sequencing have improved the diagnostic procedures of familial intrahepatic cholestasis (FIC), as well as the discovery of several genes responsible for FIC. Moreover, mutations in these genes, even in the heterozygous status, may be responsible for cryptogenic cholestasis in both young and adults. Mutations in FIC genes can influence serum and hepatic levels of bile acids. Experimental studies on the NR1H4 gene have shown that high bile acids concentrations cause excessive production of inflammatory cytokines, resistance to apoptosis, and increased cell regeneration, all risk conditions for developing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). NR1H4 gene encodes farnesoid X-activated receptor having a pivotal role in bile salts synthesis. Moreover, HCC and CCA can emerge in patients with several FIC genes such as ABCB11, ABCB4 and TJP2. Herein, we reviewed the available data on FIC-related hepatobiliary cancers, reporting on genetics to the pathophysiology, the risk factors and the clinical presentation.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
- Correspondence:
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| |
Collapse
|
42
|
Thompson RJ, Arnell H, Artan R, Baumann U, Calvo PL, Czubkowski P, Dalgic B, D'Antiga L, Durmaz Ö, Fischler B, Gonzalès E, Grammatikopoulos T, Gupte G, Hardikar W, Houwen RHJ, Kamath BM, Karpen SJ, Kjems L, Lacaille F, Lachaux A, Lainka E, Mack CL, Mattsson JP, McKiernan P, Özen H, Rajwal SR, Roquelaure B, Shagrani M, Shteyer E, Soufi N, Sturm E, Tessier ME, Verkade HJ, Horn P. Odevixibat treatment in progressive familial intrahepatic cholestasis: a randomised, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol 2022; 7:830-842. [DOI: 10.1016/s2468-1253(22)00093-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
|
43
|
Ibrahim SH, Kamath BM, Loomes KM, Karpen SJ. Cholestatic liver diseases of genetic etiology: Advances and controversies. Hepatology 2022; 75:1627-1646. [PMID: 35229330 DOI: 10.1002/hep.32437] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
With the application of modern investigative technologies, cholestatic liver diseases of genetic etiology are increasingly identified as the root cause of previously designated "idiopathic" adult and pediatric liver diseases. Here, we review advances in the field enhanced by a deeper understanding of the phenotypes associated with specific gene defects that lead to cholestatic liver diseases. There are evolving areas for clinicians in the current era specifically regarding the role for biopsy and opportunities for a "sequencing first" approach. Risk stratification based on the severity of the genetic defect holds promise to guide the decision to pursue primary liver transplantation versus medical therapy or nontransplant surgery, as well as early screening for HCC. In the present era, the expanding toolbox of recently approved therapies for hepatologists has real potential to help many of our patients with genetic causes of cholestasis. In addition, there are promising agents under study in the pipeline. Relevant to the current era, there are still gaps in knowledge of causation and pathogenesis and lack of fully accepted biomarkers of disease progression and pruritus. We discuss strategies to overcome the challenges of genotype-phenotype correlation and draw attention to the extrahepatic manifestations of these diseases. Finally, with attention to identifying causes and treatments of genetic cholestatic disorders, we anticipate a vibrant future of this dynamic field which builds upon current and future therapies, real-world evaluations of individual and combined therapeutics, and the potential incorporation of effective gene editing and gene additive technologies.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatric GastroenterologyMayo ClinicRochesterMinnesotaUSA
| | - Binita M Kamath
- The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Kathleen M Loomes
- The Children's Hospital of Philadelphia and Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Saul J Karpen
- Emory University School of Medicine and Children's Healthcare of AtlantaAtlantaGeorgiaUSA
| |
Collapse
|
44
|
Martínez-García J, Molina A, González-Aseguinolaza G, Weber ND, Smerdou C. Gene Therapy for Acquired and Genetic Cholestasis. Biomedicines 2022; 10:biomedicines10061238. [PMID: 35740260 PMCID: PMC9220166 DOI: 10.3390/biomedicines10061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Cholestatic diseases can be caused by the dysfunction of transporters involved in hepatobiliary circulation. Although pharmacological treatments constitute the current standard of care for these diseases, none are curative, with liver transplantation being the only long-term solution for severe cholestasis, albeit with many disadvantages. Liver-directed gene therapy has shown promising results in clinical trials for genetic diseases, and it could constitute a potential new therapeutic approach for cholestatic diseases. Many preclinical gene therapy studies have shown positive results in animal models of both acquired and genetic cholestasis. The delivery of genes that reduce apoptosis or fibrosis or improve bile flow has shown therapeutic effects in rodents in which cholestasis was induced by drugs or bile duct ligation. Most studies targeting inherited cholestasis, such as progressive familial intrahepatic cholestasis (PFIC), have focused on supplementing a correct version of a mutated gene to the liver using viral or non-viral vectors in order to achieve expression of the therapeutic protein. These strategies have generated promising results in treating PFIC3 in mouse models of the disease. However, important challenges remain in translating this therapy to the clinic, as well as in developing gene therapy strategies for other types of acquired and genetic cholestasis.
Collapse
Affiliation(s)
- Javier Martínez-García
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Angie Molina
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
| | - Gloria González-Aseguinolaza
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
| | - Nicholas D. Weber
- Vivet Therapeutics S.L., 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| | - Cristian Smerdou
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain; (J.M.-G.); (A.M.); (G.G.-A.)
- Instituto de Investigación Sanitaria de Navarra (IdISNA), 31008 Pamplona, Spain
- Correspondence: (N.D.W.); (C.S.); Tel.: +34-948194700 (N.D.W. & C.S.)
| |
Collapse
|
45
|
Ileal Bile Acid Transporter Inhibition Reduces Post-Transplant Diarrhea and Growth Failure in FIC1 Disease—A Case Report. CHILDREN 2022; 9:children9050669. [PMID: 35626847 PMCID: PMC9139332 DOI: 10.3390/children9050669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Familial intrahepatic cholestasis 1 (FIC1) disease is a genetic disorder characterized by hepatic and gastrointestinal disease due to ATP8B1 deficiency, often requiring liver transplantation (LT). Extrahepatic symptoms, such as diarrhea, malabsorption, and failure to thrive, do not improve and instead may be aggravated after LT. We describe a patient with FIC1 disease who underwent LT at 2 years, 8 months of age. After LT, the child developed severe refractory diarrhea and failed to thrive. The response to bile acid resins was unsatisfactory, and the parents declined our recommendation for partial external biliary diversion (PEBD). Quality of life was extremely impaired, especially due to severe diarrhea, making school attendance impossible. Attempting to reduce the total bile acids, we initiated off-label use of the ileal bile acid transporter (IBAT) inhibitor Elobixibat (Goofice™), later converted to Odevixibat (Bylvay™). After six months of treatment, the patient showed less stool output, increased weight and height, and improved physical energy levels. The child could now pursue higher undergraduate education. In our patient with FIC1 disease, the use of IBAT inhibitors was effective in treating chronic diarrhea and failure to thrive. This approach is novel; further investigations are needed to clarify the exact mode of action in this condition.
Collapse
|
46
|
Loomes KM, Squires RH, Kelly D, Rajwal S, Soufi N, Lachaux A, Jankowska I, Mack C, Setchell KDR, Karthikeyan P, Kennedy C, Dorenbaum A, Desai NK, Garner W, Jaecklin T, Vig P, Miethke A, Thompson RJ. Maralixibat for the treatment of PFIC: Long-term, IBAT inhibition in an open-label, Phase 2 study. Hepatol Commun 2022; 6:2379-2390. [PMID: 35507739 PMCID: PMC9426380 DOI: 10.1002/hep4.1980] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/13/2023] Open
Abstract
Children with progressive familial intrahepatic cholestasis, including bile salt export pump (BSEP) and familial intrahepatic cholestasis–associated protein 1 (FIC1) deficiencies, suffer debilitating cholestatic pruritus that adversely affects growth and quality of life (QoL). Reliance on surgical interventions, including liver transplantation, highlights the unmet therapeutic need. INDIGO was an open‐label, Phase 2, international, long‐term study to assess the efficacy and safety of maralixibat in children with FIC1 or BSEP deficiencies. Thirty‐three patients, ranging from 12 months to 18 years of age, were enrolled. Eight had FIC1 deficiency and 25 had BSEP deficiency. Of the latter, 6 had biallelic, protein truncating mutations (t)‐BSEP, and 19 had ≥ 1 nontruncating mutation (nt)‐BSEP. Patients received maralixibat 266 μg/kg orally, once daily, from baseline to Week 72, with twice‐daily dosing permitted from Week 72. Long‐term efficacy was determined at Week 240. Serum bile acid (sBA) response (reduction in sBAs of > 75% from baseline or concentrations <102.0 μmol/L) was achieved in 7 patients with nt‐BSEP, 6 during once‐daily dosing, and 1 after switching to twice‐daily dosing. sBA responders also demonstrated marked reductions in sBAs and pruritus, and increases in height, weight, and QoL. All sBA responders remained liver transplant–free after > 5 years. No patients with FIC1 deficiency or t‐BSEP deficiency met the sBA responder criteria during the study. Maralixibat was generally well‐tolerated throughout the study. Conclusion: Response to maralixibat was dependent on progressive familial intrahepatic cholestasis subtype, and 6 of 19 patients with nt‐BSEP experienced rapid and sustained reductions in sBA levels. The 7 responders survived with native liver and experienced clinically significant reductions in pruritus and meaningful improvements in growth and QoL. Maralixibat may represent a well‐tolerated alternative to surgical intervention.
Collapse
Affiliation(s)
- Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert H Squires
- Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, Birmingham, UK.,University of Birmingham, Birmingham, UK
| | | | - Nisreen Soufi
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alain Lachaux
- Hepatology and Nutrition Reference Center for Rare Diseases, Children's Hospital of Lyon, HCL, and Claude Bernard Lyon University 1, Lyon, France
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders, and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Cara Mack
- Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Alejandro Dorenbaum
- Department of Pediatrics, Stanford School of Medicine, Palo Alto, California, USA
| | - Nirav K Desai
- Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Will Garner
- Mirum Pharmaceuticals, Foster City, California, USA
| | | | - Pamela Vig
- Mirum Pharmaceuticals, Foster City, California, USA
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
47
|
Abstract
Vanishing bile duct syndrome (VBDS) refers to a form of cholestatic liver disease with many etiologies. Vanishing bile duct syndrome is characterized by biliary ductopenia and chronic cholestasis. This is a challenging condition for clinicians because of its rarity and unclear pathophysiology. Presented is an 18-year-old woman who developed cholestatic liver injury and intrahepatic biliary ductopenia after a course of oral contraceptives and intravenous estrogen for uterine bleeding. A year later, this patient did not have significant improvement in liver biomarkers and was referred for transplantation.
Collapse
|
48
|
Structural insights into the activation of autoinhibited human lipid flippase ATP8B1 upon substrate binding. Proc Natl Acad Sci U S A 2022; 119:e2118656119. [PMID: 35349344 PMCID: PMC9168909 DOI: 10.1073/pnas.2118656119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP8B1 is a P4 ATPase that maintains membrane asymmetry by transporting phospholipids across the cell membrane. Disturbance of lipid asymmetry will lead to the imbalance of the cell membrane and eventually, cell death. Thus, defects in ATP8B1 are usually associated with severe human diseases, such as intrahepatic cholestasis. The present structures of ATP8B1 complexed with its auxiliary noncatalytic partners CDC50A and CDC50B reveal an autoinhibited state of ATP8B1 that could be released upon substrate binding. Moreover, release of this autoinhibition could be facilitated by the bile acids, which are key factors that alter the membrane asymmetry of hepatocytes. This enabled us to figure out a feedback loop of bile acids and lipids across the cell membrane. The human P4 ATPase ATP8B1 in complex with the auxiliary noncatalytic protein CDC50A or CDC50B mediates the transport of cell-membrane lipids from the outer to the inner membrane leaflet, which is crucial to maintain the asymmetry of membrane lipids. Its dysfunction usually leads to an imbalance of bile-acid circulation and eventually causes intrahepatic cholestasis diseases. Here, we found that both ATP8B1–CDC50A and ATP8B1–CDC50B possess a higher ATPase activity in the presence of the most favored substrate phosphatidylserine (PS), and, moreover, that the PS-stimulated activity could be augmented upon the addition of bile acids. The 3.4-Å cryo-electron microscopy structures of ATP8B1–CDC50A and ATP8B1–CDC50B enabled us to capture a phosphorylated and autoinhibited state, with the N- and C-terminal tails separately inserted into the cytoplasmic interdomain clefts of ATP8B1. The PS-bound ATP8B1–CDC50A structure at 4.0-Å resolution indicated that the autoinhibited state could be released upon PS binding. Structural analysis combined with mutagenesis revealed the residues that determine the substrate specificity and a unique positively charged loop in the phosphorylated domain of ATP8B1 for the recruitment of bile acids. Together, we supplemented the Post–Albers transport cycle of P4 ATPases with an extra autoinhibited state of ATP8B1, which could be activated upon substrate binding. These findings not only provide structural insights into the ATP8B1-mediated restoration of human membrane lipid asymmetry during bile-acid circulation, but also advance our understanding of the molecular mechanism of P4 ATPases.
Collapse
|
49
|
Lipiński P, Ciara E, Jurkiewicz D, Płoski R, Wawrzynowicz-Syczewska M, Pawłowska J, Jankowska I. Progressive familial intrahepatic cholestasis type 3: Report of four clinical cases, novel ABCB4 variants and long-term follow-up. Ann Hepatol 2022; 25:100342. [PMID: 33757843 DOI: 10.1016/j.aohep.2021.100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Progressive familial intrahepatic cholestasis type 3 (PFIC-3) is a rare autosomal recessive cholestatic liver disorder caused by mutations in the ABCB4 gene. The aim of this study was to present the phenotypic and genotypic spectrum of 4 Polish PFIC-3 patients diagnosed in a one-referral centre. MATERIALS AND METHODS The study included 4 patients with cholestasis and pathogenic variants in the ABCB4 gene identified by next-generation sequencing (NGS) of a targeted-gene panel or whole exome sequencing (WES). Clinical, laboratory, histological, and molecular data were collected. RESULTS Four patients (three males) were identified. The age at first noted clinical signs and symptoms was 6, 2.5, 14, and 2 years respectively; the mean age was 6 years. Those signs and symptoms include pruritus (2 out of 4 patients) and hepatomegaly with splenomegaly (4 out of 4 patients). The age at the time of referral to our centre was 9, 3, 15, and 2.5 years respectively, while the mean age was 7 years. Chronic cholestatic liver disease of unknown aetiology was established in all of them. The NGS analysis was performed in all patients at the last follow-up visit. Three novel variants including c.902T>A, p.Met301Lys, c.3279+1G>A, p.?, and c.3524T>A, p.Leu1175His were identified. The time from the first consultation to the final diagnosis was 14, 9, 3, and 1 year respectively; the mean was 6.8 years. A detailed follow-up was presented. CONCLUSIONS The clinical phenotype of PFIC-3 could be variable. The clinical and biochemical diagnosis of PFIC-3 is difficult, thus the NGS study is very useful in making a proper diagnosis.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland; Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland.
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Jurkiewicz
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wawrzynowicz-Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University in Szczecin, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
50
|
Liu TF, He JJ, Wang L, Zhang LY. Novel ABCB4 mutations in an infertile female with progressive familial intrahepatic cholestasis type 3: A case report. World J Clin Cases 2022; 10:1998-2006. [PMID: 35317165 PMCID: PMC8891790 DOI: 10.12998/wjcc.v10.i6.1998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations that occur in the ABCB4 gene, which encodes multidrug-resistant protein 3, underlie the occurrence of progressive familial intrahepatic cholestasis type 3 (PFIC3). Clinical signs of intrahepatic cholestasis due to gene mutations typically first appear during infancy or childhood. Reports of PFIC3 occurring in adults are rare.
CASE SUMMARY This is a case study of a 32-year-old infertile female Chinese patient with a 15-year history of recurrent abnormal liver function. Her primary clinical signs were elevated levels of alkaline phosphatase and γ-glutamyl transpeptidase. Other possible reasons for liver dysfunction were eliminated in this patient, resulting in a diagnosis of PFIC3. The diagnosis was confirmed using gene detection and histological analyses. Assessments using genetic sequencing analysis indicated the presence of two novel heterozygous mutations in the ABCB4 gene, namely, a 2950C>T; p.A984V mutation (exon 24) and a 667A>G; p.I223V mutation (exon 7). After receiving ursodeoxycholic acid (UDCA) treatment, the patient's liver function indices improved, and she successfully became pregnant by in vitro fertilization. However, the patient developed intrahepatic cholestasis of pregnancy in the first trimester. Fortunately, treatment with UDCA was safe and effective.
CONCLUSION These novel ABCB4 heterozygous mutations have a variety of clinical phenotypes. Continued follow-up is essential for a comprehensive understanding of PFIC3.
Collapse
Affiliation(s)
- Tian-Fu Liu
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Jing-Jing He
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Liang Wang
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| | - Ling-Yi Zhang
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China
| |
Collapse
|