1
|
Guillaud O, Dumortier J, Couchonnal-Bedoya E, Ruiz M. Wilson Disease and Alpha1-Antitrypsin Deficiency: A Review of Non-Invasive Diagnostic Tests. Diagnostics (Basel) 2023; 13:diagnostics13020256. [PMID: 36673066 PMCID: PMC9857715 DOI: 10.3390/diagnostics13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Wilson disease and alpha1-antitrypsin deficiency are two rare genetic diseases that may impact predominantly the liver and/or the brain, and the liver and/or the lung, respectively. The early diagnosis of these diseases is important in order to initiate a specific treatment, when available, ideally before irreversible organ damage, but also to initiate family screening. This review focuses on the non-invasive diagnostic tests available for clinicians in both diseases. These tests are crucial at diagnosis to reduce the potential diagnostic delay and assess organ involvement. They also play a pivotal role during follow-up to monitor disease progression and evaluate treatment efficacy of current or emerging therapies.
Collapse
Affiliation(s)
- Olivier Guillaud
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Ramsay Générale de Santé, Clinique de la Sauvegarde, 69009 Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Correspondence: ; Tel.: +33-4-72-11-95-19
| | - Jérôme Dumortier
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Fédération des Spécialités Digestives, 69003 Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Eduardo Couchonnal-Bedoya
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour la Maladie de Wilson, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
| | - Mathias Ruiz
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service d’Hépatogastroentérologie et Nutrition Pédiatrique, 69500 Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Centre National de Référence pour l’Atrésie des Voies Biliaires et les Cholestases Génétiques, 69500 Bron, France
| |
Collapse
|
2
|
Khodayari N, Oshins R, Aranyos AM, Duarte S, Mostofizadeh S, Lu Y, Brantly M. Characterization of hepatic inflammatory changes in a C57BL/6J mouse model of alpha1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol 2022; 323:G594-G608. [PMID: 36256438 DOI: 10.1152/ajpgi.00207.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic disease caused by a hepatic accumulation of mutant alpha-1 antitrypsin (ZAAT). Individuals with AATD are prone to develop a chronic liver disease that remains undiagnosed until late stage of the disease. Here, we sought to characterize the liver pathophysiology of a human transgenic mouse model for AATD with a manifestation of liver disease compared with normal transgenic mice model. Male and female transgenic mice for normal (Pi*M) and mutant variant (Pi*Z) human alpha-1 antitrypsin at 3 and 6 mo of age were subjected to this study. The progression of hepatic ZAAT accumulation, hepatocyte injury, steatosis, liver inflammation, and fibrotic features were monitored by performing an in vivo study. We have also performed a Next-Gene transcriptomic analysis of the transgenic mice liver tissue 16 h after lipopolysaccharide (LPS) administration to delineate liver inflammatory response in Pi*Z mice as compared with Pi*M. Our results show hepatic ZAAT accumulation, followed by hepatocyte ballooning and liver steatosis developed at 3 mo in Pi*Z mice compared with the mice carrying normal variant of human alpha-1 antitrypsin. We observed higher levels of hepatic immune cell infiltrations in both 3- and 6-mo-old Pi*Z mice compared with Pi*M as an indication of liver inflammation. Liver fibrosis was observed as accumulation of collagen in 6-mo-old Pi*Z liver tissues compared with Pi*M control mice. Furthermore, the transcriptomic analysis revealed a dysregulated liver immune response to LPS in Pi*Z mice compared with Pi*M. Of particular interest for translational work, this study aims to establish a mouse model of AATD with a strong manifestation of liver disease that will be a valuable in vivo tool to study the pathophysiology of AATD-mediated liver disease. Our data suggest that the human transgenic mouse model of AATD could provide a suitable model for the evaluation of therapeutic approaches and preventive reagents against AATD-mediated liver disease.NEW & NOTEWORTHY We have characterized a mouse model of human alpha-1 antitrypsin deficiency with a strong manifestation of liver disease that can be used as an in vivo tool to test preventive and therapeutic reagents. Our data explores the altered immunophenotype of alpha-1 antitrypsin-deficient liver macrophages and suggests a relationship between acute inflammation, immune response, and fibrosis.
Collapse
Affiliation(s)
- Nazli Khodayari
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Regina Oshins
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alek M Aranyos
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, Florida
| | - Sayedamin Mostofizadeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| | - Mark Brantly
- Division of Pulmonary, Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Duwaerts CC, Maiers JL. ER Disposal Pathways in Chronic Liver Disease: Protective, Pathogenic, and Potential Therapeutic Targets. Front Mol Biosci 2022; 8:804097. [PMID: 35174209 PMCID: PMC8841999 DOI: 10.3389/fmolb.2021.804097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum is a central player in liver pathophysiology. Chronic injury to the ER through increased lipid content, alcohol metabolism, or accumulation of misfolded proteins causes ER stress, dysregulated hepatocyte function, inflammation, and worsened disease pathogenesis. A key adaptation of the ER to resolve stress is the removal of excess or misfolded proteins. Degradation of intra-luminal or ER membrane proteins occurs through distinct mechanisms that include ER-associated Degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD), which includes macro-ER-phagy, micro-ER-phagy, and Atg8/LC-3-dependent vesicular delivery. All three of these processes are critical for removing misfolded or unfolded protein aggregates, and re-establishing ER homeostasis following expansion/stress, which is critical for liver function and adaptation to injury. Despite playing a key role in resolving ER stress, the contribution of these degradative processes to liver physiology and pathophysiology is understudied. Analysis of publicly available datasets from diseased livers revealed that numerous genes involved in ER-related degradative pathways are dysregulated; however, their roles and regulation in disease progression are not well defined. Here we discuss the dynamic regulation of ER-related protein disposal pathways in chronic liver disease and cell-type specific roles, as well as potentially targetable mechanisms for treatment of chronic liver disease.
Collapse
Affiliation(s)
- Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jessica L. Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Schulz M, Kleinjans M, Strnad P, Demir M, Holtmann TM, Tacke F, Wree A. Shear Wave Elastography and Shear Wave Dispersion Imaging in the Assessment of Liver Disease in Alpha1-Antitrypsin Deficiency. Diagnostics (Basel) 2021; 11:diagnostics11040629. [PMID: 33807358 PMCID: PMC8066059 DOI: 10.3390/diagnostics11040629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/19/2022] Open
Abstract
Liver affection of Alpha1-antitrypsin deficiency (AATD) can lead to cirrhosis and hepatocellular carcinoma (HCC). A noninvasive severity assessment of liver disease in AATD is urgently needed since laboratory parameters may not accurately reflect the extent of liver involvement. Preliminary data exist on two-dimensional shear wave elastography (2D-SWE) being a suitable method for liver fibrosis measurement in AATD. AATD patients without HCC were examined using 2D-SWE, shear wave dispersion imaging (SWD) and transient elastography (TE). Furthermore, liver steatosis was assessed using the controlled attenuation parameter (CAP) and compared to the new method of attenuation imaging (ATI). 29 AATD patients were enrolled, of which 18 had the PiZZ genotype, eight had PiMZ, two had PiSZ and one had a PiZP-Lowell genotype. 2D-SWE (median 1.42 m/S, range 1.14–1.83 m/S) and TE (median 4.8 kPa, range 2.8–24.6 kPa) values displayed a significant correlation (R = 0.475, p < 0.05). 2D-SWE, ATI (median 0.56 dB/cm/MHz, range 0.43–0.96 dB/cm/MHz) and CAP (median 249.5 dB/m, range 156–347 dB/m) values were higher in PiZZ when compared to other AATD genotypes. This study provides evidence that 2D-SWE is a suitable method for the assessment of liver disease in AATD. The newer methods of SWD and ATI require further evaluation in the context of AATD.
Collapse
Affiliation(s)
- Marten Schulz
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
- Correspondence:
| | - Moritz Kleinjans
- Medical Clinic III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (M.K.); (P.S.)
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network (ERN) “Rare Liver” and the European Association for the Study of the Liver (EASL) Registry Group “Alpha1-Liver”, 52074 Aachen, Germany
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases, and Intensive Care, University Hospital, RWTH Aachen, 52074 Aachen, Germany; (M.K.); (P.S.)
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network (ERN) “Rare Liver” and the European Association for the Study of the Liver (EASL) Registry Group “Alpha1-Liver”, 52074 Aachen, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| | - Theresa M. Holtmann
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) und Campus Charité Mitte (CCM), Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (M.D.); (T.M.H.); (F.T.); (A.W.)
| |
Collapse
|