1
|
Zhu M, Gu Z, Chen F, Chen X, Wang Y, Zhao G. Application of artificial intelligence in the diagnosis and treatment of urinary tumors. Front Oncol 2024; 14:1440626. [PMID: 39188685 PMCID: PMC11345192 DOI: 10.3389/fonc.2024.1440626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Diagnosis and treatment of urological tumors, relying on auxiliary data such as medical imaging, while incorporating individual patient characteristics into treatment selection, has long been a key challenge in clinical medicine. Traditionally, clinicians used extensive experience for decision-making, but recent artificial intelligence (AI) advancements offer new solutions. Machine learning (ML) and deep learning (DL), notably convolutional neural networks (CNNs) in medical image recognition, enable precise tumor diagnosis and treatment. These technologies analyze complex medical image patterns, improving accuracy and efficiency. AI systems, by learning from vast datasets, reveal hidden features, offering reliable diagnostics and personalized treatment plans. Early detection is crucial for tumors like renal cell carcinoma (RCC), bladder cancer (BC), and Prostate Cancer (PCa). AI, coupled with data analysis, improves early detection and reduces misdiagnosis rates, enhancing treatment precision. AI's application in urological tumors is a research focus, promising a vital role in urological surgery with improved patient outcomes. This paper examines ML, DL in urological tumors, and AI's role in clinical decisions, providing insights for future AI applications in urological surgery.
Collapse
Affiliation(s)
- Mengying Zhu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhichao Gu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Fang Chen
- Department of Gynecology, People's Hospital of Liaoning Province, Shenyang, China
| | - Xi Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guohua Zhao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
2
|
Froń A, Semianiuk A, Lazuk U, Ptaszkowski K, Siennicka A, Lemiński A, Krajewski W, Szydełko T, Małkiewicz B. Artificial Intelligence in Urooncology: What We Have and What We Expect. Cancers (Basel) 2023; 15:4282. [PMID: 37686558 PMCID: PMC10486651 DOI: 10.3390/cancers15174282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION Artificial intelligence is transforming healthcare by driving innovation, automation, and optimization across various fields of medicine. The aim of this study was to determine whether artificial intelligence (AI) techniques can be used in the diagnosis, treatment planning, and monitoring of urological cancers. METHODOLOGY We conducted a thorough search for original and review articles published until 31 May 2022 in the PUBMED/Scopus database. Our search included several terms related to AI and urooncology. Articles were selected with the consensus of all authors. RESULTS Several types of AI can be used in the medical field. The most common forms of AI are machine learning (ML), deep learning (DL), neural networks (NNs), natural language processing (NLP) systems, and computer vision. AI can improve various domains related to the management of urologic cancers, such as imaging, grading, and nodal staging. AI can also help identify appropriate diagnoses, treatment options, and even biomarkers. In the majority of these instances, AI is as accurate as or sometimes even superior to medical doctors. CONCLUSIONS AI techniques have the potential to revolutionize the diagnosis, treatment, and monitoring of urologic cancers. The use of AI in urooncology care is expected to increase in the future, leading to improved patient outcomes and better overall management of these tumors.
Collapse
Affiliation(s)
- Anita Froń
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Alina Semianiuk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Uladzimir Lazuk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Kuba Ptaszkowski
- Department of Physiotherapy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agnieszka Siennicka
- Department of Physiology and Pathophysiology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Artur Lemiński
- Department of Urology and Urological Oncology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Tomasz Szydełko
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| |
Collapse
|
3
|
Artificial intelligence for renal cancer: From imaging to histology and beyond. Asian J Urol 2022; 9:243-252. [PMID: 36035341 PMCID: PMC9399557 DOI: 10.1016/j.ajur.2022.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/07/2022] [Accepted: 05/07/2022] [Indexed: 12/24/2022] Open
Abstract
Artificial intelligence (AI) has made considerable progress within the last decade and is the subject of contemporary literature. This trend is driven by improved computational abilities and increasing amounts of complex data that allow for new approaches in analysis and interpretation. Renal cell carcinoma (RCC) has a rising incidence since most tumors are now detected at an earlier stage due to improved imaging. This creates considerable challenges as approximately 10%–17% of kidney tumors are designated as benign in histopathological evaluation; however, certain co-morbid populations (the obese and elderly) have an increased peri-interventional risk. AI offers an alternative solution by helping to optimize precision and guidance for diagnostic and therapeutic decisions. The narrative review introduced basic principles and provide a comprehensive overview of current AI techniques for RCC. Currently, AI applications can be found in any aspect of RCC management including diagnostics, perioperative care, pathology, and follow-up. Most commonly applied models include neural networks, random forest, support vector machines, and regression. However, for implementation in daily practice, health care providers need to develop a basic understanding and establish interdisciplinary collaborations in order to standardize datasets, define meaningful endpoints, and unify interpretation.
Collapse
|
4
|
Xu Q, Zhu Q, Liu H, Chang L, Duan S, Dou W, Li S, Ye J. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists. J Magn Reson Imaging 2021; 55:1251-1259. [PMID: 34462986 DOI: 10.1002/jmri.27900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Differentiating benign from malignant renal tumors is important for selection of the most effective treatment. PURPOSE To develop magnetic resonance imaging (MRI)-based deep learning (DL) models for differentiation of benign and malignant renal tumors and to compare their discrimination performance with the performance of radiomics models and assessment by radiologists. STUDY TYPE Retrospective. POPULATION A total of 217 patients were randomly assigned to a training cohort (N = 173) or a testing cohort (N = 44). FIELD STRENGTH/SEQUENCE Diffusion-weighted imaging (DWI) and fast spin-echo sequence T2-weighted imaging (T2WI) at 3.0T. ASSESSMENT A radiologist manually labeled the region of interest (ROI) on each image. Three DL models using ResNet-18 architecture and three radiomics models using random forest were developed using T2WI alone, DWI alone, and a combination of the two image sets to discriminate between benign and malignant renal tumors. The diagnostic performance of two radiologists was assessed based on professional experience. We also compared the performance of each model and the radiologists. STATISTICAL TESTS The area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of each model and the radiologists. P < 0.05 indicated statistical significance. RESULTS The AUC of the DL models based on T2WI, DWI, and the combination was 0.906, 0.846, and 0.925 in the testing cohorts, respectively. The AUC of the combination DL model was significantly better than that of the models based on individual sequences (0.925 > 0.906, 0.925 > 0.846). The AUC of the radiomics models based on T2WI, DWI, and the combination was 0.824, 0.742, and 0.826 in the testing cohorts, respectively. The AUC of two radiologists was 0.724 and 0.667 in the testing cohorts. CONCLUSION Thus, the MRI-based DL model is useful for differentiating benign from malignant renal tumors in clinic, and the DL model based on T2WI + DWI had the best performance. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Qing Xu
- Department of Medical Imaging, Clinic Medical School, Yangzhou University, Northern Jiangsu Province Hospital, Yangzhou, China
| | - QingQiang Zhu
- Department of Medical Imaging, Clinic Medical School, Yangzhou University, Northern Jiangsu Province Hospital, Yangzhou, China
| | - Hao Liu
- Yizhun Medical AI, Beijing, China
| | | | | | | | - SaiYang Li
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Ye
- Department of Medical Imaging, Clinic Medical School, Yangzhou University, Northern Jiangsu Province Hospital, Yangzhou, China
| |
Collapse
|
5
|
Salem H, Soria D, Lund JN, Awwad A. A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology. BMC Med Inform Decis Mak 2021; 21:223. [PMID: 34294092 PMCID: PMC8299670 DOI: 10.1186/s12911-021-01585-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Testing a hypothesis for 'factors-outcome effect' is a common quest, but standard statistical regression analysis tools are rendered ineffective by data contaminated with too many noisy variables. Expert Systems (ES) can provide an alternative methodology in analysing data to identify variables with the highest correlation to the outcome. By applying their effective machine learning (ML) abilities, significant research time and costs can be saved. The study aims to systematically review the applications of ES in urological research and their methodological models for effective multi-variate analysis. Their domains, development and validity will be identified. METHODS The PRISMA methodology was applied to formulate an effective method for data gathering and analysis. This study search included seven most relevant information sources: WEB OF SCIENCE, EMBASE, BIOSIS CITATION INDEX, SCOPUS, PUBMED, Google Scholar and MEDLINE. Eligible articles were included if they applied one of the known ML models for a clear urological research question involving multivariate analysis. Only articles with pertinent research methods in ES models were included. The analysed data included the system model, applications, input/output variables, target user, validation, and outcomes. Both ML models and the variable analysis were comparatively reported for each system. RESULTS The search identified n = 1087 articles from all databases and n = 712 were eligible for examination against inclusion criteria. A total of 168 systems were finally included and systematically analysed demonstrating a recent increase in uptake of ES in academic urology in particular artificial neural networks with 31 systems. Most of the systems were applied in urological oncology (prostate cancer = 15, bladder cancer = 13) where diagnostic, prognostic and survival predictor markers were investigated. Due to the heterogeneity of models and their statistical tests, a meta-analysis was not feasible. CONCLUSION ES utility offers an effective ML potential and their applications in research have demonstrated a valid model for multi-variate analysis. The complexity of their development can challenge their uptake in urological clinics whilst the limitation of the statistical tools in this domain has created a gap for further research studies. Integration of computer scientists in academic units has promoted the use of ES in clinical urological research.
Collapse
Affiliation(s)
- Hesham Salem
- Urological Department, NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, NG72UH, UK
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, UK
| | - Daniele Soria
- School of Computer Science and Engineering, University of Westminster, London, W1W 6UW, UK
| | - Jonathan N Lund
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, University of Nottingham, Derby, DE22 3DT, UK
| | - Amir Awwad
- NIHR Nottingham Biomedical Research Centre, Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, NG72UH, UK.
- Department of Medical Imaging, London Health Sciences Centre, University of Hospital, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
6
|
Sessa M, Liang D, Khan AR, Kulahci M, Andersen M. Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 2-Comparison of the Performance of Artificial Intelligence and Traditional Pharmacoepidemiological Techniques. Front Pharmacol 2021; 11:568659. [PMID: 33519433 PMCID: PMC7841344 DOI: 10.3389/fphar.2020.568659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023] Open
Abstract
Aim: To summarize the evidence on the performance of artificial intelligence vs. traditional pharmacoepidemiological techniques. Methods: Ovid MEDLINE (01/1950 to 05/2019) was searched to identify observational studies, meta-analyses, and clinical trials using artificial intelligence techniques having a drug as the exposure or the outcome of the study. Only studies with an available full text in the English language were evaluated. Results: In all, 72 original articles and five reviews were identified via Ovid MEDLINE of which 19 (26.4%) compared the performance of artificial intelligence techniques with traditional pharmacoepidemiological methods. In total, 44 comparisons have been performed in articles that aimed at 1) predicting the needed dosage given the patient’s characteristics (31.8%), 2) predicting the clinical response following a pharmacological treatment (29.5%), 3) predicting the occurrence/severity of adverse drug reactions (20.5%), 4) predicting the propensity score (9.1%), 5) identifying subpopulation more at risk of drug inefficacy (4.5%), 6) predicting drug consumption (2.3%), and 7) predicting drug-induced lengths of stay in hospital (2.3%). In 22 out of 44 (50.0%) comparisons, artificial intelligence performed better than traditional pharmacoepidemiological techniques. Random forest (seven out of 11 comparisons; 63.6%) and artificial neural network (six out of 10 comparisons; 60.0%) were the techniques that in most of the comparisons outperformed traditional pharmacoepidemiological methods. Conclusion: Only a small fraction of articles compared the performance of artificial intelligence techniques with traditional pharmacoepidemiological methods and not all artificial intelligence techniques have been compared in a Pharmacoepidemiological setting. However, in 50% of comparisons, artificial intelligence performed better than pharmacoepidemiological techniques.
Collapse
Affiliation(s)
- Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David Liang
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Rauf Khan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Murat Kulahci
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.,Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, Luleå, Sweden
| | - Morten Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Sessa M, Khan AR, Liang D, Andersen M, Kulahci M. Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1-Overview of Knowledge Discovery Techniques in Artificial Intelligence. Front Pharmacol 2020; 11:1028. [PMID: 32765261 PMCID: PMC7378532 DOI: 10.3389/fphar.2020.01028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Aim To perform a systematic review on the application of artificial intelligence (AI) based knowledge discovery techniques in pharmacoepidemiology. Study Eligibility Criteria Clinical trials, meta-analyses, narrative/systematic review, and observational studies using (or mentioning articles using) artificial intelligence techniques were eligible. Articles without a full text available in the English language were excluded. Data Sources Articles recorded from 1950/01/01 to 2019/05/06 in Ovid MEDLINE were screened. Participants Studies including humans (real or simulated) exposed to a drug. Results In total, 72 original articles and 5 reviews were identified via Ovid MEDLINE. Twenty different knowledge discovery methods were identified, mainly from the area of machine learning (66/72; 91.7%). Classification/regression (44/72; 61.1%), classification/regression + model optimization (13/72; 18.0%), and classification/regression + features selection (12/72; 16.7%) were the three most frequent tasks in reviewed literature that machine learning methods has been applied to solve. The top three used techniques were artificial neural networks, random forest, and support vector machines models. Conclusions The use of knowledge discovery techniques of artificial intelligence techniques has increased exponentially over the years covering numerous sub-topics of pharmacoepidemiology. Systematic Review Registration Systematic review registration number in PROSPERO: CRD42019136552.
Collapse
Affiliation(s)
- Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Rauf Khan
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - David Liang
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Murat Kulahci
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.,Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
8
|
Differentiation of Small (≤ 4 cm) Renal Masses on Multiphase Contrast-Enhanced CT by Deep Learning. AJR Am J Roentgenol 2020; 214:605-612. [PMID: 31913072 DOI: 10.2214/ajr.19.22074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE. This study evaluated the utility of a deep learning method for determining whether a small (≤ 4 cm) solid renal mass was benign or malignant on multiphase contrast-enhanced CT. MATERIALS AND METHODS. This retrospective study included 1807 image sets from 168 pathologically diagnosed small (≤ 4 cm) solid renal masses with four CT phases (unenhanced, corticomedullary, nephrogenic, and excretory) in 159 patients between 2012 and 2016. Masses were classified as malignant (n = 136) or benign (n = 32). The dataset was randomly divided into five subsets: four were used for augmentation and supervised training (48,832 images), and one was used for testing (281 images). The Inception-v3 architecture convolutional neural network (CNN) model was used. The AUC for malignancy and accuracy at optimal cutoff values of output data were evaluated in six different CNN models. Multivariate logistic regression analysis was also performed. RESULTS. Malignant and benign lesions showed no significant difference of size. The AUC value of corticomedullary phase was higher than that of other phases (corticomedullary vs excretory, p = 0.022). The highest accuracy (88%) was achieved in corticomedullary phase images. Multivariate analysis revealed that the CNN model of corticomedullary phase was a significant predictor for malignancy compared with other CNN models, age, sex, and lesion size. CONCLUSION. A deep learning method with a CNN allowed acceptable differentiation of small (≤ 4 cm) solid renal masses in dynamic CT images, especially in the corticomedullary image model.
Collapse
|
9
|
Checcucci E, Autorino R, Cacciamani GE, Amparore D, De Cillis S, Piana A, Piazzolla P, Vezzetti E, Fiori C, Veneziano D, Tewari A, Dasgupta P, Hung A, Gill I, Porpiglia F. Artificial intelligence and neural networks in urology: current clinical applications. MINERVA UROL NEFROL 2019; 72:49-57. [PMID: 31833725 DOI: 10.23736/s0393-2249.19.03613-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION As we enter the era of "big data," an increasing amount of complex health-care data will become available. These data are often redundant, "noisy," and characterized by wide variability. In order to offer a precise and transversal view of a clinical scenario the artificial intelligence (AI) with machine learning (ML) algorithms and Artificial neuron networks (ANNs) process were adopted, with a promising wide diffusion in the near future. The present work aims to provide a comprehensive and critical overview of the current and potential applications of AI and ANNs in urology. EVIDENCE ACQUISITION A non-systematic review of the literature was performed by screening Medline, PubMed, the Cochrane Database, and Embase to detect pertinent studies regarding the application of AI and ANN in Urology. EVIDENCE SYNTHESIS The main application of AI in urology is the field of genitourinary cancers. Focusing on prostate cancer, AI was applied for the prediction of prostate biopsy results. For bladder cancer, the prediction of recurrence-free probability and diagnostic evaluation were analysed with ML algorithms. For kidney and testis cancer, anecdotal experiences were reported for staging and prediction of diseases recurrence. More recently, AI has been applied in non-oncological diseases like stones and functional urology. CONCLUSIONS AI technologies are growing their role in health care; but, up to now, their "real-life" implementation remains limited. However, in the near future, the potential of AI-driven era could change the clinical practice in Urology, improving overall patient outcomes.
Collapse
Affiliation(s)
- Enrico Checcucci
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy -
| | | | | | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Sabrina De Cillis
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Alberto Piana
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Pietro Piazzolla
- Department of Management and Production Engineer, Politechnic University of Turin, Turin, Italy
| | - Enrico Vezzetti
- Department of Management and Production Engineer, Politechnic University of Turin, Turin, Italy
| | - Cristian Fiori
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Domenico Veneziano
- Department of Urology and Renal Transplantation, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Ash Tewari
- Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | | | - Andrew Hung
- USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Inderbir Gill
- USC Institute of Urology, University of Southern California, Los Angeles, CA, USA
| | - Francesco Porpiglia
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | | |
Collapse
|