1
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Li YQ, Fan F, Wang YR, Li LY, Cao YJ, Gu SM, Liu SS, Zhang Y, Wang J, Tie L, Pan Y, Li HF, Li XJ. The novel small molecule BH3 mimetic nobiletin synergizes with vorinostat to induce apoptosis and autophagy in small cell lung cancer. Biochem Pharmacol 2023; 216:115807. [PMID: 37716621 DOI: 10.1016/j.bcp.2023.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Small cell lung cancer (SCLC) is a highly lethal subtype of lung cancer with few therapeutic options; therefore, the identification of new targets and drugs with potent combination therapy is desirable. We previously screened BH3 mimetics from a natural product library, and in this study, we validated nobiletin as a BH3 mimetic. Specifically, we observed its combination potential and mechanism with vorinostat in SCLC in vitro and in vivo. The results showed that combination treatment with nobiletin and vorinostat reduced the proliferation of SCLC H82 cells and increased the levels of apoptotic proteins such as cleaved caspase-9 and cleaved PARP. The combination treatment increased LC3-II expression and induced autophagic cell death. In addition, this treatment significantly inhibited H82 cell xenograft SCLC tumor growth in nude mice. The combination treatment with nobiletin and vorinostat efficiently increased autophagy by inhibiting the PI3K-AKT-mTOR pathway and promoting dissociation of the BCL-2 and Beclin 1 complex, increasing the level of isolated Beclin 1 to stimulate autophagy. Molecular docking and surface plasmon resonance analysis showed that nobiletin stably bound to the BCL-2, BCL-XL and MCL-1 proteins with high affinity in a concentration-dependent manner. These results suggest that nobiletin is a BH3-only protein mimetic. Furthermore, the combination of nobiletin with vorinostat increased histone H3K9 and H3K27 acetylation levels in SCLC mouse tumor tissue and enhanced the expression of the BH3-only proteins BIM and BID. We conclude that nobiletin is a novel natural BH3 mimetic that can cooperate with vorinostat to induce apoptosis and autophagy in SCLC.
Collapse
Affiliation(s)
- Yu-Qian Li
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Fang Fan
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Yuan-Ru Wang
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Lu-Yao Li
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Ya-Jun Cao
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Si-Meng Gu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shuai-Shuai Liu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yue Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hui-Fang Li
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China
| | - Xue-Jun Li
- Department of Pharmacology, School of Pharmacy, Shihezi University, Shihezi 832002, China; Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
4
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Chen DL, Ma GX, Yang EL, Yang Y, Wang CH, Sun ZC, Liang HQ, Xu XD, Wei JH. Cadinane-type sesquiterpenoid dimeric diastereomers hibisceusones A-C from infected stems of Hibiscus tiliaceus with cytotoxic activity against triple-negative breast cancer cells. Bioorg Chem 2022; 127:105982. [DOI: 10.1016/j.bioorg.2022.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
6
|
Metabolic changes during prostate cancer development and progression. J Cancer Res Clin Oncol 2022; 149:2259-2270. [PMID: 36151426 PMCID: PMC10097763 DOI: 10.1007/s00432-022-04371-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Metabolic reprogramming has been recognised as a hallmark in solid tumours. Malignant modification of the tumour's bioenergetics provides energy for tumour growth and progression. Otto Warburg first reported these metabolic and biochemical changes in 1927. In prostate cancer (PCa) epithelial cells, the tumour metabolism also changes during development and progress. These alterations are partly driven by the androgen receptor, the key regulator in PCa development, progress, and survival. In contrast to other epithelial cells of different entities, glycolytic metabolism in prostate cells sustains physiological citrate secretion in the normal prostatic epithelium. In the early stages of PCa, citrate is utilised to power oxidative phosphorylation and fuel lipogenesis, enabling tumour growth and progression. In advanced and incurable castration-resistant PCa, a metabolic shift towards choline, amino acid, and glycolytic metabolism fueling tumour growth and progression has been described. Therefore, even if the metabolic changes are not fully understood, the altered metabolism during tumour progression may provide opportunities for novel therapeutic strategies, especially in advanced PCa stages. This review focuses on the main differences in PCa's metabolism during tumourigenesis and progression highlighting glutamine's role in PCa.
Collapse
|
7
|
Zhang Y, Song XL, Yu B, Foong LC, Shu Y, Mai CW, Hu J, Dong B, Xue W, Chua CW. TP53 loss-of-function causes vulnerability to autophagy inhibition in aggressive prostate cancer. Int J Urol 2022; 29:1085-1094. [PMID: 35975690 DOI: 10.1111/iju.15021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES TP53 loss-of-function is commonly found in aggressive prostate cancer. However, a highly-efficient therapy for this tumor subtype is still lacking. In this study, we investigated the relationship between TP53 mutation status and autophagy in prostate cancer and assessed the efficacy of autophagy inhibitors on TP53-deficient tumors. METHODS We first evaluated the expression patterns of p53 and autophagy-related proteins, namely LC3B, ULK1 and BECLIN1, as well as their relationship in treatment-naïve and castration-resistant prostate cancer specimens through immunohistochemistry. Subsequently, we generated a Trp53-deleted genetically-engineered mouse model, established prostate tumor organoid lines from the mice and assessed the efficacy of autophagy inhibitors in overcoming Enzalutamide resistance in the tumor organoid model. We also investigated the impact of TP53 re-expression in modulating responses to autophagy inhibitors using LNCaP cell line, which harbored a TP53 missense mutation. Lastly, we attempted to identify potential autophagy-related genes that were crucial for TP53-deficient tumor maintenance. RESULTS TP53 loss-of-function was associated with increased levels of autophagy-related proteins in aggressive prostate cancers and Trp53-deleted genetically-engineered mouse-derived tumors. Moreover, the generated androgen receptor-independent tumor organoids were highly vulnerable to autophagy inhibition. Upon TP53 re-expression, not only did the surviving LNCaP cells demonstrate resistance, but they also showed growth advantage in response to autophagy inhibition. Lastly, PEX14, an important peroxisomal regulator was differentially upregulated in aggressive tumors with TP53 loss-of-function mutations, thus implying the importance of peroxisome turnover in this tumor subtype. CONCLUSION Our results support the potential use of autophagy inhibitors in prostate cancers that contain TP53 loss-of-function mutations.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xian-Li Song
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Yu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Chee Foong
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Yu Shu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Wai Mai
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jing Hu
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chee Wai Chua
- Department of Urology, State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15020144. [PMID: 35215257 PMCID: PMC8879263 DOI: 10.3390/ph15020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
The potential of gossypol and of its R-(−)-enantiomer (R-(−)-gossypol acetic acid, AT-101), has been evaluated for treatment of cancer as an independent agent and in combination with standard chemo-radiation-therapies, respectively. This review assesses the evidence for safety and clinical effectiveness of oral gossypol/AT-101 in treating various types of cancer. The databases PubMed, MEDLINE, Cochrane, and ClinicalTrials.gov were examined. Phase I and II trials as well as single arm and randomized trials were included in this review. Results were screened to determine if they met inclusion criteria and then summarized using a narrative approach. A total of 17 trials involving 759 patients met the inclusion criteria. Overall, orally applied gossypol/AT-101 at low doses (30 mg daily or lower) was determined as well tolerable either as monotherapy or in combination with chemo-radiation. Adverse events should be strictly monitored and were successfully managed by dose-reduction or treating symptoms. There are four randomized trials, two performed in patients with advanced non-small cell lung cancer, one in subjects with head and neck cancer, and one in patients with metastatic castration-resistant prostate cancer. Thereby, standard chemotherapy (either docetaxel (two trials) or docetaxel plus cisplatin or docetaxel plus prednisone) was tested with and without AT-101. Within these trials, a potential benefit was observed in high-risk patients or in some patients with prolongation in progression-free survival or in overall survival. Strikingly, the most recent clinical trial combined low dose AT-101 with docetaxel, fluorouracil, and radiation, achieving complete responses in 11 of 13 patients with gastroesophageal carcinoma (median duration of 12 months) and a median progression-free survival of 52 months. The promising results shown in subsets of patients supports the need of further specification of AT-101 sensitive cancers as well as for the establishment of effective AT-101-based therapy. In addition, the lowest recommended dose of gossypol and its precise toxicity profile need to be confirmed in further studies. Randomized placebo-controlled trials should be performed to validate these data in large cohorts.
Collapse
|
9
|
Liu H, Zhang R, Zhang D, Zhang C, Zhang Z, Fu X, Luo Y, Chen S, Wu A, Zeng W, Qu K, Zhang H, Wang S, Shi H. Cyclic RGD-Decorated Liposomal Gossypol AT-101 Targeting for Enhanced Antitumor Effect. Int J Nanomedicine 2022; 17:227-244. [PMID: 35068931 PMCID: PMC8766252 DOI: 10.2147/ijn.s341824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction (-)-Gossypol (AT-101), the (-)-enantiomer of the natural compound gossypol, has shown significant inhibitory effects on various types of cancers such as osteosarcoma, myeloma, glioma, lung cancer, and prostate cancer. However, the clinical application of (-)-gossypol was often hindered by its evident side effects and the low bioavailability via oral administration, which necessitated the development of suitable (-)-gossypol preparations to settle the problems. In this study, injectable cyclic RGD (cRGD)-decorated liposome (cRGD-LP) was prepared for tumor-targeted delivery of (-)-gossypol. Methods The cRGD-LP was prepared based on cRGD-modified lipids. For comparison, a non-cRGD-containing liposome (LP) with a similar chemical composition to cRGD-LP was specially designed. The physicochemical properties of (-)-gossypol-loaded cRGD-LP (Gos/cRGD-LP) were investigated in terms of the drug loading efficiency, particle size, morphology, drug release, and so on. The inhibitory effect of Gos/cRGD-LP on the proliferation of tumor cells in vitro was evaluated using different cell lines. The biodistribution of cRGD-LP in vivo was investigated via the near-infrared (NIR) fluorescence imaging technique. The antitumor effect of Gos/cRGD-LP in vivo was evaluated in PC-3 tumor-bearing nude mice. Results Gos/cRGD-LP had an average particle size of about 62 nm with a narrow size distribution, drug loading efficiency of over 90%, and sustained drug release for over 96 h. The results of NIR fluorescence imaging demonstrated the enhanced tumor targeting of cRGD-LP in vivo. Moreover, Gos/cRGD-LP showed a significantly enhanced inhibitory effect on PC-3 tumors in mice, with a tumor inhibition rate of over 74% and good biocompatibility. Conclusion The incorporation of cRGD could significantly enhance the tumor-targeting effect of the liposomes and improve the antitumor effect of the liposomal (-)-gossypol in vivo, which indicated the potential of Gos/cRGD-LP that warrants further investigation for clinical applications of this single-isomer drug.
Collapse
Affiliation(s)
- Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
- Correspondence: Hao Liu School of Pharmacy, Southwest Medical University, No. 1 Section 1, Xiang Lin Road, Longmatan District, Luzhou City, Sichuan Province, 646000, People’s Republic of ChinaTel +86 830 3162291 Email
| | - Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Ailing Wu
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, People’s Republic of China
| | - Weiling Zeng
- Department of Scientific Research, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Kunyan Qu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Sijiao Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
- Houyin Shi Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou City, Sichuan Province, 646000, People’s Republic of ChinaTel +86 830 3162209 Email
| |
Collapse
|
10
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
11
|
A novel NRF2/ARE inhibitor gossypol induces cytotoxicity and sensitizes chemotherapy responses in chemo-refractory cancer cells. J Food Drug Anal 2021; 29:638-652. [PMID: 35649133 PMCID: PMC9931009 DOI: 10.38212/2224-6614.3376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
NRF2/ARE signaling pathway is a principal regulator of cellular redox homoeostasis. The stress-induced transcription factor, NRF2, can shield cells from the oxidative damages via binding to the consensus antioxidant-responsive element (ARE) and driving several cyto-protective genes expression. Increasing evidence indicated that aberrant activation of NRF2 in malignant cells may support their survival through various pathways to detoxify chemotherapy drugs, attenuate drug-induced oxidative stress, or induce drug efflux, all of which are crucial in developing drug resistance. Accordingly, NRF2 is a potential drug target for improving the effectiveness of chemotherapy and to reverse drug resistance in cancer cells. A stable ARE-driven reporter human head and neck squamous cell carcinoma (HNSCC) cell line, HSC3-ARE9, was established and utilized to screen novel NRF2 inhibitors from a compound library. The cotton plant derived phenolic aldehyde-gossypol was selected for further analyses. The effects of gossypol in cancer cells were determined by western blotting, RT-qPCR, clonogenic assay, and cell viability assays. The gossypol-responsive gene expression levels were assessed in the Oncomine database. The effects of gossypol on conferring chemo-sensitization were evaluated in etoposide-resistant and cisplatin-resistant cancer cells. Our study is the first to identify that gossypol is effective to reduce both basal and NRF2 activator tert-butylhydroquinone (t-BHQ)-induced ARE-luciferase activity. Gossypol diminishes NRF2 protein stability and thereby leads to the suppression of NRF2/ARE pathway, which resulted in decreasing the expression levels of NRF2 downstream genes in both time- and dose-dependent manners. Inhibition of NRF2 by gossypol significantly decreases cell viabilities in human cancer cells. In addition, we find that gossypol re-sensitizes topoisomerase II poison treatment in etoposide-resistant cancer cells via suppression of NRF2/ABCC1 axis. Moreover, gossypol suppresses NRF2-mediated G6PD expression thereby leads to induce synthetic lethality with cisplatin not only in parental cancer cells but also in cisplatin-resistant cancer cells. These findings suggest that gossypol is a novel NRF2/ARE inhibitor, and can be a potential adjuvant chemotherapeutic agent for treatment of chemo-refractory tumor.
Collapse
|
12
|
Soliman L, De Souza A, Srinivasan P, Danish M, Bertone P, El-Deiry WS, Carneiro BA. The Role of BCL-2 Proteins in the Development of Castration-resistant Prostate Cancer and Emerging Therapeutic Strategies. Am J Clin Oncol 2021; 44:374-382. [PMID: 34014842 DOI: 10.1097/coc.0000000000000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of androgen resistance in advanced prostate cancer remains a challenging clinical problem. Because androgen deprivation therapy constitutes the backbone of first-line treatments for metastatic prostate cancer, the phenotypic switch from an androgen-dependent to an androgen-independent growth state limits the treatment options for these patients. This critical change from an androgen-dependent to an androgen-independent growth state can be regulated by the B-cell lymphoma gene 2 (BCL-2) family of apoptotic proteins. While the roles of BCL-2 protein family members in the carcinogenesis of prostate cancer have been well-studied, emerging data also delineates their modulation of disease progression to castration-resistant prostate cancer (CRPC). Over the past 2 decades, investigators have sought to describe the mechanisms that underpin this development at the molecular level, yet no recent literature has consolidated these findings in a dedicated review. As new classes of BCL-2 family inhibitors are finding indications for other cancer types, it is time to evaluate how such agents might find stable footing for the treatment of CRPC. Several trials to date have investigated BCL-2 inhibitors as therapeutic agents for CRPC. These therapies include selective BCL-2 inhibitors, pan-BCL-2 inhibitors, and novel inhibitors of MCL-1 and BCL-XL. This review details the research regarding the role of BCL-2 family members in the pathogenesis of prostate cancer and contextualizes these findings within the contemporary landscape of prostate cancer treatment.
Collapse
Affiliation(s)
- Luke Soliman
- Warren Alpert Medical School of Brown University
| | - Andre De Souza
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | | | - Matthew Danish
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
| | - Paul Bertone
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| | - Wafik S El-Deiry
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI
| | - Benedito A Carneiro
- Warren Alpert Medical School of Brown University
- Division of Hematology/Oncology, Lifespan Cancer Institute
- Cancer Center at Brown University
| |
Collapse
|
13
|
Zhu K, Ge J, He Y, Li P, Jiang X, Wang J, Mo Y, Huang W, Gong Z, Zeng Z, Xiong W, Yu J. Bioinformatics Analysis of the Signaling Pathways and Genes of Gossypol Induce Death of Nasopharyngeal Carcinoma Cells. DNA Cell Biol 2021; 40:1052-1063. [PMID: 34191589 DOI: 10.1089/dna.2020.6348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gossypol has been reported to exhibit antitumor effects against several human cancers. However, the anticancer effects of gossypol on nasopharyngeal carcinoma (NPC) have not been investigated. Against this backdrop, the present study was designed to evaluate the anticancer effects of gossypol against NPC cells and to identify the signaling pathways involved through bioinformatic analysis. Gossypol-inhibited death of NPC cells is concentration-dependent. To explore the underlying mechanism for gossypol's antitumor effect, microarray of gossypol-treated and -untreated NPC cells was performed. A total of 836 differentially expressing genes (DEGs) were identified in gossypol-treated NPC cells, of which 461 genes were upregulated and 375 genes were downregulated. The cellular components, molecular functions, biological processes, and signal pathways, in which the DEGs were involved, were identified by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The Gene Set Enrichment Analysis (GSEA) predicted upstream transcription factors (TF) ETS2 and E2F1 that regulate DEGs. Weighted Gene Co-expression Network Analysis (WGCNA) was performed to identify a class of modules and genes related to DNA repair and cell cycle. TNFRSF10B, a receptor for death in NPC cells, was knocked down. The results suggested that the ability of NPC cells to resist gossypol killing was enhanced. In addition, to further investigate the possible molecular mechanisms, we constructed a transcriptional regulatory network of TNFRSF10B containing 109 miRNAs and 47 TFs. Taken together, our results demonstrated that gossypol triggered antitumor effects against NPC cells, indicating its applicability for the management of NPC.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Junshang Ge
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yi He
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianjie Jiang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jie Wang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yongzhen Mo
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Weilun Huang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
14
|
Yu Q, Sun Y. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1-8. [PMID: 33442232 PMCID: PMC7797302 DOI: 10.2147/dddt.s286373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the largest family of E3 ubiquitin ligases, responsible for about 20% of the protein degradation by the ubiquitin-proteasome system (UPS). Given their vital roles in multiple cellular processes, and over-activation in many human cancers, CRLs are validated as promising targets for anti-cancer therapies. Activation of CRLs requires cullin neddylation, a process catalysed by three neddylation enzymes. Recently, our group established an AlphaScreen-based in vitro cullin neddylation assay and employed it for high-throughput screening to search for small-molecule inhibitors targeting cullin neddylation. During our pilot screen, gossypol, a natural product extracted from cottonseeds, was identified as one of the most potent neddylation inhibitors of cullin-1 and cullin-5. We further demonstrated that gossypol blocks cullin neddylation by binding to cullin-1/-5 to inactivate CRL1/5 ligase activity, leading to accumulation of MCL-1 and NOXA, the substrates of CRL1 and CRL5, respectively. The combination of gossypol and an MCL-1 inhibitor synergistically enhanced the anti-proliferative effect in multiple human cancer cell lines. Our study unveiled a rational combination of two previously known inhibitors of the Bcl-2 family for enhanced anti-cancer efficacy and identified a novel activity of gossypol as an inhibitor of CRL1 and CRL5 E3s, thus providing a new possibility in the development of novel CRL inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Qing Yu
- Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
15
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
16
|
Negi A, Murphy PV. Development of Mcl-1 inhibitors for cancer therapy. Eur J Med Chem 2020; 210:113038. [PMID: 33333396 DOI: 10.1016/j.ejmech.2020.113038] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.
Collapse
Affiliation(s)
- Arvind Negi
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
17
|
Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Neoplasia 2020; 22:179-191. [PMID: 32145688 PMCID: PMC7076571 DOI: 10.1016/j.neo.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Cullin-RING E3 ligase (CRL) is the largest family of E3 ubiquitin ligase, responsible for ubiquitylation of ∼20% of cellular proteins. CRL plays an important role in many biological processes, particularly in cancers due to abnormal activation. CRL activation requires neddylation, an enzymatic cascade transferring small ubiquitin-like protein NEDD8 to a conserved lysine residue on cullin proteins. Recent studies have validated that neddylation is an attractive anticancer target. In this study, we report the establishment of an Alpha-Screen-based high throughput screen (HTS) assay for in vitro CUL5 neddylation, and screened a library of 17,000 compounds including FDA approved drugs, natural products and synthetic drug-like small-molecule compounds. Gossypol, a natural compound derived from cotton seed, was identified as an inhibitor of cullin neddylation. Biochemical studies showed that gossypol blocked neddylation of both CUL5 and CUL1 through direct binding to SAG-CUL5 or RBX1-CUL1 complex, and CUL5-H572 plays a key role for gossypol binding. On cellular level, gossypol inhibited cullin neddylation in a variety of cancer cell lines and selectively caused accumulation of NOXA and MCL1, the substrates of CUL5 and CUL1, respectively, in multiple cancer cell lines. Combination of gossypol with specific MCL1 inhibitor synergistically suppress growth of human cancer cells. Our study revealed a previously unknown anti-cancer mechanism of gossypol with potential to develop a new class of neddylation inhibitors.
Collapse
|
18
|
Norz V, Rausch S. Treatment and resistance mechanisms in castration-resistant prostate cancer: new implications for clinical decision making? Expert Rev Anticancer Ther 2020; 21:149-163. [PMID: 33106066 DOI: 10.1080/14737140.2021.1843430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: The armamentarium of treatment options in metastatic and non-metastatic CRPC is rapidly evolving. However, the question of how individual treatment decisions should be balanced by available predictive clinical parameters, pharmacogenetic and drug interaction profiles, or compound-associated molecular biomarkers is a major challenge for clinical practice.Areas covered: We discuss treatment and resistance mechanisms in PC with regard to their association to drug efficacy and tolerability. Current efforts of combination treatment and putative predictive biomarkers of available and upcoming compounds are highlighted with regard to their implication on clinical decision-making.Expert opinion: Several treatment approaches are delineated, where identification of resistance mechanisms in CRPC may guide treatment selection. To date, most of these candidate biomarkers will however be found only in a small subset of patients. While current approaches of combination treatment in CRPC are proving synergistic effects on cancer biology, higher complexity with regard to biomarker analysis and interaction profiles of the respective compounds may be expected. Among other aspects of personalized treatment, consideration of drug-drug interaction and pharmacogenetics is an underrepresented issue. However, the non-metastatic castration resistant prostate cancer situation may be an example for treatment selection based on drug interaction profiles in the future.
Collapse
Affiliation(s)
- Valentina Norz
- Department of Urology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Myint ZW, Kunos CA. Bone Fracture Incidence After Androgen Deprivation Therapy-Investigational Agents: Results From Cancer Therapy Evaluation Program-Sponsored Early Phase Clinical Trials 2006-2013. Front Oncol 2020; 10:1125. [PMID: 32760670 PMCID: PMC7372304 DOI: 10.3389/fonc.2020.01125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Androgen deprivation therapy (ADT) is a primary treatment option for patients diagnosed with locally advanced-stage or metastatic prostate cancer. Androgen deprivation can be achieved either by radical orchiectomy or by medical castration using a gonadotropin-releasing hormone agonist. ADT has been linked to an initial 12-month loss of bone mineral density, a risk factor for weight-bearing bone fracture, and therefore, a confounding hazard for adverse event when patients are enrolled on early phase trials. To better understand the frequency of ADT-investigational agent-related bone fracture, we conducted a retrospective study of National Cancer Institute Cancer Therapy Evaluation Program (CTEP)-sponsored early phase trials to determine the number of fractures observed among enrolled prostate cancer patients. Patients and Methods: 464 locally advanced-stage or metastatic prostate cancer patients were identified among seven ADT-investigational agent trials conducted between 2006 and 2013. Demographic, co-morbidity, treatment, and adverse event variables were abstracted from CTEP databases and descriptive statistics were used. Results: 464 men had a median age of 64 years, were mostly white (90%), and had a performance status of 0 or 1 (98%). The number of new bone fractures occurring on or after ADT-investigational agent treatment was very low (4.6 per 1000 person-years). The median pretrial prostate specific antigen level was 29 ng/mL and most men (71%) had prostate cancer histopathology Gleason 7 score or higher. In these trials, 43 percent of men had bone only and 35 percent had bone and visceral metastatic disease. The most frequent grade 1 or 2 adverse events were fatigue (36%), hot flashes (27%), and anemia (17%). Grade 3 or higher adverse events were rare, with hypertension (3%) and hyperglycemia (3%) observed. Conclusions: Identifying bone health factors may still be relevant in selected early phase ADT-investigational agent trial patients, emphasizing the need for improved methods for capturing baseline bone health and studying ADT-investigational agent and concurrent medication interactions on bone health.
Collapse
Affiliation(s)
- Zin W Myint
- Division of Medical Oncology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Charles A Kunos
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
20
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
21
|
Stein MN, Goodin S, Gounder M, Gibbon D, Moss R, Portal D, Lindquist D, Zhao Y, Takebe N, Tan A, Aisner J, Lin H, Ready N, Mehnert JM. A phase I study of AT-101, a BH3 mimetic, in combination with paclitaxel and carboplatin in solid tumors. Invest New Drugs 2019; 38:855-865. [PMID: 31388792 DOI: 10.1007/s10637-019-00807-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
Background AT-101 is a BH3 mimetic that inhibits the heterodimerization of Bcl-2, Bcl-xL, Bcl-W, and Mcl-1 with pro-apoptotic proteins, thereby lowering the threshold for apoptosis. This phase I trial investigated the MTD of AT-101 in combination with paclitaxel and carboplatin in patients with advanced solid tumors. Methods Patients were treated with AT-101 (40 mg) every 12 h on days 1, 2 and 3 of each cycle combined with varying dose levels (DL) of paclitaxel and carboplatin [DL1: paclitaxel (150 mg/m2) and carboplatin (AUC 5) on day 1 of each cycle; DL2: paclitaxel (175 mg/m2) and carboplatin (AUC 6) on day 1 of each cycle]. Secondary objectives included characterizing toxicity, efficacy, pharmacokinetics, and pharmacodynamics of the combination. Results Twenty-four patients were treated across two DLs with a planned expansion cohort. The most common tumor type was prostate (N = 11). Two patients experienced DLTs: grade 3 abdominal pain at DL1 and grade 3 ALT increase at DL2; however, the MTD was not determined. Moderate hematologic toxicity was observed. One CR was seen in a patient with esophageal cancer and 4 patients achieved PRs (1 NSCLC, 3 prostate). PD studies did not yield statistically significant decreases in Bcl-2 and caspase 3 protein levels, or increased apoptotic activity induced by AT-101. Conclusion The combination of AT-101 at 40 mg every 12 h on days 1, 2 and 3 combined with paclitaxel and carboplatin was safe and tolerable. Based on the modest clinical efficacy seen in this trial, this combination will not be further investigated. Clinical Trial Registration: NCT00891072, CTEP#: 8016.
Collapse
Affiliation(s)
- Mark N Stein
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA. .,Herbert Irving Comprehensive Cancer Center, 177 Fort Washington Ave, New York, NY, 10032, USA.
| | - Susan Goodin
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Murugeson Gounder
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Darlene Gibbon
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Rebecca Moss
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Daniella Portal
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Diana Lindquist
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Yujie Zhao
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Antoinette Tan
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Joseph Aisner
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Hongxia Lin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Neal Ready
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Janice M Mehnert
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA. .,Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
22
|
Zhu Q, Pan P, Chen X, Wang Y, Zhang S, Mo J, Li X, Ge RS. Human placental 3β-hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase 1: Identity, regulation and environmental inhibitors. Toxicology 2019; 425:152253. [PMID: 31351905 DOI: 10.1016/j.tox.2019.152253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022]
Abstract
Human placental 3β-hydroxysteroid dehydrogenase/steroid Δ5, 4-isomerase 1 (HSD3B1), a high-affinity type I enzyme, uses pregnenolone to make progesterone, which is critical for maintenance of pregnancy. HSD3B1 is located in the mitochondrion and the smooth endoplasmic reticulum of placental cells and is encoded by HSD3B1 gene. HSD3B1 contains GATA and TEF-5 regulatory elements. Many endocrine disruptors, including phthalates, methoxychlor and its metabolite, organotins, and gossypol directly inhibit placental HSD3B1 thus blocking progesterone production. In this review, we discuss the placental HSD3B1, its gene regulation, biochemistry, subcellular location, and inhibitors from the environment.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Chen
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Song Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
23
|
A phase II study of the orally administered negative enantiomer of gossypol (AT-101), a BH3 mimetic, in patients with advanced adrenal cortical carcinoma. Invest New Drugs 2019; 37:755-762. [PMID: 31172443 DOI: 10.1007/s10637-019-00797-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Background Adrenal cortical carcinoma (ACC) is a rare cancer with treatment options of limited efficacy, and poor prognosis if metastatic. AT-101 is a more potent inhibitor of B cell lymphoma 2 family apoptosis-related proteins than its racemic form, gossypol, which showed preliminary clinical activity in ACC. We thus evaluated the efficacy of AT-101 in patients with advanced ACC. Methods Patients with histologically confirmed metastatic, recurrent, or primarily unresectable ACC were treated with AT-101 (20 mg/day orally, 21 days out of 28-day cycles) until disease progression and/or prohibitive toxicity. The primary endpoint was objective response rate, wherein a Response Evaluation Criteria In Solid Tumors (RECIST) partial response rate of 25% would be considered promising and 10% not, with a Type I error of 10% and 90% power. In a 2-stage design, 2 responses were required of the first 21 assessable subjects to warrant complete accrual of 44 patients. Secondary endpoints included safety, progression-free survival and overall survival. Results This study accrued 29 patients between 2009 and 2011; median number of cycles was 2. Seven percent experienced grade 4 toxicity including cardiac troponin elevations and hypokalemia. None of the first 21 patients attained RECIST partial response; accordingly, study therapy was deemed ineffective and the trial was permanently closed. Conclusions AT-101 had no meaningful clinical activity in this study in patients with advanced ACC, but demonstrated feasibility of prospective therapeutic clinical trials in this rare cancer.
Collapse
|
24
|
Vidoni C, Ferraresi A, Secomandi E, Vallino L, Dhanasekaran DN, Isidoro C. Epigenetic targeting of autophagy for cancer prevention and treatment by natural compounds. Semin Cancer Biol 2019; 66:34-44. [PMID: 31054926 DOI: 10.1016/j.semcancer.2019.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
Despite the undeniable progress made in the last decades, cancer continues to challenge the scientists engaged in searching for an effective treatment for its prevention and cure. One of the malignant hallmarks that characterize cancer cell biology is the altered metabolism of sugars and amino acids. Autophagy is a pathway allowing the macromolecular turnover via recycling of the substrates resulting from the lysosomal degradation of damaged or redundant cell molecules and organelles. As such, autophagy guarantees the proteome quality control and cell homeostasis. Data from in vitro, in animals and in patients researches show that dysregulation of autophagy favors carcinogenesis and cancer progression, making this process an ineluctable target of cancer therapy. The autophagy process is regulated at genetic, epigenetic and post-translational levels. Targeting autophagy with epigenetic modifiers could represent a valuable strategy to prevent or treat cancer. A wealth of natural products from terrestrial and marine living organisms possess anti-cancer activity. Here, we review the experimental proofs demonstrating the ability of natural compounds to regulate autophagy in cancer via epigenetics. The hope is that in the near future this knowledge could translate into effective intervention to prevent and cure cancer.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Eleonora Secomandi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
25
|
Pereira SS, Monteiro MP, Antonini SR, Pignatelli D. Apoptosis regulation in adrenocortical carcinoma. Endocr Connect 2019; 8:R91-R104. [PMID: 30978697 PMCID: PMC6510712 DOI: 10.1530/ec-19-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Apoptosis evading is a hallmark of cancer. Tumor cells are characterized by having an impaired apoptosis signaling, a fact that deregulates the balance between cell death and survival, leading to tumor development, invasion and resistance to treatment. In general, patients with adrenocortical carcinomas (ACC) have an extremely bad prognosis, which is related to disease progression and significant resistance to treatments. In this report, we performed an integrative review about the disruption of apoptosis in ACC that may underlie the characteristic poor prognosis in these patients. Although the apoptosis has been scarcely studied in ACC, the majority of the deregulation phenomena already described are anti-apoptotic. Most importantly, in a near future, targeting apoptosis modulation in ACC patients may become a promising therapeutic.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
- Correspondence should be addressed to D Pignatelli:
| |
Collapse
|
26
|
Singla N, Ghandour RA, Raj GV. Investigational luteinizing hormone releasing hormone (LHRH) agonists and other hormonal agents in early stage clinical trials for prostate cancer. Expert Opin Investig Drugs 2019; 28:249-259. [PMID: 30649971 DOI: 10.1080/13543784.2019.1570130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The treatment and management of prostate cancer continues to evolve; newer classes of agents and combination therapies are being developed and some are being investigated in early phase clinical trials. AREAS COVERED We discuss investigational hormonal agents for the treatment of prostate cancer and focus primarily on luteinizing hormone releasing hormone (LHRH) agonists in early stage trials. We look at agents that target the hormonal axis, including anti-androgens, gonadotropins, estrogenic agents and progestogenic agents and other non-hormonal agents often used in combination with LHRH agonists. We review these candidates in the specific clinical niche in which they might find utility. EXPERT OPINION Of all candidate compounds being evaluated in clinical trials, very few will receive FDA approval. Few, if any of the investigational agents discussed here will be used routinely in clinical practice for treating prostate cancer. Recognizing the reasons for the failure of agents to advance to later stage trials is important. Furthermore, a thorough understanding of the mechanisms underlying prostate cancer pathogenesis, including various points in the HGPA and parallel pathways, will help identify potentially actionable targets.
Collapse
Affiliation(s)
- Nirmish Singla
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Rashed A Ghandour
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Ganesh V Raj
- a Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
27
|
Cao S, Wang G, Ge F, Li X, Zhu Q, Ge RS, Wang Y. Gossypol inhibits 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase: Its possible use for the treatment of prostate cancer. Fitoterapia 2018; 133:102-108. [PMID: 30605780 DOI: 10.1016/j.fitote.2018.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 11/25/2022]
Abstract
Gossypol is a yellow polyphenol isolated from cotton seeds. It has the antitumor activity and it is being tested to treat prostate cancer. However, its underlying mechanisms are still not well understood. The present study investigated the inhibitory effects of gossypol acetate on rat 5α-reductase 1, 3α-hydroxysteroid dehydrogenase, and retinol dehydrogenase 2 for androgen metabolism. Rat 5α-reductase 1, 3α-hydroxysteroid dehydrogenase, and retinol dehydrogenase 2 were expressed in COS-1 cells. Immature Leydig cells that contain these enzymes were isolated from 35-day-old male Sprague Dawley rats. The potency and mode of action of gossypol acetate to inhibit these enzymes in both enzyme-expressed preparations and immature Leydig cells were examined. Molecular docking study of gossypol on the crystal structure of 3α-hydroxysteroid dehydrogenase was performed. Gossypol acetate inhibited 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase with IC50 values of 3.33 ± 0.07 and 0.52 ± 0.06 × 10-6 M in the expressed enzymes as well as 8.512 ± 0.079 and 1.032 ± 0.068 × 10-6 M in intact rat immature Leydig cells, respectively. Gossypol acetate inhibited rat 5α-reductase 1 in a noncompetitive mode and 3α-hydroxysteroid dehydrogenase in a mixed mode when steroid substrates were supplied. Gossypol acetate weakly inhibited retinol dehydrogenase 2 with IC50 value over 1 × 10-4 M. Molecular docking analysis showed that gossypol partially bound to the steroid-binding site of the crystal structure of rat 3α-hydroxysteroid dehydrogenase. Gossypol acetate is a potent inhibitor of rat 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase, possibly inhibiting the formation of androgen in the prostate cancer cells.
Collapse
Affiliation(s)
- Shuyan Cao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China; Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guimin Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fei Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qiqi Zhu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, China.
| |
Collapse
|
28
|
Pohl SÖG, Agostino M, Dharmarajan A, Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal 2018; 29:1215-1236. [PMID: 29304561 DOI: 10.1089/ars.2017.7414] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Mark Agostino
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,3 Curtin Institute for Computation, Curtin University , Perth, Western Australia
| | - Arun Dharmarajan
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Shazib Pervaiz
- 2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore
| |
Collapse
|
29
|
Tabakin AL, Sadimin ET, Tereshchenko I, Kareddula A, Stein MN, Mayer T, Hirshfield KM, Kim IY, Tischfield J, DiPaola RS, Singer EA. Correlation of Prostate Cancer CHD1 Status with Response to Androgen Deprivation Therapy: a Pilot Study. JOURNAL OF GENITOURINARY DISORDERS 2018; 2:1006. [PMID: 30714046 PMCID: PMC6358174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION CHD1 has been identified as a tumor suppressor gene in prostate cancer. Previous studies have shown strong associations between CHD1 deletion, prostate specific antigen [PSA] recurrence, and absence of ERG fusion. In this preliminary study we seek to find whether there is an independent correlation between CHD1 status and response to androgen deprivation therapy[ADT]. MATERIALS AND METHODS We identified 11 patients with prostate cancer who underwent prostatectomy and received at least 7 months of ADT at our institution. They were divided into undetectable [PSA < 0.2 ng/mL; n = 8] and detectable [PSA > 0.2 ng/mL; n = 3] according to their serum PSA nadir after 7 months of ADT. Tissue microarray was generated from their formalin-fixed paraffin-embedded prostatectomy and involved lymph node tissues. Fluorescence in situ hybridization [FISH] analysis for CHD1 and immunohistochemical stains for PSA, AR, PTEN, ERG and SPINK1 were performed. RESULTS Our results showed heterogeneity of FISH and immunostains expressions in different foci of tumor. Status of CHD1, ERG, PTEN, or SPINK1 did not correlate with one another or with response to ADT. CONCLUSIONS Additional larger studies may be needed to further elucidate trends between these biomarkers and clinical outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Alexandra L. Tabakin
- Division of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Evita T. Sadimin
- Section of Pathologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Irina Tereshchenko
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Aparna Kareddula
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Mark N. Stein
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Tina Mayer
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Kim M. Hirshfield
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Isaac Y. Kim
- Division of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Jay Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey and Rutgers University, USA
| | - Robert S. DiPaola
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| | - Eric A. Singer
- Division of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, USA
| |
Collapse
|
30
|
Small-molecule Mcl-1 inhibitors: Emerging anti-tumor agents. Eur J Med Chem 2018; 146:471-482. [PMID: 29407973 DOI: 10.1016/j.ejmech.2018.01.076] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/15/2017] [Accepted: 01/23/2018] [Indexed: 11/23/2022]
Abstract
The anti-apoptotic members of B-cell lymphoma-2 (Bcl-2) proteins family, such as Bcl-2 and myeloid cell leukemia-1 (Mcl-1), are the key regulators of the intrinsic pathway of apoptosis and overexpressed in many tumor cells, which have been confirmed as potential drug targets for cancers. A number of Bcl-2 proteins inhibitors have been developed and conducted clinical trials, but no Mcl-1 inhibitors are presented in the clinics. In addition, Mcl-1 is an important reason for the resistance to radio- and chemotherapies, including inhibitors that target other Bcl-2 family members. For example, the recently launched Bcl-2-selective inhibitor ABT-199 displays highly potency in the treatment of chronic lymphocytic leukemia (CLL), but it cannot induce the apoptosis controlled by Mcl-1 in some tumor cell lines. Therefore, developing potent Mcl-1 inhibitors become urgently needed in clinical therapy. This review briefly introduces the structure of Mcl-1 protein, the role in cancers and focuses on the progress of small-molecule Mcl-1 inhibitors from 2012 to 2017.
Collapse
|
31
|
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2017; 8:603-19. [PMID: 27019364 PMCID: PMC4925817 DOI: 10.18632/aging.100934] [Citation(s) in RCA: 996] [Impact Index Per Article: 142.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.
Collapse
Affiliation(s)
- Giuseppa Pistritto
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy
| | - Claudia Ceci
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
32
|
The pan-Bcl2 Inhibitor AT101 Activates the Intrinsic Apoptotic Pathway and Causes DNA Damage in Acute Myeloid Leukemia Stem-Like Cells. Target Oncol 2017; 12:677-687. [DOI: 10.1007/s11523-017-0509-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
BH3 mimetic-elicited Ca 2+ signals in pancreatic acinar cells are dependent on Bax and can be reduced by Ca 2+-like peptides. Cell Death Dis 2017; 8:e2640. [PMID: 28252652 PMCID: PMC5386550 DOI: 10.1038/cddis.2017.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
BH3 mimetics are small-molecule inhibitors of B-cell lymphoma-2 (Bcl-2) and Bcl-xL, which disrupt the heterodimerisation of anti- and pro-apoptotic Bcl-2 family members sensitising cells to apoptotic death. These compounds have been developed as anti-cancer agents to counteract increased levels of Bcl-2 proteins often present in cancer cells. Application of a chemotherapeutic drug supported with a BH3 mimetic has the potential to overcome drug resistance in cancers overexpressing anti-apoptotic Bcl-2 proteins and thus increase the success rate of the treatment. We have previously shown that the BH3 mimetics, BH3I-2' and HA14-1, induce Ca2+ release from intracellular stores followed by a sustained elevation of the cytosolic Ca2+ concentration. Here we demonstrate that loss of Bax, but not Bcl-2 or Bak, inhibits this sustained Ca2+ elevation. What is more, in the absence of Bax, thapsigargin-elicited responses were decreased; and in two-photon-permeabilised bax-/- cells, Ca2+ loss from the ER was reduced compared to WT cells. The Ca2+-like peptides, CALP-1 and CALP-3, which activate EF hand motifs of Ca2+-binding proteins, significantly reduced excessive Ca2+ signals and necrosis caused by two BH3 mimetics: BH3I-2' and gossypol. In the presence of CALP-1, cell death was shifted from necrotic towards apoptotic, whereas CALP-3 increased the proportion of live cells. Importantly, neither of the CALPs markedly affected physiological Ca2+ signals elicited by ACh, or cholecystokinin. In conclusion, the reduction in passive ER Ca2+ leak in bax-/- cells as well as the fact that BH3 mimetics trigger substantial Ca2+ signals by liberating Bax, indicate that Bax may regulate Ca2+ leak channels in the ER. This study also demonstrates proof-of-principle that pre-activation of EF hand Ca2+-binding sites by CALPs can be used to ameliorate excessive Ca2+ signals caused by BH3 mimetics and shift necrotic death towards apoptosis.
Collapse
|
34
|
Wang M, Tian W, Wang C, Lu S, Yang C, Wang J, Song Y, Zhou Y, Zhu J, Li Z, Zheng C. Design, synthesis, and activity evaluation of selective inhibitors of anti-apoptotic Bcl-2 proteins: The effects on the selectivity of the P1 pockets in the active sites. Bioorg Med Chem Lett 2016; 26:5207-5211. [DOI: 10.1016/j.bmcl.2016.09.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/20/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
|