1
|
Cao TBT, Quoc QL, Jang JH, Park HS. Immune Cell-Mediated Autoimmune Responses in Severe Asthma. Yonsei Med J 2024; 65:194-201. [PMID: 38515356 PMCID: PMC10973555 DOI: 10.3349/ymj.2023.0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 03/23/2024] Open
Abstract
Severe asthma (SA) has heterogeneous inflammatory phenotypes characterized by persistent airway inflammation (eosinophilic and/or neutrophilic inflammation) and remodeling. Various immune cells (eosinophils, neutrophils, and macrophages) become more activated and release inflammatory mediators and extracellular traps, damaging the protective barrier of airway epithelial cells and further activating other immune and structural cells. These cells play a role in autoimmune responses in asthmatic airways, where the adaptive immune system generates autoantibodies, inducing immunoglobulin G-dependent airway inflammation. Recent studies have suggested that adult asthmatics had high titers of autoantibodies associated with asthma severity, although pathogenic factors or diagnostic criteria are not well-defined. This challenge is further compounded by asthmatics with the autoimmune responses showing therapy insensitivity or failure to current pharmacological and biological treatment. This review updates emerging mechanisms of autoimmune responses in asthmatic airways and provides insights into their roles, proposing potential biomarkers and therapeutic targets for SA.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
2
|
Dong J, Duan RS, Zhang P. Causal relationship between the immune phenotype of monocytes and myasthenia gravis: A Mendelian randomization study. Heliyon 2024; 10:e26741. [PMID: 38449651 PMCID: PMC10915380 DOI: 10.1016/j.heliyon.2024.e26741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Background Monocytes play an essential role in developing autoimmune diseases; however, their association with myasthenia gravis (MG) development is unclear. Methods We performed a two-sample Mendelian randomization analysis to assess the causal relationship between monocyte-associated traits and MG, reviewing summary statistics of genome-wide association studies (GWAS). Results Using the inverse variance weighted method, the following were found to be causally associated with MG: HLA-DR on monocytes (OR, 1.363; 95% CI, 1.158-1.605; P = 2E-04), HLA-DR on CD14+ monocytes (OR, 1.324; 95% CI, 1.183-1.482; P = 1.08E-06), HLA-DR on CD14+CD16- monocytes (OR, 1.313; 95% CI, 1.177-1.465; P = 1.07E-06), CD40 on monocytes (OR, 1.135; 95% CI, 1.012-1.272; P < 0.05), CD40 on CD14+CD16- monocytes (OR, 1.142; 95% CI, 1.015-1.285; P < 0.05), CD40 on CD14+CD16+ monocytes (OR, 1.142; 95% CI, 1.021-1.278; P < 0.05), CD64 on CD14+CD16+ monocytes (OR, 1.286; 95% CI, 1.019-1.623; P < 0.05). Conclusions The present study suggests a causal relationship between the upregulation of CD40, HLA-DR, and CD64 on monocytes and the development of MG. Altered monocyte function may potentially be a risk factor for MG and a therapeutic target.
Collapse
Affiliation(s)
- Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Rui-sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Institute of Neuroimmunology, Jinan, Shandong Province, China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Shandong Province, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Institute of Neuroimmunology, Jinan, Shandong Province, China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Shandong Province, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Sci Rep 2023; 13:2092. [PMID: 36746990 PMCID: PMC9902560 DOI: 10.1038/s41598-023-29369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of Takayasu arteritis (TAK) is poorly understood and no previous studies have analyzed monocytes in TAK. This study evaluated monocyte subsets and monocyte-related chemokines in the peripheral blood of TAK patients and healthy controls (HC). Monocyte subsets were identified as classical (CD14+CD16-), intermediate (CD14+CD16dim), and non-classical (CD14dimCD16high) in the peripheral blood. The chemokines CCL (C-C chemokine ligand)2, CCL3, CCL4, CCL5, CCL7, CXCL (C-X-C motif ligand)10, and CX3CL (C-X3-C motif ligand)1 were measured in the sera. Thirty-two TAK patients and 30 HC were evaluated. Intermediate monocytes were higher in TAK than HC [25.0 cells ×106/L (16.7-52.0) vs. 17.2 cells ×106/L (9.2-25.3); p = 0.014]. Active disease was associated with monocytosis (p = 0.004), increased classical (p = 0.003), and intermediate (p < 0.001) subsets than HC. Prednisone reduced the percentage of non-classical monocytes (p = 0.011). TAK patients had lower CCL3 (p = 0.033) and CCL4 (p = 0.023) levels than HC, whereas CCL22 levels were higher in active TAK compared to the remission state (p = 0.008). Glucocorticoids were associated with lower CXCL10 levels (p = 0.012). In TAK, CCL4 correlated with total (Rho = 0.489; p = 0.005), classical and intermediate monocytes (Rho = 0.448; p = 0.010 and Rho = 0.412; p = 0.019). In conclusion, TAK is associated with altered counts of monocyte subsets in the peripheral blood compared to HC and CCL22 is the chemokine with the strongest association with active disease in TAK.
Collapse
|
4
|
Mariscal A, Zamora C, Magallares B, Salman-Monte TC, Ortiz MÀ, Díaz-Torné C, Castellví I, Corominas H, Vidal S. Phenotypic and Functional Consequences of PLT Binding to Monocytes and Its Association with Clinical Features in SLE. Int J Mol Sci 2021; 22:4719. [PMID: 33947017 PMCID: PMC8125177 DOI: 10.3390/ijms22094719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Platelets (PLTs) can modulate the immune system through the release of soluble mediators or through interaction with immune cells. Monocytes are the main immune cells that bind with PLTs, and this interaction is increased in several inflammatory and autoimmune conditions, including systemic lupus erythematosus (SLE). Our aim was to characterize the phenotypic and functional consequences of PLT binding to monocytes in healthy donors (HD) and in SLE and to relate it to the pathogenesis of SLE. We analyzed the phenotypic and functional features of monocytes with non-activated and activated bound PLTs by flow cytometry. We observed that monocytes with bound PLTs and especially those with activated PLTs have an up-regulated HLA-DR, CD86, CD54, CD16 and CD64 expression. Monocytes with bound PLTs also have an increased capacity for phagocytosis, though not for efferocytosis. In addition, monocytes with bound PLTs have increased IL-10, but not TNF-α, secretion. The altered phenotypic and functional features are comparable in SLE and HD monocytes and in bound PLTs. However, the percentages of monocytes with bound PLTs are significantly higher in SLE patients and are associated with undetectable levels of anti-dsDNA antibodies and hematuria, and with normal C3 and albumin/creatinine levels. Our results suggest that PLTs have a modulatory influence on monocytes and that this effect may be highlighted by an increased binding of PLTs to monocytes in autoimmune conditions.
Collapse
Affiliation(s)
- Anaís Mariscal
- Immunology Department, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Carlos Zamora
- Laboratory of Inflammatory Diseases, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.À.O.)
| | - Berta Magallares
- Rheumatology Department, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain; (B.M.); (C.D.-T.); (I.C.); (H.C.)
| | | | - Mª Àngels Ortiz
- Laboratory of Inflammatory Diseases, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.À.O.)
| | - Cesar Díaz-Torné
- Rheumatology Department, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain; (B.M.); (C.D.-T.); (I.C.); (H.C.)
| | - Iván Castellví
- Rheumatology Department, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain; (B.M.); (C.D.-T.); (I.C.); (H.C.)
| | - Héctor Corominas
- Rheumatology Department, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain; (B.M.); (C.D.-T.); (I.C.); (H.C.)
| | - Silvia Vidal
- Laboratory of Inflammatory Diseases, Hospital de la Santa Creu I Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (C.Z.); (M.À.O.)
| |
Collapse
|
5
|
Shallis RM, Siddon AJ, Zeidan AM. Clinical and Molecular Approach to Adult-Onset, Neoplastic Monocytosis. Curr Hematol Malig Rep 2021; 16:276-285. [PMID: 33890194 DOI: 10.1007/s11899-021-00632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide a comprehensive and contemporary understanding of malignant monocytosis and provide a framework by which the appropriate diagnosis with malignant monocytosis can be rendered. RECENT FINDINGS Increasing data support the use of molecular data to refine the diagnostic approach to persistent monocytosis. The absence of a TET2, SRSF2, or ASXL1 mutation has ≥ 90% negative predictive value for a diagnosis of CMML. These data may also reliably differentiate chronic myelomonocytic leukemia, the malignancy that is most associated with mature monocytosis, from several other diseases that can be associated with typically a lesser degree of monocytosis. These include acute myelomonocytic leukemia, acute myeloid leukemia with monocytic differentiation, myelodysplastic syndromes, and myeloproliferative neoplasms driven by BCR-ABL1, PDGFRA, PDGFRB, or FGFR1 rearrangements or PCM1-JAK2 fusions among other rarer aberrations. The combination of monocyte partitioning with molecular data in patients with persistent monocytosis may increase the predictive power for the ultimate development of CMM but has not been prospectively validated. Many conditions, both benign and malignant, can be associated with an increase in mature circulating monocytes. After reasonably excluding a secondary or reactive monocytosis, there should be a concern for and investigation of malignant monocytosis, which includes hematopathologic review of blood and marrow tissues, flow cytometric analysis, and cytogenetic and molecular studies to arrive at an appropriate diagnosis.
Collapse
Affiliation(s)
- Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA
| | - Alexa J Siddon
- Departments of Laboratory Medicine & Pathology, Yale University, New Haven, CT, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, CT, 06520-8028, USA.
| |
Collapse
|
6
|
Chan HC, Chan HC, Liang CJ, Lee HC, Su H, Lee AS, Shiea J, Tsai WC, Ou TT, Wu CC, Chu CS, Dixon RA, Ke LY, Yen JH, Chen CH. Role of Low-Density Lipoprotein in Early Vascular Aging Associated With Systemic Lupus Erythematosus. Arthritis Rheumatol 2020; 72:972-984. [PMID: 31994323 DOI: 10.1002/art.41213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) often have atherosclerotic complications at a young age but normal low-density lipoprotein (LDL) levels. This study was undertaken to investigate the role of LDL composition in promoting early vascular aging in SLE patients. METHODS Plasma LDL from 45 SLE patients (SLE-LDL) and from 37 normal healthy controls (N-LDL) was chromatographically divided into 5 subfractions (L1-L5), and the subfraction composition was analyzed. Correlations between subfraction levels and signs of early vascular aging were assessed. Mechanisms of lipid-mediated endothelial dysfunction were explored using in vitro assays and experiments in apoE-/- mice. RESULTS The L5 percentage was increased 3.4 times in the plasma of SLE patients compared with normal controls. This increased percentage of SLE-L5 was positively correlated with the mean blood pressure (r = 0.27, P = 0.04), carotid intima-media thickness (IMT) (right carotid IMT, r = 0.4, P = 0.004; left carotid IMT, r = 0.36, P = 0.01), pulse wave velocity (r = 0.29, P = 0.04), and blood levels of CD16+ monocytes (r = 0.35, P = 0.004) and CX3CL1 cytokines (r = 0.43, P < 0.001) in SLE patients. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis revealed that plasma levels of lysophosphatidylcholine (LPC) and platelet-activating factor (PAF) were increased in SLE-LDL and in the SLE-L5 plasma subfraction. Injecting SLE-LDL, SLE-L5, or LPC into young, male apoE-/- mice caused increases in plasma CX3CL1 levels, aortic fatty-streak areas, aortic vascular aging, and macrophage infiltration into the aortic wall, whereas injection of N-LDL or SLE-L1 had negligible effects (n = 3-8 mice per group). In vitro, SLE-L5 lipid extracts induced increases in CX3CR1 and CD16 expression in human monocytes; synthetic PAF and LPC had similar effects. Furthermore, lipid extracts of SLE-LDL and SLE-L5 induced the expression of CX3CL1 and enhanced monocyte-endothelial cell adhesion in assays with bovine aortic endothelial cells. CONCLUSION An increase in plasma L5 levels, not total LDL concentration, may promote early vascular aging in SLE patients, leading to premature atherosclerosis.
Collapse
Affiliation(s)
- Hua-Chen Chan
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan, and Texas Heart Institute, Houston
| | - Hsiu-Chuan Chan
- Kaohsiung Medical University, Kaohsiung, Taiwan, and Texas Heart Institute, Houston
| | | | - Hsiang-Chun Lee
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung Su
- National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | - Wen-Chan Tsai
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsan-Teng Ou
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chin Wu
- Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Liang-Yin Ke
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, and National Sun Yat-sen University, Kaohsiung, Taiwan, and National Chiao Tung University, Hsinchu, Taiwan
| | - Chu-Huang Chen
- Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung, Taiwan, and Texas Heart Institute, Houston, and New York Heart Research Foundation, Mineola
| |
Collapse
|
7
|
Guo J, Han S, Lu X, Guo Z, Zeng S, Zheng X, Zheng B. κ-Carrageenan hexamer have significant anti-inflammatory activity and protect RAW264.7 Macrophages by inhibiting CD14. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Upregulation of CD16- monocyte subsets in systemic lupus erythematous patients. Clin Rheumatol 2017; 36:2281-2287. [PMID: 28821990 DOI: 10.1007/s10067-017-3787-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 01/16/2023]
Abstract
Monocytes are an important component in the innate immune system. However, studies to date have failed to conclude whether their levels are altered in patients with systemic lupus erythematosus (SLE). We applied the cytodiff counting method and comprehensively measured the circulating levels of distinct white blood cell (WBC) subsets, including CD16+, CD16-, and total monocytes, in 61 SLE patients as well as in 203 age-matched healthy controls (HCs). The absolute number of CD16- monocytes, total monocytes, immature granulocytes, mature neutrophils, total neutrophils, and T cell blasts was significantly higher, that of non-cytotoxic T lymphocytes, cytotoxic T + NK lymphocytes, T + NK lymphocytes, total lymphocytes, basophils, and eosinophils significantly lower (all p < 0.05), but that of CD16+ monocytes, B lymphocytes, B cell blasts, non-B and non-T cell blasts, and total blasts was not statistically different in SLE patients, as compared to HC. Specifically, among all subsets examined, the percentage of CD16- monocytes and total monocytes was the only one that could discriminate active SLE from quiescent SLE (p = 0.033 and 0.026, respectively). SLE patients with lupus nephritis were also associated with higher levels of circulating CD16- monocytes and total monocytes, in comparison with that of controls (both p < 0.0001). This study suggests the significance of distinct WBC subsets, particularly the differential regulations of monocyte subsets, in the pathogenesis and development of SLE.
Collapse
|
10
|
van den Bosch TPP, Kannegieter NM, Hesselink DA, Baan CC, Rowshani AT. Targeting the Monocyte-Macrophage Lineage in Solid Organ Transplantation. Front Immunol 2017; 8:153. [PMID: 28261211 PMCID: PMC5312419 DOI: 10.3389/fimmu.2017.00153] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023] Open
Abstract
There is an unmet clinical need for immunotherapeutic strategies that specifically target the active immune cells participating in the process of rejection after solid organ transplantation. The monocyte–macrophage cell lineage is increasingly recognized as a major player in acute and chronic allograft immunopathology. The dominant presence of cells of this lineage in rejecting allograft tissue is associated with worse graft function and survival. Monocytes and macrophages contribute to alloimmunity via diverse pathways: antigen processing and presentation, costimulation, pro-inflammatory cytokine production, and tissue repair. Cross talk with other recipient immune competent cells and donor endothelial cells leads to amplification of inflammation and a cytolytic response in the graft. Surprisingly, little is known about therapeutic manipulation of the function of cells of the monocyte–macrophage lineage in transplantation by immunosuppressive agents. Although not primarily designed to target monocyte–macrophage lineage cells, multiple categories of currently prescribed immunosuppressive drugs, such as mycophenolate mofetil, mammalian target of rapamycin inhibitors, and calcineurin inhibitors, do have limited inhibitory effects. These effects include diminishing the degree of cytokine production, thereby blocking costimulation and inhibiting the migration of monocytes to the site of rejection. Outside the field of transplantation, some clinical studies have shown that the monoclonal antibodies canakinumab, tocilizumab, and infliximab are effective in inhibiting monocyte functions. Indirect effects have also been shown for simvastatin, a lipid lowering drug, and bromodomain and extra-terminal motif inhibitors that reduce the cytokine production by monocytes–macrophages in patients with diabetes mellitus and rheumatoid arthritis. To date, detailed knowledge concerning the origin, the developmental requirements, and functions of diverse specialized monocyte–macrophage subsets justifies research for therapeutic manipulation. Here, we will discuss the effects of currently prescribed immunosuppressive drugs on monocyte/macrophage features and the future challenges.
Collapse
Affiliation(s)
- Thierry P P van den Bosch
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Nynke M Kannegieter
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Ajda T Rowshani
- Department of Internal Medicine, Section of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
11
|
Burbano C, Vasquez G, Rojas M. Modulatory Effects of CD14+CD16++ Monocytes on CD14++CD16− Monocytes: A Possible Explanation of Monocyte Alterations in Systemic Lupus Erythematosus. Arthritis Rheumatol 2014; 66:3371-81. [DOI: 10.1002/art.38860] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 08/21/2014] [Indexed: 12/23/2022]
Affiliation(s)
- C. Burbano
- University of Antioquia, Medellín; Antioquia Colombia
| | - G. Vasquez
- University of Antioquia, Medellín; Antioquia Colombia
| | - M. Rojas
- University of Antioquia, Medellín; Antioquia Colombia
| |
Collapse
|
12
|
Liphaus BL, Kiss MHB, Carrasco S, Goldenstein-Schainberg C. Reduced expressions of Fas and Bcl-2 proteins in CD14+ monocytes and normal CD14 soluble levels in juvenile systemic lupus erythematosus. Lupus 2013; 22:940-7. [DOI: 10.1177/0961203313496300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In order to evaluate Fas and Bcl-2 expressions in CD14+ monocytes, to measure soluble CD14 serum levels and to analyze the relationships with lupus nephritis and disease activity, we enrolled 41 patients with juvenile systemic lupus erythematosus (JSLE) and 27 healthy volunteers. Disease activity was determined by SLEDAI score. Peripheral monocytes were stained for CD14, Fas and Bcl-2 molecules, and cellular expressions were determined by flow cytometry. Soluble CD14 levels were measured by a quantitative ELISA kit. JSLE patients, those with active disease and those with nephritis, presented significantly reduced expressions of Fas and Bcl-2 proteins in CD14+ monocytes compared with healthy controls. Significant inverse correlations between percentages of CD14+Fas+ cells, SLEDAI score and anti-dsDNA antibodies were observed. JSLE patients had soluble CD14 levels similar to controls, although sCD14 levels positively correlated with ESR, but not with SLEDAI score. JSLE patients with nephritis also presented sCD14 levels similar to controls. In conclusion, the reduced expressions of Fas and Bcl-2 proteins in CD14+ monocytes from JSLE patients depict that monocyte apoptotic mechanisms may be important in lupus pathogenesis.
Collapse
Affiliation(s)
| | | | - S Carrasco
- Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | | |
Collapse
|
13
|
Polymorphisms of Toll-like receptor-4 and CD14 in systemic lupus erythematosus and rheumatoid arthritis. Biomark Res 2013; 1:20. [PMID: 24252506 PMCID: PMC4177616 DOI: 10.1186/2050-7771-1-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/08/2013] [Indexed: 01/23/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) and its co-receptor CD14 play a major role in innate immunity by recognizing PAMPs and signal the activation of adaptive responses. These receptors can recognize endogenous ligands mainly auto-antigens. In addition, TLR4 (Asp299Gly) and CD14 (C/T -159) polymorphisms (SNPs) may modify qualitatively and/or quantitatively their expression. Therefore, they could be implied in autoimmune diseases and can influence both susceptibility and severity of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Patients and methods TLR4 (Asp299Gly) and CD14 (C/T -159) SNPs were genotyped using polymerase chain reaction (PCR)-RFLP in 127 SLE patients, 100 RA patients, and 114 healthy controls matched in age and gender. Results CD14*T allele was significantly more frequent in SLE patients (0.456) comparatively to controls (0.355), p = 0.02 OR (95% CI) = 1.53 [1.04-2.24]. In RA patients, the higher frequency of CD14*T allele (0.405) failed to reach significance, p = 0.28. Investigation of the TLR4 (Asp299Gly) SNP showed no significant association neither with SLE nor with RA. Analysis of these SNPs according to clinical and biological features showed a significant higher frequency of arthritis in SLE patients carrying CD14*T/T genotype (92%) comparatively to those with C/C and C/T genotypes (72.5%), p = 0.04. Moreover, SLE patients carrying CD14*T/T/TLR4*A/A haplotype had significantly more arthritis (91.3%) than the rest of SLE group (73%), p = 0,044 and confirmed by multivariable analysis after adjustment according to age and gender, p = 0.01. Conclusion The CD14 (-159)*T allele seems to be associated with susceptibility to SLE and arthritis occurrence.
Collapse
|
14
|
Menke J, Iwata Y, Rabacal WA, Basu R, Stanley ER, Kelley VR. Distinct roles of CSF-1 isoforms in lupus nephritis. J Am Soc Nephrol 2011; 22:1821-33. [PMID: 21885670 DOI: 10.1681/asn.2011010038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Colony-stimulating factor-1 (CSF-1), the principal growth factor for macrophages, is increased in the kidney, serum, and urine of patients with lupus nephritis, and eliminating CSF-1 suppresses lupus in MRL-Fas(lpr) mice. CSF-1 has three biologically active isoforms: a membrane-spanning cell surface glycoprotein (csCSF-1), a secreted proteoglycan (spCSF-1), and a secreted glycoprotein (sgCSF-1); the role of each isoform in the circulation and kidney in autoimmune disease is not well understood. Here, we constructed mutant MRL-Fas(lpr) mice that only express csCSF-1 or precursors of the spCSF-1 and sgCSF-1 isoforms. Both csCSF-1 and spCSF-1 shifted monocytes toward proinflammatory, activated populations, enhancing their recruitment into the kidney during lupus nephritis. With advancing lupus nephritis, spCSF-1 was the predominant isoform responsible for increasing circulating CSF-1 and, along with the csCSF-1 isoform, for increasing intrarenal CSF-1. Thus, csCSF-1 appears to initiate and promote the local activation of macrophages within the kidney. Intrarenal expression of csCSF-1 and spCSF-1 increases with advancing nephritis, thereby promoting the intrarenal recruitment of monocytes and expansion of Ly6C(hi) macrophages, which induce apoptosis of the renal parenchyma. Taken together, these data suggest that the three CSF-1 isoforms have distinct biologic properties, suggesting that blocking both circulating and intrarenal CSF-1 may be necessary for therapeutic efficacy.
Collapse
Affiliation(s)
- Julia Menke
- Laboratory of Molecular Autoimmune Disease, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
15
|
Monocyte and macrophage abnormalities in systemic lupus erythematosus. Arch Immunol Ther Exp (Warsz) 2010; 58:355-64. [PMID: 20676786 DOI: 10.1007/s00005-010-0093-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 04/09/2010] [Indexed: 01/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with profound effects on multiple organ systems. In patients with SLE, the immune system is subverted to target numerous self antigens and the ensuing inflammatory response elicits a vicious cycle of immune-cell activation and tissue damage. Both genetic and environmental factors are essential for the development of this debilitating condition, although the exact cause remains unclear. Early studies on the pathogenesis of lupus centered on the adaptive immune system as lymphocyte abnormalities were thought to be the primary cause of autoimmunity. In the past decade, however, this paradigm has shifted with rapid advances in the field of innate immunity. These developments have yielded important insights into how the autoimmune response in SLE is initiated and maintained. Monocytes and macrophages are an essential arm of the innate immune system with a multitude of immunological functions, including antigen presentation, phagocytosis, and cytokine production. Aberrations of monocyte/macrophage phenotype and function are increasingly recognized in SLE and animal models of the disease. In this review we summarize the current knowledge of monocyte/macrophage abnormalities in human SLE and discuss their implications for understanding the pathogenesis of lupus.
Collapse
|
16
|
Li Y, Lee PY, Sobel ES, Narain S, Satoh M, Segal MS, Reeves WH, Richards HB. Increased expression of FcgammaRI/CD64 on circulating monocytes parallels ongoing inflammation and nephritis in lupus. Arthritis Res Ther 2009; 11:R6. [PMID: 19144150 PMCID: PMC2688236 DOI: 10.1186/ar2590] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/21/2008] [Accepted: 01/14/2009] [Indexed: 11/20/2022] Open
Abstract
Introduction The high-affinity receptor for IgG Fcγ/CD64 is critical for the development of lupus nephritis (LN). Cross-linking Fc receptor on recruited monocytes by IgG-containing immune complexes is a key step in immune-complex-mediated nephritis in systemic lupus erythematosus (SLE). The goal of this study was to determine whether expression of Fc receptor (FcγR) I on circulating monocytes is associated with systemic inflammation and renal disease in SLE patients. Methods We studied 205 SLE patients (132 with LN and 73 without LN) along with 74 healthy control individuals. Surface expression of CD14 (monocytes), FcγRI/CD64, FcγRII/CD32, and FcγRIII/CD16 was evaluated by flow cytometry. Monocyte function was assessed by determining the migratory capacity and the ability to produce CCL2 (monocyte chemotractic protein 1). High-sensitivity C-reactive protein, C3 and C4 were measured by nephelometry. Results There was little difference in the expression of FcγRIII/CD16 or FcγRIII/CD32 on circulating monocytes between patients with SLE and control individuals. In contrast, FcγRI/CD64 expression was significantly higher in SLE patients and even higher in patients with LN. FcγRI/CD64 expression was positively associated with serum creatinine and indicators of systemic inflammation. Monocytes from patients with high FcγRI/CD64 expression also exhibited increased chemotaxis and capacity to produce monocyte chemotractic protein 1. Conclusions Increased FcγRI/CD64 expression on circulating monocytes parallels systemic inflammation and renal disease in SLE patients. We propose that circulating monocytes activated by immune complexes and/or proinflammatory mediators upregulate surface expression of FcγRI/CD64 in SLE. The enhanced chemotactic and inflammatory potential of the activated monocytes may participate in a vicious cycle of immune cell recruitment and renal injury in SLE.
Collapse
Affiliation(s)
- Yi Li
- Division of Rheumatology & Clinical Immunology, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0221, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Postól E, Meyer A, Cardillo F, de Alencar R, Pessina D, Nihei J, Mariano M, Mengel J. Long-term administration of IgG2a anti-NK1.1 monoclonal antibody ameliorates lupus-like disease in NZB/W mice in spite of an early worsening induced by an IgG2a-dependent BAFF/BLyS production. Immunology 2008; 125:184-96. [PMID: 18397273 DOI: 10.1111/j.1365-2567.2008.02835.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology.
Collapse
Affiliation(s)
- Edilberto Postól
- Immunology Laboratory, Heart Institute (INCOR), University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|