1
|
Alexander EM, Miller HA, Egger ME, Smith ML, Yaddanapudi K, Linder MW. The Correlation between Plasma Circulating Tumor DNA and Radiographic Tumor Burden. J Mol Diagn 2024; 26:952-961. [PMID: 39181324 PMCID: PMC11524323 DOI: 10.1016/j.jmoldx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional blood-based biomarkers and radiographic imaging are excellent for use in monitoring different aspects of malignant disease, but given their specific shortcomings, their integration with other, complementary markers such as plasma circulating tumor DNA (ctDNA) will be beneficial toward a precision medicine-driven future. Plasma ctDNA analysis utilizes the measurement of cancer-specific molecular alterations in a variety of bodily fluids released by dying tumor cells to monitor and profile response to therapy, and is being employed in several clinical scenarios. Plasma concentrations of ctDNA have been reported to correlate with tumor burden. However, the strength of this association is generally poor and highly variable, confounding the interpretation of longitudinal plasma ctDNA measurements in conjunction with routine radiographic assessments. Herein is discussed what is currently understood with respect to the fundamental characteristics of tumor growth that dictate plasma ctDNA concentrations, with a perspective on its interpretation in conjunction with radiographically determined tumor burden assessments.
Collapse
Affiliation(s)
- Evan M Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Hunter A Miller
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- Hiram C. Polk, Jr, MD, Department of Surgery, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Melissa L Smith
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Kavitha Yaddanapudi
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
2
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
3
|
Chen H, Xu C, Fang Z, Mao S. Cell-Free DNA, MicroRNAs, Proteins, and Peptides as Liquid Biopsy Biomarkers in Prostate Cancer and Bladder Cancer. Methods Mol Biol 2023; 2695:165-179. [PMID: 37450118 DOI: 10.1007/978-1-0716-3346-5_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Liquid biopsy, as a novel noninvasive tool for biomarker discovery, has gained a lot of attention and represents a significant innovation in precision medicine. Due to its minimally invasive nature, liquid biopsy has fewer complications and can be scheduled more frequently to provide individualized snapshots of the disease at successive time points. This is particularly valuable in providing simultaneous measurements of tumor burden during treatment and early detection of tumor recurrence or drug resistance. Blood-based liquid biopsy is an attractive, minimally invasive alternative, which has shown promise in diagnosis, risk stratification, disease monitoring, and more. Urine has gained popularity due to its less invasive sampling, the ability to easily repeat samples, and the ability to track tumor evolution in real time, making it a powerful tool for diagnosis and treatment monitoring, especially in urologic cancers. In this review, we provide a detailed discussion on the potential clinical applications of prostate cancer (PCa) and bladder cancer (BCa), with cell-free DNA (cfDNA), microRNAs (miRNAs), proteins, and peptides as liquid biopsy biomarkers.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zujun Fang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shanhua Mao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Leonardi AJ, Argyropoulos CP, Hamdy A, Proenca RB. Understanding the Effects of Age and T-Cell Differentiation on COVID-19 Severity: Implicating a Fas/FasL-mediated Feed-Forward Controller of T-Cell Differentiation. Front Immunol 2022; 13:853606. [PMID: 35309371 PMCID: PMC8927653 DOI: 10.3389/fimmu.2022.853606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
- Anthony J Leonardi
- Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Christos P Argyropoulos
- Department of Internal Medicine, Division of Nephrology, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Adam Hamdy
- Independent Researcher, Port Louis, Mauritius
| | - Rui B Proenca
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Aktar N, Chen T, Moudud A, Xu S, Zhou X. Tolerogenic vehicles of antigens in the antigen-specific immunotherapy for autoimmunity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
de Miranda FS, Barauna VG, dos Santos L, Costa G, Vassallo PF, Campos LCG. Properties and Application of Cell-Free DNA as a Clinical Biomarker. Int J Mol Sci 2021; 22:9110. [PMID: 34502023 PMCID: PMC8431421 DOI: 10.3390/ijms22179110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health (NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision, standardization and reproducibility, suitability to the patient, straightforward interpretation by clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus, serum biomarkers should have advantages related to the simplicity of the procedures and to the fact that venous blood collection is commonplace in clinical practice. We described the potentiality of cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases. Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism. We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting, stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be overcome before its recommendation as a biomarker in the clinical setting.
Collapse
Affiliation(s)
- Felipe Silva de Miranda
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| | - Valério Garrone Barauna
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Molecular Physiology Laboratory of Exercise Science, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Leandro dos Santos
- Academic Unit of Serra Talhada, Rural Federal University of Pernambuco, Serra Talhada 56909-535, Pernambuco, Brazil;
| | - Gustavo Costa
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória 29075-910, Espírito Santo, Brazil; (G.C.); (P.F.V.)
- Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luciene Cristina Gastalho Campos
- Post Graduation Program in Biology and Biotechnology of Microorganisms, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
- Department of Biological Science, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Laboratory of Applied Pathology and Genetics, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
- Post Graduation Program in Health Sciences, State University of Santa Cruz, Ilhéus 45662-900, Bahia, Brazil;
| |
Collapse
|
7
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Damo M, Wilson DS, Watkins EA, Hubbell JA. Soluble N-Acetylgalactosamine-Modified Antigens Enhance Hepatocyte-Dependent Antigen Cross-Presentation and Result in Antigen-Specific CD8 + T Cell Tolerance Development. Front Immunol 2021; 12:555095. [PMID: 33746941 PMCID: PMC7965950 DOI: 10.3389/fimmu.2021.555095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 02/10/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocytes compose up to 80% of the total liver and have been indicated as important players in the induction of immunologic tolerance in this organ. We show that hepatocytes possess the molecular machinery required for the cross-presentation of extracellular antigens. Using a derivative of the model antigen ovalbumin (OVA) covalently modified with a polymer containing multiple N-acetylgalactosamine residues (pGal-OVA) that enhance extracellular antigen uptake by mimicking the glycome of apoptotic debris, we show efficient hepatocyte-dependent induction of cross-tolerance of both adoptively transferred OT-I cells and endogenous OVA-specific CD8+ T lymphocytes, for example inducing tolerance to OVA-expressing skin transplants. Our study confirms that hepatocytes are capable of inducing peripheral tolerogenesis and provides proof of concept that they may be a valuable candidate for in vivo targeted tolerogenic treatments.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 2/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 2/metabolism
- Acetylgalactosamine/immunology
- Adoptive Transfer/methods
- Animals
- Antigen Presentation/immunology
- Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cross-Priming/immunology
- Hepatocytes/cytology
- Hepatocytes/immunology
- Immune Tolerance/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Skin Transplantation/methods
- Solubility
- Vesicular Transport Proteins/immunology
- Vesicular Transport Proteins/metabolism
- Mice
Collapse
Affiliation(s)
- Martina Damo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - D. Scott Wilson
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elyse A. Watkins
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Jeffrey A. Hubbell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, United States
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Abstract
Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction.
Collapse
Affiliation(s)
- Mohammed Shah
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
10
|
Connor MJ, Shah TT, Horan G, Bevan CL, Winkler M, Ahmed HU. Cytoreductive treatment strategies for de novo metastatic prostate cancer. Nat Rev Clin Oncol 2019; 17:168-182. [PMID: 31712648 DOI: 10.1038/s41571-019-0284-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
In the past decade, a revolution in the treatment of metastatic prostate cancer has occurred with the advent of novel hormonal agents and life-prolonging chemotherapy regimens in combination with standard androgen-deprivation therapy. Notwithstanding, the use of systemic therapy alone can result in a castrate-resistant state; therefore, increasing focus is being placed on the additional survival benefits that could potentially be achieved with local cytoreductive and/or metastasis-directed therapies. Local treatment of the primary tumour with the established modalities of radiotherapy and radical prostatectomy has been explored in this context, and the use of novel minimally invasive ablative therapies has been proposed. In addition, evidence of the potential clinical benefits of metastasis-directed therapy with ionizing radiation (primarily stereotactic ablative radiotherapy) is accumulating. Herein, we summarize the pathobiological rationale for local cytoreduction and the potentially systemic immunological responses to radiotherapy and ablative therapies in patients with metastatic prostate cancer. We also discuss the current evidence base for a cytoreductive strategy, including metastasis-directed therapy, in the current era of sequential multimodal therapy incorporating novel treatments. Finally, we outline further research questions relating to this complex and evolving treatment landscape.
Collapse
Affiliation(s)
- Martin J Connor
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK. .,Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK.
| | - Taimur T Shah
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.,Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Gail Horan
- Department of Oncology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Charlotte L Bevan
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mathias Winkler
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.,Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Hashim U Ahmed
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.,Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
11
|
Abstract
The technique of cell-free DNA (cfDNA) analysis, also called liquid biopsy, has been developed over the past several years to serve as a minimal residual disease tool, as has already been done with reliability and robustness in acute leukemias. This technique has important theoretical advantages, including the simplicity of acquiring blood samples, which can easily be repeated over time, its noninvasive and quantitative nature, which provides results consistent with the results obtained from tumor genomic DNA, and its speed and low cost. cfDNA analysis, as the leading tool to quantify somatic mutations, is a major technological leap in the noninvasive management of lymphomas. This technology may empower monitoring and treatment adjustment in real time and enable the quick detection of refractory lymphomas and resistance to routine therapies. Here, we summarize the results that have established the clinical relevance of cfDNA in diagnostic and prognostic stratification and the monitoring of lymphoma treatments.
Collapse
Affiliation(s)
- Vincent Camus
- Department of Hematology, Centre Henri Becquerel, 1 Rue D'Amiens, 76038 Rouen Cedex, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, 1 Rue D'Amiens, 76038 Rouen Cedex, France
| |
Collapse
|
12
|
Gan PY, Godfrey AS, Ooi JD, O'Sullivan KM, Oudin V, Kitching AR, Holdsworth SR. Apoptotic Cell-Induced, Antigen-Specific Immunoregulation to Treat Experimental Antimyeloperoxidase GN. J Am Soc Nephrol 2019; 30:1365-1374. [PMID: 31337690 DOI: 10.1681/asn.2018090955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myeloperoxidase (MPO)-ANCA-associated GN is a significant cause of renal failure. Manipulating autoimmunity by inducing regulatory T cells is potentially a more specific and safer therapeutic option than conventional immunosuppression. METHODS To generate MPO-specific regulatory T cells, we used a modified protein-conjugating compound, 1-ethyl-3-(3'dimethylaminopropyl)-carbodiimide (ECDI), to couple the immunodominant MPO peptide (MPO409-428) or a control ovalbumin peptide (OVA323-339) to splenocytes and induced apoptosis in the conjugated cells. We then administered MPO- and OVA-conjugated apoptotic splenocytes (MPO-Sps and OVA-Sps, respectively) to mice and compared their effects on development and severity of anti-MPO GN. We induced autoimmunity to MPO by immunizing mice with MPO in adjuvant; to trigger GN, we used low-dose antiglomerular basement membrane globulin, which transiently recruits neutrophils that deposit MPO in glomeruli. We also compared the effects of transferring CD4+ T cells from mice treated with MPO-Sp or OVA-Sp to recipient mice with established anti-MPO autoimmunity. RESULTS MPO-Sp but not OVA-Sp administration increased MPO-specific, peripherally derived CD4+Foxp3- type 1 regulatory T cells and reduced anti-MPO autoimmunity and GN. However, in mice depleted of regulatory T cells, MPO-Sp administration did not protect from anti-MPO autoimmunity or GN. Mice with established anti-MPO autoimmunity that received CD4+ T cells transferred from mice treated with MPO-Sp (but not CD4+ T cells transferred from mice treated with OVA-Sp) were protected from anti-MPO autoimmunity and GN, confirming the induction of therapeutic antigen-specific regulatory T cells. CONCLUSIONS These findings in a mouse model indicate that administering apoptotic splenocytes conjugated with the immunodominant MPO peptide suppresses anti-MPO GN by inducing antigen-specific tolerance.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of .,Immunology
| | - Andrea S Godfrey
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Joshua D Ooi
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Kim-Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - Virginie Oudin
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of
| | - A Richard Kitching
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Nephrology, and.,Pediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, Victoria, Australia; and Departments of.,Immunology.,Nephrology, and
| |
Collapse
|
13
|
Kim YG, Moon H, Kim SY, Lee YH, Jeong DW, Kim K, Moon JY, Lee YK, Cho A, Lee HS, Park HC, Lee SH. Inevitable isolation and the change of stress markers in hemodialysis patients during the 2015 MERS-CoV outbreak in Korea. Sci Rep 2019; 9:5676. [PMID: 30952879 PMCID: PMC6450937 DOI: 10.1038/s41598-019-41964-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/21/2019] [Indexed: 12/20/2022] Open
Abstract
During the outbreak of Middle East respiratory syndrome coronavirus(MERS-CoV) in 2015, one hemodialysis patient was infected with MERS-CoV, and the remaining hemodialysis(HD) patients (n = 83) and medical staff (n = 12) had to undergo dialysis treatment in an isolated environment. This study was performed to investigate the effects of stress caused by dialysis treatment under isolation. Plasma samples from the HD patients and medical staff were collected at the time of isolation(M0), the following month(M1), and three months after isolation(M3). Parameters for stress included circulating cell-free genomic DNA(ccf-gDNA), circulating cell-free mitochondria DNA(ccf-mtDNA), and pentraxin-3(PTX-3). Decreased values of Hct, kt/v and ca x p were recovered after the end of two weeks of isolation. The levels of ccf-gDNA and ccf-mtDNA were the highest at M0 and decreased gradually in both HD patients and the medical staff. The normalization of ccf-gDNA and ccf-mtDNA was significantly delayed in HD patients compared with the response in the medical staff. PTX-3 increased only in HD patients and was highest at M0, and it then gradually decreased. Medical isolation and subnormal quality of care during the MERS outbreak caused extreme stress in HD patients. Plasma cell-free DNA and PTX-3 seems to be good indicators of stress and quality of care in HD patients.
Collapse
Affiliation(s)
- Yang Gyun Kim
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Haena Moon
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Se-Yun Kim
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Yu-Ho Lee
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Da-Wun Jeong
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Kipyo Kim
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Ju Young Moon
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea
| | - Young-Ki Lee
- Hallym University College of Medicine, Internal Medicine, Seoul, Korea
| | - Ajin Cho
- Hallym University College of Medicine, Internal Medicine, Seoul, Korea
| | - Hong-Seock Lee
- Hallym University College of Medicine, Psychiatry, Seoul, Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Kyung Hee University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. The diverse origins of circulating cell-free DNA in the human body: a critical re-evaluation of the literature. Biol Rev Camb Philos Soc 2018; 93:1649-1683. [PMID: 29654714 DOI: 10.1111/brv.12413] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Since the detection of cell-free DNA (cfDNA) in human plasma in 1948, it has been investigated as a non-invasive screening tool for many diseases, especially solid tumours and foetal genetic abnormalities. However, to date our lack of knowledge regarding the origin and purpose of cfDNA in a physiological environment has limited its use to more obvious diagnostics, neglecting, for example, its potential utility in the identification of predisposition to disease, earlier detection of cancers, and lifestyle-induced epigenetic changes. Moreover, the concept or mechanism of cfDNA could also have potential therapeutic uses such as in immuno- or gene therapy. This review presents an extensive compilation of the putative origins of cfDNA and then contrasts the contributions of cellular breakdown processes with active mechanisms for the release of cfDNA into the extracellular environment. The involvement of cfDNA derived from both cellular breakdown and active release in lateral information transfer is also discussed. We hope to encourage researchers to adopt a more holistic view of cfDNA research, taking into account all the biological pathways in which cfDNA is involved, and to give serious consideration to the integration of in vitro and in vivo research. We also wish to encourage researchers not to limit their focus to the apoptotic or necrotic fraction of cfDNA, but to investigate the intercellular messaging capabilities of the actively released fraction of cfDNA and to study the role of cfDNA in pathogenesis.
Collapse
Affiliation(s)
- Janine Aucamp
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Abel J Bronkhorst
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Human Metabolomics, Biochemistry Division, Hoffman Street, North-West University, Private bag X6001 Potchefstroom, 2520, South Africa
| |
Collapse
|
15
|
Zhang W, Xia W, Lv Z, Ni C, Xin Y, Yang L. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes? Cell Physiol Biochem 2017; 41:755-768. [PMID: 28214887 DOI: 10.1159/000458736] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/08/2016] [Indexed: 01/02/2023] Open
Abstract
Precision medicine and personalized medicine are based on the development of biomarkers, and liquid biopsy has been reported to be able to detect biomarkers that carry information on tumor development and progression. Compared with traditional 'solid biopsy', which cannot always be performed to determine tumor dynamics, liquid biopsy has notable advantages in that it is a noninvasive modality that can provide diagnostic and prognostic information prior to treatment, during treatment and during progression. In this review, we describe the source, characteristics, technology for detection and current situation of circulating tumor cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis assessment and medication planning.
Collapse
|
16
|
Wu F. Heat-Based Tumor Ablation: Role of the Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:131-53. [DOI: 10.1007/978-3-319-22536-4_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Shah TT, Ahmed H, Kanthabalan A, Lau B, Ghei M, Maraj B, Arya M. Focal cryotherapy of localized prostate cancer: a systematic review of the literature. Expert Rev Anticancer Ther 2015; 14:1337-47. [PMID: 25367324 DOI: 10.1586/14737140.2014.965687] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Radical/whole gland treatment for prostate cancer has significant side-effects. Therefore focal treatments such as cryotherapy have been used to treat localized lesions whilst aiming to provide adequate cancer control with minimal side-effects. We performed a systematic review of Pubmed/Medline and Cochrane databases' to yield 9 papers for primary focal prostate cryotherapy and 2 papers for focal salvage treatment (radio-recurrent). The results of 1582 primary patients showed biochemical disease-free survival between 71-93% at 9-70 months follow-up. Incontinence rates were 0-3.6% and ED 0-42%. Recto-urethral fistula occurred in only 2 patients. Salvage focal cryotherapy had biochemical disease-free survival of 50-68% at 3 years. ED occurred in 60-71%. Focal cryotherapy appears to be an effective treatment for primary localized prostate cancer and compares favorably to radical/whole gland treatments in medium-term oncological outcomes and side-effects. Although more studies are needed it is also effective for radio-recurrent cancer with a low complications rates.
Collapse
Affiliation(s)
- Taimur Tariq Shah
- Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
19
|
Gahan PB. The Biology of CNAPS. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-94-017-9168-7_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Manoussakis MN, Fragoulis GE, Vakrakou AG, Moutsopoulos HM. Impaired clearance of early apoptotic cells mediated by inhibitory IgG antibodies in patients with primary Sjögren's syndrome. PLoS One 2014; 9:e112100. [PMID: 25396412 PMCID: PMC4232361 DOI: 10.1371/journal.pone.0112100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/12/2014] [Indexed: 01/08/2023] Open
Abstract
Objectives Deficient efferocytosis (i.e. phagocytic clearance of apoptotic cells) has been frequently reported in systemic lupus erythematosus (SLE). Todate, patients with primary Sjögren's syndrome (SS) have not been assessed for phagocytosis of apoptotic cells (ApoCell-phagocytosis) and of particulate targets (microbeads, MB-phagocytosis). Design ApoCell-phagocytosis and MB-phagocytosis were comparatively assessed by flow cytometry in peripheral blood specimens and monocyte-derived macrophage (MDM) preparations from healthy blood donors (HBD) and consecutive SS, SLE and rheumatoid arthritis (RA) patients. Cross-admixture ApoCell-phagocytosis experiments were also performed using phagocytes from HBD or patients, and apoptotic cells pretreated with whole sera or purified serum IgG derived from patients or HBD. Results Compared to HBD, approximately half of SS and SLE patients studied (but not RA) manifested significantly reduced ApoCell-phagocytosis (p<0.001) and MB-phagocytosis (p<0.003) by blood-borne phagocytes that correlated inversely with disease activity (p≤0.004). In cross-admixture assays, healthy monocytes showed significantly reduced ApoCell-phagocytosis when fed with apoptotic cells that were pretreated with sera or purified serum IgG preparations from SS and SLE patients (p<0.0001, compared to those from HBD or RA). Such aberrant effect of the SS and SLE sera and IgG preparations correlated linearly with their content of IgG antibodies against apoptotic cells (p≤0.0001). Phagocytic dysfunction maybe also present in certain SS and SLE patients, as supported by deficient capacity of MDM for ApoCell-phagocytosis and MB-phagocytosis under patients' serum-free conditions. Conclusion Similarly to SLE, efferocytosis is frequently impaired in SS and is primarily due to the presence of inhibitory IgG anti-ApoCell antibodies and secondarily to phagocytes' dysfunction.
Collapse
Affiliation(s)
- Menelaos N. Manoussakis
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
- Hellenic Pasteur Institute, Athens, Greece
- * E-mail:
| | - George E. Fragoulis
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
| | - Aigli G. Vakrakou
- Department of Pathophysiology, School of Medicine, University of Athens, Athens, Greece
| | | |
Collapse
|
21
|
Cell-free circulating tumor DNA in plasma/serum of non-small cell lung cancer. Tumour Biol 2014; 36:7-19. [PMID: 25352029 DOI: 10.1007/s13277-014-2758-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the common type of lung cancer, which is the leading cause of cancer death throughout the world. Most patients were diagnosed too late for curative treatment. So, it is necessary to develop a minimal invasive method to identify NSCLC at an early stage. In recent years, cell-free circulating tumor DNA (ctDNA) has attracted increasing attention as a potential tumor marker for its minimal invasive, convenient, and easily accepted properties. The amount of ctDNA in plasma or serum was significantly higher in NSCLC patients than that in healthy controls or patients with benign diseases. Furthermore, many studies have proved an association among tumor stage, tumor grade, lymph node involvement, the number of metastatic sites, tumor response, survival outcome, and the ctDNA levels. Many genetic changes, such as gene mutation, loss of heterozygosity, microsatellite instability, and gene methylation were also found in ctDNA in NSCLC patients. These findings demonstrated that the ctDNA could serve as a viable tool to monitor NSCLC and prompted us to find more sensitive and specific biomarkers for clinical practice, especially monitor these cases with at least one known gene abnormality. Here, we reviewed the evidence of ctDNA in NSCLC and consider possible future applications in patient management.
Collapse
|
22
|
Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD, Miller SD. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS NANO 2014; 8:2148-60. [PMID: 24559284 PMCID: PMC3990004 DOI: 10.1021/nn405033r] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Targeted immune tolerance is a coveted therapy for the treatment of a variety of autoimmune diseases, as current treatment options often involve nonspecific immunosuppression. Intravenous (iv) infusion of apoptotic syngeneic splenocytes linked with peptide or protein autoantigens using ethylene carbodiimide (ECDI) has been demonstrated to be an effective method for inducing peripheral, antigen-specific tolerance for treatment of autoimmune disease. Here, we show the ability of biodegradable poly(lactic-co-glycolic acid) (PLG) nanoparticles to function as a safe, cost-effective, and highly efficient alternative to cellular carriers for the induction of antigen-specific T cell tolerance. We describe the formulation of tolerogenic PLG particles and demonstrate that administration of myelin antigen-coupled particles both prevented and treated relapsing-remitting experimental autoimmune encephalomyelitis (R-EAE), a CD4 T cell-mediated mouse model of multiple sclerosis (MS). PLG particles made on-site with surfactant modifications surpass the efficacy of commercially available particles in their ability to couple peptide and to prevent disease induction. Most importantly, myelin antigen-coupled PLG nanoparticles are able to significantly ameliorate ongoing disease and subsequent relapses when administered at onset or at peak of acute disease, and minimize epitope spreading when administered during disease remission. Therapeutic treatment results in significantly reduced CNS infiltration of encephalitogenic Th1 (IFN-γ) and Th17 (IL-17a) cells as well as inflammatory monocytes/macrophages. Together, these data describe a platform for antigen display that is safe, low-cost, and highly effective at inducing antigen-specific T cell tolerance. The development of such a platform carries broad implications for the treatment of a variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Zoe Hunter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Derrick P. McCarthy
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Woon Teck Yap
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher T. Harp
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Daniel R. Getts
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Address correspondence to
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 East Chicago Avenue, Chicago, Illinois 60611, United States
- Address correspondence to
| |
Collapse
|
23
|
Getts DR, McCarthy DP, Miller SD. Exploiting apoptosis for therapeutic tolerance induction. THE JOURNAL OF IMMUNOLOGY 2014; 191:5341-6. [PMID: 24244028 DOI: 10.4049/jimmunol.1302070] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune tolerance remains the most promising yet elusive strategy for treating immune-mediated diseases. An experimental strategy showing promise in phase 1 clinical studies is the delivery of Ag cross-linked to apoptotic leukocytes using ethylene carbodiimide. This approach originated from demonstration of the profound tolerance-inducing ability of i.v. administered Ag-coupled splenocytes (Ag-SP) in mice, which has been demonstrated to treat T cell-mediated disorders including autoimmunity, allergy, and transplant rejection. Recent studies have defined the intricate interplay between the innate and adaptive immune systems in Ag-SP tolerance induction. Innate mechanisms include scavenger receptor-mediated uptake of Ag-SP by host APCs, Ag representation, and the required upregulation of PD-L1 expression and IL-10 production by splenic marginal zone macrophages leading to Ag-specific T cell regulation via the combined effects of cell-intrinsic anergy and regulatory T cell induction. In this paper, we discuss the history, advantages, current mechanistic understanding, and clinical potential of tolerance induction using apoptotic Ag-coupled apoptotic leukocytes.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | | | | |
Collapse
|
24
|
Maio GD, Rengucci C, Zoli W, Calistri D. Circulating and stool nucleic acid analysis for colorectal cancer diagnosis. World J Gastroenterol 2014; 20:957-67. [PMID: 24574768 PMCID: PMC3921547 DOI: 10.3748/wjg.v20.i4.957] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/05/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
In recent years, the need to identify molecular markers characterized by high sensitivity and specificity in detecting and monitoring early and colorectal cancer lesions has increased. Up to now, none of the markers or panels of markers analyzed have met the rigorous standards required of a screening program. The important discovery of circulating nucleic acids in biological fluids has aroused intense scientific interest because of their usefulness in malignant and non malignant diseases. Over time, their yield and stability have been identified and compared with other "standard" biomarkers. The analysis of circulating DNA from blood and stool is a relatively simple and non-invasive procedure, representing a very attractive marker to detect genetic and epigenetic mutations and to monitor disease progression. A correlation between blood and stool biomarkers could also help to enhance currently available diagnostic approaches. However, various processing and analytic problems need to be resolved before such an approach can be applied in clinical practice.
Collapse
|
25
|
Abstract
Cancer is associated with mutated genes, and analysis of tumour-linked genetic alterations is increasingly used for diagnostic, prognostic and treatment purposes. The genetic profile of solid tumours is currently obtained from surgical or biopsy specimens; however, the latter procedure cannot always be performed routinely owing to its invasive nature. Information acquired from a single biopsy provides a spatially and temporally limited snap-shot of a tumour and might fail to reflect its heterogeneity. Tumour cells release circulating free DNA (cfDNA) into the blood, but the majority of circulating DNA is often not of cancerous origin, and detection of cancer-associated alleles in the blood has long been impossible to achieve. Technological advances have overcome these restrictions, making it possible to identify both genetic and epigenetic aberrations. A liquid biopsy, or blood sample, can provide the genetic landscape of all cancerous lesions (primary and metastases) as well as offering the opportunity to systematically track genomic evolution. This Review will explore how tumour-associated mutations detectable in the blood can be used in the clinic after diagnosis, including the assessment of prognosis, early detection of disease recurrence, and as surrogates for traditional biopsies with the purpose of predicting response to treatments and the development of acquired resistance.
Collapse
|
26
|
Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013; 10:472-84. [PMID: 23836314 DOI: 10.1038/nrclinonc.2013.110] [Citation(s) in RCA: 1273] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is associated with mutated genes, and analysis of tumour-linked genetic alterations is increasingly used for diagnostic, prognostic and treatment purposes. The genetic profile of solid tumours is currently obtained from surgical or biopsy specimens; however, the latter procedure cannot always be performed routinely owing to its invasive nature. Information acquired from a single biopsy provides a spatially and temporally limited snap-shot of a tumour and might fail to reflect its heterogeneity. Tumour cells release circulating free DNA (cfDNA) into the blood, but the majority of circulating DNA is often not of cancerous origin, and detection of cancer-associated alleles in the blood has long been impossible to achieve. Technological advances have overcome these restrictions, making it possible to identify both genetic and epigenetic aberrations. A liquid biopsy, or blood sample, can provide the genetic landscape of all cancerous lesions (primary and metastases) as well as offering the opportunity to systematically track genomic evolution. This Review will explore how tumour-associated mutations detectable in the blood can be used in the clinic after diagnosis, including the assessment of prognosis, early detection of disease recurrence, and as surrogates for traditional biopsies with the purpose of predicting response to treatments and the development of acquired resistance.
Collapse
Affiliation(s)
- Emily Crowley
- Department of Oncology, University of Turin, Institute for Cancer Research and Treatment, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Turin, Italy
| | | | | | | |
Collapse
|
27
|
Neal RE, Rossmeisl JH, Robertson JL, Arena CB, Davis EM, Singh RN, Stallings J, Davalos RV. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS One 2013; 8:e64559. [PMID: 23717630 PMCID: PMC3663742 DOI: 10.1371/journal.pone.0064559] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/16/2013] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region.
Collapse
Affiliation(s)
- Robert E Neal
- Department of Radiology, The Alfred Hospital, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
U937 variant cells as a model of apoptosis without cell disintegration. Cell Mol Biol Lett 2013; 18:249-62. [PMID: 23605997 PMCID: PMC6275624 DOI: 10.2478/s11658-013-0087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/13/2013] [Indexed: 01/11/2023] Open
Abstract
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.
Collapse
|
29
|
|
30
|
Epling-Burnette PK, McDaniel J, Wei S, List AF. Emerging immunosuppressive drugs in myelodysplastic syndromes. Expert Opin Emerg Drugs 2012; 17:519-41. [PMID: 23163589 DOI: 10.1517/14728214.2012.736487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are characterized by dysplastic morphologic features and ineffective hematopoiesis. Pathophysiological characteristics change over time making therapeutic development a major challenge. In early MDS, cytopenias arise or are exacerbated by humoral and cellular immune-mediators that suppress hematopoietic progenitor survival and alter the bone marrow microenvironment. AREAS COVERED In this review, current immunosuppressive regimens are described. To identify new therapies that may enhance immunosuppressive therapy (IST) response and identify pharmacodynamic biomarkers for patient selection, the inflammasome, cytokines, metabolic pathways and signaling events are described. EXPERT OPINION Agents with the potential to induce early, durable hematologic remissions are needed and many new immunosuppressive agents are available for investigation. An immune-mediated mechanism is likely to contribute to MDS early after diagnosis. New approaches that interfere with inflammatory pathways in the bone marrow microenvironment may move closer toward sustained disease control in MDS.
Collapse
Affiliation(s)
- Pearlie K Epling-Burnette
- H. Lee Moffitt Cancer Center & Research Institute, Immunology Department, SRB 23033, 12902 Magnolia Dr, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
31
|
Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012; 30:1217-24. [PMID: 23159881 DOI: 10.1038/nbt.2434] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022]
Abstract
Aberrant T-cell activation underlies many autoimmune disorders, yet most attempts to induce T-cell tolerance have failed. Building on previous strategies for tolerance induction that exploited natural mechanisms for clearing apoptotic debris, we show that antigen-decorated microparticles (500-nm diameter) induce long-term T-cell tolerance in mice with relapsing experimental autoimmune encephalomyelitis. Specifically, intravenous infusion of either polystyrene or biodegradable poly(lactide-co-glycolide) microparticles bearing encephalitogenic peptides prevents the onset and modifies the course of the disease. These beneficial effects require microparticle uptake by marginal zone macrophages expressing the scavenger receptor MARCO and are mediated in part by the activity of regulatory T cells, abortive T-cell activation and T-cell anergy. Together these data highlight the potential for using microparticles to target natural apoptotic clearance pathways to inactivate pathogenic T cells and halt the disease process in autoimmunity.
Collapse
|
32
|
Theofilopoulos AN, Kono DH, Beutler B, Baccala R. Intracellular nucleic acid sensors and autoimmunity. J Interferon Cytokine Res 2011; 31:867-86. [PMID: 22029446 DOI: 10.1089/jir.2011.0092] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mishandled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these disorders.
Collapse
Affiliation(s)
- Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92137, USA.
| | | | | | | |
Collapse
|
33
|
Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJC, Miller SD. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2405-17. [PMID: 21821796 DOI: 10.4049/jimmunol.1004175] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ag-specific tolerance is a highly desired therapy for immune-mediated diseases. Intravenous infusion of protein/peptide Ags linked to syngeneic splenic leukocytes with ethylene carbodiimide (Ag-coupled splenocytes [Ag-SP]) has been demonstrated to be a highly efficient method for inducing peripheral, Ag-specific T cell tolerance for treatment of autoimmune disease. However, little is understood about the mechanisms underlying this therapy. In this study, we show that apoptotic Ag-SP accumulate in the splenic marginal zone, where their uptake by F4/80(+) macrophages induces production of IL-10, which upregulates the expression of the immunomodulatory costimulatory molecule PD-L1 that is essential for Ag-SP tolerance induction. Ag-SP infusion also induces T regulatory cells that are dispensable for tolerance induction but required for long-term tolerance maintenance. Collectively, these results indicate that Ag-SP tolerance recapitulates how tolerance is normally maintained in the hematopoietic compartment and highlight the interplay between the innate and adaptive immune systems in the induction of Ag-SP tolerance. To our knowledge, we show for the first time that tolerance results from the synergistic effects of two distinct mechanisms, PD-L1-dependent T cell-intrinsic unresponsiveness and the activation of T regulatory cells. These findings are particularly relevant as this tolerance protocol is currently being tested in a Phase I/IIa clinical trial in new-onset relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Daniel R Getts
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Akilov OE, Wu MX, Jin Y, Zhou Z, Geskin LJ, Falo LD, Hasan T. Vaccination with photodynamic therapy-treated macrophages induces highly suppressive T-regulatory cells. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2011; 27:97-107. [PMID: 21392113 DOI: 10.1111/j.1600-0781.2011.00578.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND/PURPOSE The present study explores whether photodynamic therapy (PDT)-induced apoptosis can increase the number of tolerogenic regulatory T cells (Treg) and limit collateral tissue damage. METHODS BALB/c mice were vaccinated subcutaneously three times with PDT-induced apoptotic or thaw-frozen, necrotic non-infected autologous macrophages (MΦ). Two weeks after the last vaccination, mice were infected intradermally with 10(6) promastigotes of Leishmania major. RESULTS Mice that received PDT-induced apoptotic MΦ had fewer parasites and higher numbers of Treg than mice vaccinated with thaw-frozen necrotic MΦ or phosphate-buffered saline (PBS). Interleukin (IL)-4 and IL-6 were significantly suppressed, while IL-10 was increased in mice that received the PDT-induced apoptotic MΦ. The role of Treg in this process was confirmed through Treg transfer from vaccinated to naïve mice. Mice receiving CD4(+) CD25(+) cells from mice vaccinated with PDT-induced apoptotic MΦ showed smaller lesions 3 weeks after infection and lower parasitic burdens than mice that received Tregs from mice of thaw-frozen necrotic MΦ or PBS groups. These changes were mediated by the depletion of CD3(+) CD8(+) and NKT cells and increased levels of IL-12p70 and interferon-γ, IL-10, and TGF-β in the cutaneous leishmaniasis lesions. CONCLUSION Vaccination with apoptotic MΦ-induced tolerogenic Treg cells that limited collateral tissue damage and diminished parasitic burden.
Collapse
Affiliation(s)
- Oleg E Akilov
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Sabel MS. Cryoablation as a Replacement for Surgical Resection in Early Stage Breast Cancer. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-011-0044-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Akilov OE, Wu MX, Jin Y, Zhou Z, Geskin LJ, Falo LD, Hasan T. Vaccination with photodynamic therapy-treated macrophages induces highly suppressive T-regulatory cells. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2011; 27:97-107. [PMID: 21392113 DOI: 10.1111/phpp.2011.27.issue-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND/PURPOSE The present study explores whether photodynamic therapy (PDT)-induced apoptosis can increase the number of tolerogenic regulatory T cells (Treg) and limit collateral tissue damage. METHODS BALB/c mice were vaccinated subcutaneously three times with PDT-induced apoptotic or thaw-frozen, necrotic non-infected autologous macrophages (MΦ). Two weeks after the last vaccination, mice were infected intradermally with 10(6) promastigotes of Leishmania major. RESULTS Mice that received PDT-induced apoptotic MΦ had fewer parasites and higher numbers of Treg than mice vaccinated with thaw-frozen necrotic MΦ or phosphate-buffered saline (PBS). Interleukin (IL)-4 and IL-6 were significantly suppressed, while IL-10 was increased in mice that received the PDT-induced apoptotic MΦ. The role of Treg in this process was confirmed through Treg transfer from vaccinated to naïve mice. Mice receiving CD4(+) CD25(+) cells from mice vaccinated with PDT-induced apoptotic MΦ showed smaller lesions 3 weeks after infection and lower parasitic burdens than mice that received Tregs from mice of thaw-frozen necrotic MΦ or PBS groups. These changes were mediated by the depletion of CD3(+) CD8(+) and NKT cells and increased levels of IL-12p70 and interferon-γ, IL-10, and TGF-β in the cutaneous leishmaniasis lesions. CONCLUSION Vaccination with apoptotic MΦ-induced tolerogenic Treg cells that limited collateral tissue damage and diminished parasitic burden.
Collapse
Affiliation(s)
- Oleg E Akilov
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ramaswamy M, Deng M, Siegel RM. Harnessing programmed cell death as a therapeutic strategy in rheumatic diseases. Nat Rev Rheumatol 2011; 7:152-60. [PMID: 21283145 PMCID: PMC3437254 DOI: 10.1038/nrrheum.2010.225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Programmed cell death (PCD) is a key process in the regulation of immune cell development and peripheral immune homeostasis. Caspase-dependent apoptosis, as well as a number of alternative cell death mechanisms, account for immune cell PCD induced by cell-intrinsic and extrinsic pathways. In animal models, compelling evidence has emerged that genetic defects in PCD can result in autoimmune disease. Autoimmune disease can arise from single-gene mutations that affect PCD, and defective PCD has been observed in some tissues and cells from patients with rheumatic disease. Selectively inducing PCD in autoreactive B and T cells is very attractive as a therapeutic strategy because it offers the possibility of permanent elimination of these pathogenic cell subsets. In addition, the anti-inflammatory effects of apoptotic cells may add to the therapeutic benefit of induced PCD. Immune cell subsets vary widely in their sensitivity to specific inducers of cell death, and understanding these differences is key to predicting the outcome of inducing apoptosis for therapeutic means. Here, we review approaches that have been used to induce PCD in the treatment of autoimmune disease, and describe the prospects of bringing these experimental strategies into clinical practice.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, NIAMS, NIH, Bethesda, MD
| | - Min Deng
- Immunoregulation Section, Autoimmunity Branch, NIAMS, NIH, Bethesda, MD
| | - Richard M. Siegel
- Immunoregulation Section, Autoimmunity Branch, NIAMS, NIH, Bethesda, MD
| |
Collapse
|
38
|
Peters DL, Pretorius PJ. Origin, translocation and destination of extracellular occurring DNA--a new paradigm in genetic behaviour. Clin Chim Acta 2011; 412:806-11. [PMID: 21277292 DOI: 10.1016/j.cca.2011.01.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/31/2022]
Abstract
The diagnostic value of extracellular occurring DNA (eoDNA) is limited by our lack of understanding its biological function. eoDNA exists in a number of forms, namely vesicle bound DNA (apoptotic bodies, micro particles, micro vesicles and exosomes), histone/DNA complexes or nucleosomes and virtosomes. These forms of DNA can also be categorized under the terms circulating DNA, cell free DNA, free DNA and extracellular DNA. The DNA can be released by means of form-specific mechanisms and seem to be governed by cell cycle phases and apoptosis. Active release is supported by evidence of energy dependent release mechanisms and various immunological- and messenger functions. Sequencing has shown that eoDNA sequences present in the nucleosome reflects traits and distribution of genome sequences and are regulated by ways of release and/or clearance. eoDNA enables the horizontal transfer of gene sequences from one cell to another, over various distances. The ability of eoDNA to partake in horizontal gene transfer makes it an important facet in the field of epigenetic variation. Clinical implementation of eoDNA diagnostics requires that all of the subgroups of eoDNA be properly investigated.
Collapse
Affiliation(s)
- Dimetrie L Peters
- Centre for Human Metabonomics, School for Physical and Chemical Sciences, North West University, Potchefstroom, South Africa.
| | | |
Collapse
|
39
|
Stoyanova V, Petrova S, Tchorbadjieva M, Deliyska B, Vasilev V, Tsacheva I. New insight into the autoimmunogenicity of the complement protein C1q. Mol Immunol 2010; 48:678-82. [PMID: 21159384 DOI: 10.1016/j.molimm.2010.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/06/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
C1q along with its physiological role in maintenance of homeostasis and normal function of the immune system is involved in pathological conditions associated with repetitive generation of anti-C1q autoantibodies. The time and events that cause their first appearance are still unknown. We addressed this issue by analyzing the immunogenicity of C1q in two target groups-one of non-diseased humans and the other of lupus nephritis (LN) patients whose autoimmune disorder is associated with high titers of anti-C1q autoantibodies. The non-diseased humans were represented by pregnant women because the sex hormones are thought to be involved in triggering autoimmune pathologies by their ability to tip the balance of female adaptive immune response to production of antibodies. We screened, using ELISA, 31 sera from healthy pregnant women for the presence of IgM and IgG classes of autoantibodies, recognizing epitopes within the native C1q molecule, its collagen-like region (CLR) and globular head fragment (gC1q). The latter was represented by recombinant analogs of the three globular fragments of A, B and C chains, comprising C1q-ghA, ghB and ghC. We did not find IgM antibodies for all test-antigens which suggest that the natural IgM antibodies are not involved in triggering autoimmunity to C1q. Still more, we did not detect anti-CLR antibodies which have been proved pathogenic in already manifested LN. We completed the analysis with comparative epitope mapping of gC1q and we found similar immunogenic behavior in both target groups-ghA and ghC contained the immunodominant epitopes. This implies that the initial immune response to C1q might occur when the molecule has interacted with its ligands via ghB as part of gC1q. The presence of anti-gC1q in both healthy and diseased humans also implies that these antibodies, unlike anti-CLR, may have a contribution to an onset of autoimmunity.
Collapse
Affiliation(s)
- Vishnya Stoyanova
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov Str, 1164 Sofia, Bulgaria
| | | | | | | | | | | |
Collapse
|
40
|
Muscal E, Nadeem T, Li X, Mian A, Harris TB. Evaluation and Treatment of Acute Psychosis in Children With Systemic Lupus Erythematosus (SLE): Consultation–Liaison Service Experiences at a Tertiary-Care Pediatric Institution. PSYCHOSOMATICS 2010. [DOI: 10.1016/s0033-3182(10)70744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Cauwe B, Opdenakker G. Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 2010; 45:351-423. [DOI: 10.3109/10409238.2010.501783] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Abstract
Evidence strongly suggests that excessive or protracted signaling, or both, by cell-surface or intracellular innate immune receptors is central to the pathogenesis of most autoimmune and autoinflammatory rheumatic diseases. The initiation of aberrant innate and adaptive immune responses in autoimmune diseases can be triggered by microbes and, at times, by endogenous molecules--particularly nucleic acids and related immune complexes--under sterile conditions. By contrast, most autoinflammatory syndromes are generally dependent on germline or de novo gene mutations that cause or facilitate inflammasome assembly. The consequent production of proinflammatory cytokines, principally interferon-alpha/beta and tumor necrosis factor in autoimmune diseases, and interleukin-1beta in autoinflammatory diseases, leads to the creation of autoamplification feedback loops and chronicity of these syndromes. These findings have resulted in a critical reappraisal of pathogenetic mechanisms, and provide a basis for the development of novel diagnostic and therapeutic modalities for these diseases.
Collapse
|
43
|
Gahan PB, Stroun M. The Biology of Circulating Nucleic Acids in Plasma and Serum (CNAPS). NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2010. [DOI: 10.1007/978-3-642-12617-8_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Sabel MS, Su G, Griffith KA, Chang AE. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol 2009; 17:1187-93. [PMID: 20033323 DOI: 10.1245/s10434-009-0846-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cryoablation has garnered significant interest as a treatment for solid tumors including breast cancer for both its local effects and potential in stimulating an antitumor immune response. We sought to examine the impact that variances in technique might have on the immune response and examine the mechanism by which cryoablation may stimulate an antitumor immune response. MATERIALS AND METHODS Balb/c mice with established 4T1 mammary carcinomas were treated by cryoablation at either a high rate of freeze or low rate of freeze, or by surgical excision, after spontaneous metastases occurred. Tumor-draining lymph nodes (TDLN) were excised at 1 week for EliSPOT assay and immunophenotyping. Mice were followed after treatment for enumeration of pulmonary metastases and survival. RESULTS Compared with surgical excision, cryoablation using a high freeze rate resulted in a significant increase in tumor-specific T cells in the TDLN, a reduction in pulmonary metastases, and improved survival. However, cryoablation using a low freeze rate resulted in an increase in regulatory T cells, a significant increase in pulmonary metastases, and decreased survival. CONCLUSIONS Cryoablation of breast cancer in mice can generate a tumor-specific immune response that can eradicate systemic micrometastases and improve outcome compared with surgical excision; however, the technique used to freeze the tissue may alter the immune response from stimulatory to suppressive.
Collapse
Affiliation(s)
- Michael S Sabel
- Division of Surgical Oncology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
The healthy immune system makes use of a variety of surveillance mechanisms at different stages of lymphoid development to prevent the occurrence and expansion of potentially harmful autoreactive T cell clones. Disruption of these mechanisms may lead to inappropriate activation of T cells and the development of autoimmune and lymphoproliferative diseases [such as multiple sclerosis, rheumatoid arthritis, lupus erythematosus, diabetes and autoimmune lymphoproliferative syndrome (ALPS)]. Clonal deletion of T cells with high affinities for self-peptide-MHC via programmed cell death (apoptosis) is an essential mechanism leading to self-tolerance. Referred to as negative selection, central tolerance in the thymus serves as the first checkpoint for the developing T cell repertoire and involves the apoptotic elimination of potentially autoreactive T cells clones bearing high affinity T cell receptors (TCR) that recognize autoantigens presented by thymic epithelial cells. Autoreactive T cells that escape negative selection are held in check in the periphery by either functional inactivation ("anergy") or extrathymic clonal deletion, both of which are dependent on the strength and frequency of the TCR signal and the costimulatory context, or by regulatory T cells. This review provides an overview of the different molecular executioners of cell death programs that are vital to intrathymic or extrathymic clonal deletion of T cells. Further, the potential involvement of various apoptotic signaling paradigms are discussed with respect to the genesis and pathophysiology of autoimmune disease.
Collapse
Affiliation(s)
- Martina Gatzka
- Department of Molecular Biology and Biochemistry, Center for Immunology, University of California, Irvine, CA, USA.
| | | |
Collapse
|
46
|
|
47
|
Pleural tuberculosis in patients with early HIV infection is associated with increased TNF-alpha expression and necrosis in granulomas. PLoS One 2009; 4:e4228. [PMID: 19156215 PMCID: PMC2626629 DOI: 10.1371/journal.pone.0004228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/23/2008] [Indexed: 11/20/2022] Open
Abstract
Although granulomas may be an essential host response against persistent antigens, they are also associated with immunopathology. We investigated whether HIV co-infection affects histopathological appearance and cytokine profiles of pleural granulomas in patients with active pleural tuberculosis (TB). Granulomas were investigated in pleural biopsies from HIV positive and negative TB pleuritis patients. Granulomas were characterised as necrotic or non-necrotic, graded histologically and investigated for the mRNA expression of IL-12, IFN-gamma, TNF-alpha and IL-4 by in situ hybridisation. In all TB patients a mixed Th1/Th2 profile was noted. Necrotic granulomas were more evident in HIV positive patients with a clear association between TNF-alpha and necrosis. This study demonstrates immune dysregulation which may include TNF-alpha-mediated immunopathology at the site of disease in HIV infected pleural TB patients.
Collapse
|
48
|
Klock G, Baiersdörfer M, Koch-Brandt C. Chapter 7 Cell Protective Functions of Secretory Clusterin (sCLU). Adv Cancer Res 2009; 104:115-38. [DOI: 10.1016/s0065-230x(09)04007-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Abstract
Circulating DNA is present in the blood of all individuals, but it has been found that cancer patients and patients with a variety of other conditions have increased amounts of these circulating DNA fragments in their blood. Even though more than 30 years of research have been done on this subject, the origin of these nucleic acid molecules is still not clear. We present evidence that does not support the general notion that apoptosis or necrosis is the major source of circulating free DNA. Active release of free circulating DNA by living cells may be a plausible mechanism. Disturbance of the equilibrium between the release of DNA by living cells and the mechanisms used for clearing this DNA may play the main role in the appearance of increased amounts of circulating DNA in the blood of individuals with different ailments. Elucidating the origin and the mechanism that cells use to release free circulating DNA into the blood may enhance the diagnostic and prognostic value of these nucleic acid molecules.
Collapse
Affiliation(s)
- Maniesh van der Vaart
- School of Biochemistry, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| | | |
Collapse
|
50
|
Sabel MS. Cryo-immunology: a review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology 2008; 58:1-11. [PMID: 19007768 DOI: 10.1016/j.cryobiol.2008.10.126] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 12/24/2022]
Abstract
The use of cryosurgery to ablate tumors is expanding, primarily due to its technical ease and minimal morbidity. A potential secondary advantage to the in situ freezing of malignant disease is the cryo-immunologic response, the generation of an anti-tumor immune response triggered by the natural absorption of the malignant tissue. While initially proposed based on clinical observations of distant disease regressing after cryoablation of a primary tumor, results from preclinical studies have been mixed and the existence of a cryo-immunologic response has been controversial. Recent studies have shed light on the potential mechanism by which cryoablation may modulate the immune system, also reveals that both immunostimulatory and immunosuppressive responses may be triggered. This article reviews the existing evidence regarding tumor cryo-immunology and puts forward hypotheses regarding patient, tumor and technical factors that may influence the resultant immune response and warrant further investigation.
Collapse
Affiliation(s)
- Michael S Sabel
- Division of Surgical Oncology, University of Michigan Comprehensive Cancer Center, Department of Surgery, 3304 Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|