1
|
Labib S, Bright RK, Liu J. Focused Ultrasound in Cancer Immunotherapy: A Review of Mechanisms and Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00353-3. [PMID: 39389856 DOI: 10.1016/j.ultrasmedbio.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Ultrasound is well-perceived for its diagnostic application. Meanwhile, ultrasound, especially focused ultrasound (FUS), has also demonstrated therapeutic capabilities, such as thermal tissue ablation, hyperthermia, and mechanical tissue ablation, making it a viable therapeutic approach for cancer treatment. Cancer immunotherapy is an emerging cancer treatment approach that boosts the immune system to fight cancer, and it has also exhibited enhanced effectiveness in treating previously considered untreatable conditions. Currently, cancer immunotherapy is regarded as one of the four pillars of cancer treatment because it has fewer adverse effects than radiation and chemotherapy. In recent years, the unique capabilities of FUS in ablating tumors, regulating the immune system, and enhancing anti-tumor responses have resulted in a new field of research known as FUS-induced/assisted cancer immunotherapy. In this work, we provide a comprehensive overview of this new research field by introducing the basics of focused ultrasound and cancer immunotherapy and providing the state-of-the-art applications of FUS in cancer immunotherapy: the mechanisms and preclinical and clinical studies. This review aims to offer the scientific community a reliable reference to the exciting field of FUS-induced/assisted cancer immunotherapy, hoping to foster the further development of related technology and expand its medical applications.
Collapse
Affiliation(s)
- Sadman Labib
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Robert K Bright
- Department of Immunology and Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | - Jingfei Liu
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Deng S, Jiang Y, Luo L, Tang H, Hu X, Wu C, Tang J, Ge H, Gong X, Cai R, Wang G, Li X, Feng J. C5a enhances inflammation and chemotaxis of γδ T cells in malignant pleural effusion. Int Immunopharmacol 2024; 127:111332. [PMID: 38071913 DOI: 10.1016/j.intimp.2023.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The inhibitory effect of γδT17 cells on the formation of murine malignant pleural effusions (MPE) has been established. However, there is limited understanding regarding the phenotypic characterization of γδ T cells in MPE patients and their recruitment to the pleural cavity. METHODS We quantified γδ T cell prevalence in pleural effusions and corresponding peripheral blood from malignant and benign patients using immunohistochemistry and flow cytometry. The expression of effector memory phenotype, stimulatory/inhibitory/chemokine receptors and cytokines on γδ T cells in MPE was analyzed using multicolor flow cytometry. The infiltration of γδ T cells in MPE was assessed through immunofluorescence, ELISA, flow cytometry and transwell migration assay. RESULTS We observed a significant infiltration of γδ T cells in MPE, surpassing the levels found in blood and benign pleural effusion. γδ T cells in MPE exhibited heightened expression of CD56 and an effector memory phenotype, while displaying lower levels of PD-1. Furthermore, γδ T cells in MPE showed higher levels of cytokines (IFN-γ, IL-17A and IL-22) and chemokine receptors (CCR2, CCR5 and CCR6). CCR2 expression was notably higher in the Vδ2 subtype compared to Vδ1 cells. Moreover, the complement C5a enhanced cytokine release by γδ T cells, upregulated CCR2 expression in Vδ2 subsets, and stimulated the production of chemokines (CCL2, CCL7 and CCL20) in MPE. In vitro utilizing CCR2 neutralising and C5aR antagonist significantly reduced the recruitment of γδ T cells. CONCLUSIONS γδ T cells infiltrate MPE by overexpressing CCR2 and exhibit hightened inflammation, which is further augmented by C5a.
Collapse
Affiliation(s)
- Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lisha Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runjin Cai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guo Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Deng S, Zhou F, Wang F, Jiang Y, Tang J, Hu X, Luo L, Jin Y, Huang L, Sun D, Xiao G, Feng J, Li X. C5a enhances Vδ1 T cells recruitment via the CCL2-CCR2 axis in IgA nephropathy. Int Immunopharmacol 2023; 125:111065. [PMID: 37862725 DOI: 10.1016/j.intimp.2023.111065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Mucosal immune-associated γδ T cells have been implicated in IgA nephropathy (IgAN). However, the involvement of Vδ1 T cells, the major γδ T cells subtype, in renal damage and the mechanism underlying their migration from peripheral blood to kidney in IgAN remain unclear. METHODS Clinical data from IgAN patients and healthy controls (HC) were analyzed. Phenotypes and chemokine receptors of γδ T cell were compared between IgAN patients and HC. Immunohistochemistry and immunofluorescence were performed to assess the infiltration of γδ T cell subsets and the expression of chemokine in renal tissues. In vitro, C5a was used to stimulate the human glomerular mesangial cells (HMCs) and chemotaxis experiment was used to examine Vδ1 T cells migration. Correlation between Vδ1 T cells and related clinical indicators were analyzed. RESULTS IgAN patients exhibited decreased Vδ1 T cell in blood but increased levels in kidneys compared to HC. Increased CCR2-expressing Vδ1 T cells and serum level of CCL2 were observed in IgAN patients. CCL2 co-localized with CCR2 in HMCs of IgAN. In vitro, C5a enhanced Vδ1 T cells recruitment by HMCs through CCL2-CCR2 axis. Importantly, circulating Vδ1 T cell levels showed a negatively correlated with both the urinary protein creatinine ratio (UACR) and 24-hour urine protein (UP). Moreover, kidney infiltration of Vδ1 cells positively correlated with UACR, UP, mesangial hyperplasia and renal tubule atrophy/interstitial fibrosis in IgAN. CONCLUSIONS C5a-induced production of CCL2 by HMCs facilitates Vδ1 T cells recruitment via the CCL2-CCR2 axis, contributing to renal damage in IgAN.
Collapse
Affiliation(s)
- Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangyu Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangyuan Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanyuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liying Luo
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanli Jin
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingyu Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Danni Sun
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gong Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China..
| |
Collapse
|
4
|
Slattery K, Breheny M, Woods E, Keating S, Brennan K, Rooney C, Augustine S, Ryan A, Owens C, Gardiner CM. Heightened metabolic responses in NK cells from patients with neuroblastoma suggests increased potential for immunotherapy. Front Oncol 2022; 12:1004871. [PMID: 36276144 PMCID: PMC9585418 DOI: 10.3389/fonc.2022.1004871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
High risk neuroblastoma is responsible for 15% of deaths in pediatric cancer patients. The introduction of anti-GD2 immunotherapy has significantly improved outcomes but there is still only approximately a 50% 5 year event-free-survival for these children and improvements in treatments are urgently required. Anti-GD2 immunotherapy uses the patients’ own immune system to kill cancer cells. In particular, Natural Killer (NK) cells kill antibody coated tumor cells by a process called antibody dependent cellular cytotoxicity (ADCC). However, our previous work has highlighted metabolic exhaustion of NK cells in circulating blood of adult cancer patients, identifying this as a potential therapeutic target. In this study, we investigated circulating NK cells in patients newly diagnosed with neuroblastoma. We found evidence of activation of NK cells in vivo by the cancer itself. While some evidence of NK cell dysfunction was observed in terms of IFNγ production, most results indicated that the NK cell compartment remained relatively intact. In fact, some aspects of metabolic and functional activities were actually increased in patients compared to controls. Glycolytic responses, which we show are crucial for ADCC, were actually enhanced in patients and CD16, the NK cell receptor that mediates ADCC, was also expressed at high levels in some patients. Overall, the data suggest that patient NK cells could be harvested at diagnosis for subsequent beneficial autologous use during immunotherapy. Enhancing glycolytic capacity of cell therapies could also be a strategic goal of future cell therapies for patients with neuroblastoma and indeed other cancers.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Megan Breheny
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Elena Woods
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Sinead Keating
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Kiva Brennan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Caroline Rooney
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Sindhu Augustine
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Aishling Ryan
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Cormac Owens
- Department of Oncology, Children’s Health Ireland at Crumlin, Dublin, Ireland
| | - Clair M. Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- *Correspondence: Clair M. Gardiner,
| |
Collapse
|
5
|
Huang L, Zhang L, Li W, Li S, Wen J, Li H, Liu Z. Advances in Development of mRNA-Based Therapeutics. Curr Top Microbiol Immunol 2022; 440:147-166. [PMID: 32683507 DOI: 10.1007/82_2020_222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recently, mRNA-based therapeutics have been greatly boosted since the development of novel technologies of both mRNA synthesis and delivery system. Promising results were showed in both preclinical and clinical studies in the field of cancer vaccine, tumor immunotherapy, infectious disease prevention and protein replacement therapy. Recent advancements in clinical trials also encouraged scientists to attempt new applications of mRNA therapy such as gene editing and cell programming. These studies bring mRNA therapeutics closer to real-world application. Herein, we provide an overview of recent advances in mRNA-based therapeutics.
Collapse
Affiliation(s)
- Lei Huang
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Luyao Zhang
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Weiwei Li
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Shiqiang Li
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Jianguo Wen
- Stemirna Therapeutics Inc, Shanghai, 201206, China
| | - Hangwen Li
- Stemirna Therapeutics Inc, Shanghai, 201206, China.
| | | |
Collapse
|
6
|
Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer 2021; 20:33. [PMID: 33593376 PMCID: PMC7884263 DOI: 10.1186/s12943-021-01311-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
mRNA vaccines have tremendous potential to fight against cancer and viral diseases due to superiorities in safety, efficacy and industrial production. In recent decades, we have witnessed the development of different kinds of mRNAs by sequence optimization to overcome the disadvantage of excessive mRNA immunogenicity, instability and inefficiency. Based on the immunological study, mRNA vaccines are coupled with immunologic adjuvant and various delivery strategies. Except for sequence optimization, the assistance of mRNA-delivering strategies is another method to stabilize mRNAs and improve their efficacy. The understanding of increasing the antigen reactiveness gains insight into mRNA-induced innate immunity and adaptive immunity without antibody-dependent enhancement activity. Therefore, to address the problem, scientists further exploited carrier-based mRNA vaccines (lipid-based delivery, polymer-based delivery, peptide-based delivery, virus-like replicon particle and cationic nanoemulsion), naked mRNA vaccines and dendritic cells-based mRNA vaccines. The article will discuss the molecular biology of mRNA vaccines and underlying anti-virus and anti-tumor mechanisms, with an introduction of their immunological phenomena, delivery strategies, their importance on Corona Virus Disease 2019 (COVID-19) and related clinical trials against cancer and viral diseases. Finally, we will discuss the challenge of mRNA vaccines against bacterial and parasitic diseases.
Collapse
Affiliation(s)
- Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 PR China
| |
Collapse
|
7
|
Nörenberg J, Jaksó P, Barakonyi A. Gamma/Delta T Cells in the Course of Healthy Human Pregnancy: Cytotoxic Potential and the Tendency of CD8 Expression Make CD56+ γδT Cells a Unique Lymphocyte Subset. Front Immunol 2021; 11:596489. [PMID: 33603738 PMCID: PMC7884463 DOI: 10.3389/fimmu.2020.596489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 01/21/2023] Open
Abstract
To date, pregnancy is an immunological paradox. The semi-allogenic fetus must be accepted by the maternal immune system, while defense against pathogens and immune surveillance cannot be compromised. Gamma/delta T cells are believed to play an important role in this immunological puzzle. In this study, we analyzed peripheral blood CD56+ γδT cells from pregnant women (1st, 2nd, and 3rd trimester) and non-pregnant women by multicolor flow cytometry. Interestingly, γδT cells represent almost half of CD3+/CD56+ cells. Among γδT cells, the CD56+ population expands in the 2nd and 3rd trimester. CD56+ γδT cells maintained a predominantly CD4–/CD8– or CD8+ phenotype, while CD56– γδT cells were in similar rates CD4–/CD8– or CD4+ during pregnancy. Investigation of the lysosomal degranulation marker CD107a revealed a preserved elevated rate of potentially cytotoxic CD56+ γδT cells in pregnancy, while their cytotoxic strength was reduced. Furthermore, CD56+ γδT cells continuously showed a higher prevalence of PD-1 expression. CD56+ γδT cells’ rate of PD-1 increased in the 1st trimester and decreased hereafter back to normal level. We correlated the cytotoxic potential and the expression of the inhibitory immune checkpoint PD-1 and were able to demonstrate that highly cytotoxic cells within this CD56+ γδT population tend to express PD-1, which might allow the inhibition of these cells after binding its ligand in the placenta. These findings should support the understanding of the complex processes, which ensure the maintenance of pregnancy.
Collapse
Affiliation(s)
- Jasper Nörenberg
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Pál Jaksó
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Alíz Barakonyi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.,Janos Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
9
|
Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther 2020; 21:201-218. [PMID: 32842798 DOI: 10.1080/14712598.2020.1815704] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cancer immunotherapy is more dependent on monoclonal antibodies, proteins, and cells, as therapeutic agents, to attain prominent outcomes. However, cancer immunotherapy's clinical benefits need to be enhanced, as many patients still do not respond well to existing treatments, or their diseases may relapse after temporary control. RNA-based approaches have provided new options for advancing cancer immunotherapy. Moreover, considerable efforts have been made to utilize RNA for vaccine production. RNA vaccines, which encode tumor-associated or specific epitopes, stimulate adaptive immunity. This adaptive immune response is capable of elimination or reduction of tumor burden. It is crucial to develop effective RNA transfer technologies that penetrate the lipid bilayer to reach the cytoplasm for translation into functional proteins. Two important delivery methods include the loading of mRNA into dendritic cells ex vivo; and direct injection of naked RNA with or without a carrier. AREAS COVERED The latest results of pre-clinical and clinical studies with RNA vaccines in cancer immunotherapy are summarized in this review. EXPERT OPINION RNA vaccines are now in early clinical development with promising safety and efficacy outcomes. Also, the translation capacity and durability of these vaccines can be increased with chemical modifications and sequence engineering.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences , Ardabil, Iran
| | - Amir Hossein Faghfouri
- Student's Research Committee, Department of Nutrition, Tabriz University of Medical Science , Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
10
|
Ahmed R, Crespo I, Tuyaerts S, Bekkar A, Graciotti M, Xenarios I, Kandalaft LE. Predicting combinations of immunomodulators to enhance dendritic cell-based vaccination based on a hybrid experimental and computational platform. Comput Struct Biotechnol J 2020; 18:2217-2227. [PMID: 32952936 PMCID: PMC7475195 DOI: 10.1016/j.csbj.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022] Open
Abstract
Dendritic cell (DC)-based vaccines have been largely used in the adjuvant setting for the treatment of cancer, however, despite their proven safety, clinical outcomes still remain modest. In order to improve their efficacy, DC-based vaccines are often combined with one or multiple immunomodulatory agents. However, the selection of the most promising combinations is hampered by the plethora of agents available and the unknown interplay between these different agents. To address this point, we developed a hybrid experimental and computational platform to predict the effects and immunogenicity of dual combinations of stimuli once combined with DC vaccination, based on the experimental data of a variety of assays to monitor different aspects of the immune response after a single stimulus. To assess the stimuli behavior when used as single agents, we first developed an in vitro co-culture system of T cell priming using monocyte-derived DCs loaded with whole tumor lysate to prime autologous peripheral blood mononuclear cells in the presence of the chosen stimuli, as single adjuvants, and characterized the elicited response assessing 18 different phenotypic and functional traits important for an efficient anti-cancer response. We then developed and applied a prediction algorithm, generating a ranking for all possible dual combinations of the different single stimuli considered here. The ranking generated by the prediction tool was then validated with experimental data showing a strong correlation with the predicted scores, confirming that the top ranked conditions globally significantly outperformed the worst conditions. Thus, the method developed here constitutes an innovative tool for the selection of the best immunomodulatory agents to implement in future DC-based vaccines.
Collapse
Affiliation(s)
- Rita Ahmed
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Isaac Crespo
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
- Vital-IT group, SIB Swiss Institute of Bioinformatics, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Sandra Tuyaerts
- Department of Oncology, Leuven Cancer Institute (LKI), University of Leuven (KU Leuven), Leuven, Belgium
| | - Amel Bekkar
- Center for Integrative Genomics, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Michele Graciotti
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lana E. Kandalaft
- Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
11
|
Ahmed R, Sayegh N, Graciotti M, Kandalaft LE. Electroporation as a method of choice to generate genetically modified dendritic cell cancer vaccines. Curr Opin Biotechnol 2020; 65:142-155. [PMID: 32240923 DOI: 10.1016/j.copbio.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 12/31/2022]
Abstract
In the last few decades, immunotherapy has emerged as an alternative therapeutic approach to treat cancer. Immunotherapy offers a plethora of different treatment possibilities. Among these, dendritic cell (DC)-based cancer vaccines constitute one of the most promising and valuable therapeutic options. DC-vaccines have been introduced into the clinics more than 15 years ago, and preclinical studies showed their general safety and low toxic effects on patients. However, their treatment efficacy is still rather limited, demanding for novel avenues to improve vaccine efficacy. One way to potentially achieve this is to focus on improving the DC-T cell interaction to further increase T cell priming and downstream activity. A successful DC-T cell interaction requires three different signals (Figure 1): (1) Major Histocompatibility Complex (MHC) and antigen complex interaction with T cell receptor (TCR) (2) interaction between co-stimulatory molecules and their cognate ligands at the cell surface and (3) secretion of cytokines to polarize the immune response toward a Type 1 helper (Th1) phenotype. In recent years, many studies attempted to improve the DC-T cell interaction and overall cancer vaccine therapeutic outcomes by increasing the expression of mediators of signal 1, 2 and/or 3, through genetic modifications of DCs. Transfection of genes of interest can be achieved through many different methods such as passive pulsing, lipofection, viral transfection, or electroporation (EP). However, EP is currently emerging as the method of choice thanks to its safety, versatility, and relatively easy clinical translation. In this review we will highlight the potential benefits of EP over other transfection methods as well as giving an overview of the available studies employing EP to gene-modify DCs in cancer vaccines. Crucial aspects such as safety, feasibility, and gene(s) of choice will be also discussed, together with future perspectives and opportunities for DC genetic engineering.
Collapse
Affiliation(s)
- Rita Ahmed
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Naya Sayegh
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Michele Graciotti
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Center for Cancer Research, Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.
| |
Collapse
|
12
|
Ribonucleic Acid Engineering of Dendritic Cells for Therapeutic Vaccination: Ready 'N Able to Improve Clinical Outcome? Cancers (Basel) 2020; 12:cancers12020299. [PMID: 32012714 PMCID: PMC7072269 DOI: 10.3390/cancers12020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/06/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
Targeting and exploiting the immune system has become a valid alternative to conventional options for treating cancer and infectious disease. Dendritic cells (DCs) take a central place given their role as key orchestrators of immunity. Therapeutic vaccination with autologous DCs aims to stimulate the patient's own immune system to specifically target his/her disease and has proven to be an effective form of immunotherapy with very little toxicity. A great amount of research in this field has concentrated on engineering these DCs through ribonucleic acid (RNA) to improve vaccine efficacy and thereby the historically low response rates. We reviewed in depth the 52 clinical trials that have been published on RNA-engineered DC vaccination, spanning from 2001 to date and reporting on 696 different vaccinated patients. While ambiguity prevents reliable quantification of effects, these trials do provide evidence that RNA-modified DC vaccination can induce objective clinical responses and survival benefit in cancer patients through stimulation of anti-cancer immunity, without significant toxicity. Succinct background knowledge of RNA engineering strategies and concise conclusions from available clinical and recent preclinical evidence will help guide future research in the larger domain of DC immunotherapy.
Collapse
|
13
|
Tahrali I, Kucuksezer UC, Akdeniz N, Altintas A, Uygunoglu U, Aktas-Cetin E, Deniz G. CD3 -CD56 + NK cells display an inflammatory profile in RR-MS patients. Immunol Lett 2019; 216:63-69. [PMID: 31589897 DOI: 10.1016/j.imlet.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/22/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
Abstract
Multiple Sclerosis (MS) is an immune-mediated and neurodegenerative disease of central nervous system. Relapsing-remitting (RR)-MS occurring with acute attacks and remissions, is the most common clinical type of MS. There are different strategies applied in first-line treatment of RR-MS patients such as interferon-beta (IFN-β) and glatiramer acetate. In this study, activating and inhibitory receptor expressions and interleukin (IL)-22 levels of NK cells were investigated in RR-MS patients with or without IFN-β therapy. Activating receptor expression and IL-22 levels of NK cells were increased in RR-MS patients under IFN-β therapy. Elevated NK cells with activating profile and increased IL-22 under IFN-β therapy suggest that IFN-β treatment might direct NK cells toward a pro-inflammatory status.
Collapse
Affiliation(s)
- Ilhan Tahrali
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Umut Can Kucuksezer
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Nilgun Akdeniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Ayse Altintas
- Koc University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey; Istanbul University Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Ugur Uygunoglu
- Istanbul University Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurology, Istanbul, Turkey
| | - Esin Aktas-Cetin
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | - Gunnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey.
| |
Collapse
|
14
|
Zhao Z, Zheng L, Chen W, Weng W, Song J, Ji J. Delivery strategies of cancer immunotherapy: recent advances and future perspectives. J Hematol Oncol 2019; 12:126. [PMID: 31779642 PMCID: PMC6883629 DOI: 10.1186/s13045-019-0817-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has become an emerging strategy for the treatment of cancer. Immunotherapeutic drugs have been increasing for clinical treatment. Despite significant advances in immunotherapy, the clinical application of immunotherapy for cancer patients has some challenges associated with safety and efficacy, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome. Novel strategies, particularly improved delivery strategies, including nanoparticles, scaffolds, and hydrogels, are able to effectively target tumors and/or immune cells of interest, increase the accumulation of immunotherapies within the lesion, and reduce off-target effects. Here, we briefly describe five major types of cancer immunotherapy, including their clinical status, strengths, and weaknesses. Then, we introduce novel delivery strategies, such as nanoparticle-based delivery of immunotherapy, implantable scaffolds, injectable biomaterials for immunotherapy, and matrix-binding molecular conjugates, which can improve the efficacy and safety of immunotherapies. Also, the limitations of novel delivery strategies and challenges of clinical translation are discussed.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Wei Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University /The Central Hospital of Zhejiang Lishui, Lishui, 323000, China. .,Department of Radiology, Affiliated Lishui Hospital of Zhejiang University/the Fifth Affiliated Hospital of Wenzhou Medical University/The Central Hospital of Zhejiang Lishui, Lishui, 323000, China. .,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, Lishui, 323000, China.
| |
Collapse
|
15
|
Mukherjee S, Hussaini R, White R, Atwi D, Fried A, Sampat S, Piao L, Pan Q, Banerjee P. TriCurin, a synergistic formulation of curcumin, resveratrol, and epicatechin gallate, repolarizes tumor-associated macrophages and triggers an immune response to cause suppression of HPV+ tumors. Cancer Immunol Immunother 2018; 67:761-774. [PMID: 29453519 PMCID: PMC11028238 DOI: 10.1007/s00262-018-2130-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Our earlier studies reported a unique potentiated combination (TriCurin) of curcumin (C) with two other polyphenols. The TriCurin-associated C displays an IC50 in the low micromolar range for cultured HPV+ TC-1 cells. In contrast, because of rapid degradation in vivo, the TriCurin-associated C reaches only low nano-molar concentrations in the plasma, which are sub-lethal to tumor cells. Yet, injected TriCurin causes a dramatic suppression of tumors in TC-1 cell-implanted mice (TC-1 mice) and xenografts of Head and Neck Squamous Cell Carcinoma (HNSCC) cells in nude/nude mice. Here, we use the TC-1 mice to test our hypothesis that a major part of the anti-tumor activity of TriCurin is evoked by innate and adaptive immune responses. TriCurin injection repolarized arginase1high (ARG1high), IL10high, inducible nitric oxide synthaselow (iNOSlow), IL12low M2-type tumor-associated macrophages (TAM) into ARG1low, IL10low, iNOShigh, and IL12high M1-type TAM in HPV+ tumors. The M1 TAM displayed sharply suppressed STAT3 and induced STAT1 and NF-kB(p65). STAT1 and NF-kB(p65) function synergistically to induce iNOS and IL12 transcription. Neutralizing IL12 signaling with an IL12 antibody abrogated TriCurin-induced intra-tumor entry of activated natural killer (NK) cells and Cytotoxic T lymphocytes (CTL), thereby confirming that IL12 triggers recruitment of NK cells and CTL. These activated NK cells and CTL join the M1 TAM to elicit apoptosis of the E6+ tumor cells. Corroboratively, neutralizing IL12 signaling partially reversed this TriCurin-mediated apoptosis. Thus, injected TriCurin elicits an M2→M1 switch in TAM, accompanied by IL12-dependent intra-tumor recruitment of NK cells and CTL and elimination of cancer cells.
Collapse
Affiliation(s)
- Sumit Mukherjee
- CUNY Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
- Department of Chemistry, Building 6S, The City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Rahman Hussaini
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Richard White
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Doaa Atwi
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Angela Fried
- CUNY Doctoral Program in Biochemistry, CUNY Graduate Center, New York, NY, 10016, USA
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Samay Sampat
- College of Arts and Science, New York University, New York, NY, 10003, USA
| | - Longzhu Piao
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Quintin Pan
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Probal Banerjee
- Department of Chemistry, Building 6S, The City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
- The Center for Developmental Neuroscience, City University of New York at The College of Staten Island, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
16
|
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17:261-279. [PMID: 29326426 DOI: 10.1038/nrd.2017.243] [Citation(s) in RCA: 2438] [Impact Index Per Article: 406.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mRNA vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development and potential for low-cost manufacture and safe administration. However, their application has until recently been restricted by the instability and inefficient in vivo delivery of mRNA. Recent technological advances have now largely overcome these issues, and multiple mRNA vaccine platforms against infectious diseases and several types of cancer have demonstrated encouraging results in both animal models and humans. This Review provides a detailed overview of mRNA vaccines and considers future directions and challenges in advancing this promising vaccine platform to widespread therapeutic use.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Frederick W Porter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
17
|
Li H, Shao S, Cai J, Burner D, Lu L, Chen Q, Minev B, Ma W. Artificial human antigen-presenting cells are superior to dendritic cells at inducing cytotoxic T-cell responses. Immunology 2017; 152:462-471. [PMID: 28664991 DOI: 10.1111/imm.12783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022] Open
Abstract
Peptide recognition through the MHC class I molecule by cytotoxic T lymphocytes (CTLs) leads to the killing of cancer cells. A potential challenge for T-cell immunotherapy is that dendritic cells (DCs) are exposed to the MHC class I-peptide complex for an insufficient amount of time. To improve tumour antigen presentation to T cells and thereby initiate a more effective T-cell response, we generated artificial antigen-presenting cells (aAPCs) by incubating human immature DCs (imDCs) with poly(lactic-co-glycolic) acid nanoparticles (PLGA-NPs) encapsulating tumour antigenic peptides, followed by maturation with lipopolysaccharide. Tumour antigen-specific CTLs were then induced using either peptide-loaded mature DCs (mDCs) or aAPCs, and their activities were analysed using both ELISpot and cytotoxicity assays. We found that the aAPCs induced significantly stronger tumour antigen-specific CTL responses than the controls, which included both mDCs and aAPCs loaded with empty nanoparticles. Moreover, frozen CTLs that were generated by exposure to aAPCs retained the capability to eradicate HLA-A2-positive tumour antigen-bearing cancer cells. These results indicated that aAPCs are superior to DCs when inducing the CTL response because the former are capable of continuously presenting tumour antigens to T cells in a sustained manner. The development of aAPCs with PLGA-NPs encapsulating tumour antigenic peptides is a promising approach for the generation of effective CTL responses in vitro and warrants further assessments in clinical trials.
Collapse
Affiliation(s)
- Hua Li
- Department of Basic Medicine, Huzhou University School of Medicine, Huzhou, Zhejiang, China
| | - Shengwen Shao
- Department of Basic Medicine, Huzhou University School of Medicine, Huzhou, Zhejiang, China
| | - Jianshu Cai
- Department of General Surgery, Sir Runrun Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danielle Burner
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| | - Qiuqiang Chen
- Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, Zhejiang, China
| | - Boris Minev
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,StemImmune Inc., San Diego, CA, USA
| | - Wenxue Ma
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Department of Clinical Medicine, Huzhou University School of Medicine, Huzhou, Zhejiang, China.,Institute for Cancer Biology and Stem Cell Research, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
18
|
Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front Immunol 2017; 8:892. [PMID: 28791027 PMCID: PMC5522883 DOI: 10.3389/fimmu.2017.00892] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
Over the past years, the phenotypic and functional boundaries distinguishing the main cell subsets of the immune system have become increasingly blurred. In this respect, CD56 (also known as neural cell adhesion molecule) is a very good example. CD56 is the archetypal phenotypic marker of natural killer cells but can actually be expressed by many more immune cells, including alpha beta T cells, gamma delta T cells, dendritic cells, and monocytes. Common to all these CD56-expressing cell types are strong immunostimulatory effector functions, including T helper 1 cytokine production and an efficient cytotoxic capacity. Interestingly, both numerical and functional deficiencies and phenotypic alterations of the CD56+ immune cell fraction have been reported in patients with various infectious, autoimmune, or malignant diseases. In this review, we will discuss our current knowledge on the expression and function of CD56 in the hematopoietic system, both in health and disease.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Anna Capsomidis
- Cancer Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Kramer MG, Masner M, Casales E, Moreno M, Smerdou C, Chabalgoity JA. Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer 2015; 15:620. [PMID: 26347489 PMCID: PMC4562361 DOI: 10.1186/s12885-015-1618-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Metastatic breast cancer is a major cause of death among women worldwide; therefore efficient therapeutic strategies are extremely needed. In this work we have developed a gene therapy- and bacteria-based combined neoadjuvant approach and evaluated its antitumor effect in a clinically relevant animal model of metastatic breast cancer. METHODS 2×10(8) particles of a Semliki Forest virus vector expressing interleukin-12 (SFV-IL-12) and/or 2×10(7) units of an aroC (-) Samonella Typhimurium strain (LVR01) were injected into 4T1 tumor nodules orthotopically implanted in mice. Tumors were surgically resected and long-term survival was determined. IL-12 and interferon-γ were quantified by Enzyme-Linked ImmunoSorbent Assay, bacteria was visualized by inmunohistochemistry and the number of lung metastasis was calculated with a clonogenic assay. RESULTS SFV-IL-12 and LVR01 timely inoculated and followed by surgical resection of tumors succeeded in complete inhibition of lethal lung metastasis and long-term survival in 90% of treated mice. The combined therapy was markedly synergistic compared to each treatment alone, since SFV-IL-12 monotherapy showed a potent antiangiogenic effect, being able to inhibit tumor growth and extend survival, but could not prevent establishment of distant metastasis and death of tumor-excised animals. On the other hand, LVR01 alone also showed a significant, although limited, antitumor potential, despite its ability to invade breast cancer cells and induce granulocyte recruitment. The efficacy of the combined therapy depended on the order in which both factors were administered; inasmuch the therapeutic effect was only observed when SFV-IL-12 was administered previous to LVR01, whereas administration of LVR01 before SFV-IL-12 had negligible antitumor activity. Moreover, pre-treatment with LVR01 seemed to suppress SFV-IL-12 antiangiogenic effects associated to lower IL-12 expression in this group. Re-challenged mice were unable to reject a second 4T1 tumor; however 100% of them could be totally cured by applying the same neoadjuvant combined regimen. To our knowledge, these are the most encouraging results obtained to date in a post-operatory setting using the highly aggressive 4T1 animal model. CONCLUSIONS SFV-IL-12-based gene therapy combined with Salmonella LVR01 neoadjuvant administration has a synergic antitumor effect and may be a promising therapeutic option to prevent and/or eradicate pre-operatory metastasis in locally advanced breast cancer.
Collapse
Affiliation(s)
- M Gabriela Kramer
- Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, (UdelaR), Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| | - Martín Masner
- Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, (UdelaR), Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| | - Erkuden Casales
- Division Gene Therapy, Center for Applied Medical Research, University of Navarra, Av. Pio XII 55, 31008, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, c/Irunlarrea 3, 31008, Pamplona, Spain.
| | - María Moreno
- Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, (UdelaR), Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| | - Cristian Smerdou
- Division Gene Therapy, Center for Applied Medical Research, University of Navarra, Av. Pio XII 55, 31008, Pamplona, Spain.
- IdiSNA, Navarra Institute for Health Research, c/Irunlarrea 3, 31008, Pamplona, Spain.
| | - José A Chabalgoity
- Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la República, (UdelaR), Av. A. Navarro 3051, 11600, Montevideo, Uruguay.
| |
Collapse
|
20
|
Anguille S, Van Acker HH, Van den Bergh J, Willemen Y, Goossens H, Van Tendeloo VF, Smits EL, Berneman ZN, Lion E. Interleukin-15 Dendritic Cells Harness NK Cell Cytotoxic Effector Function in a Contact- and IL-15-Dependent Manner. PLoS One 2015; 10:e0123340. [PMID: 25951230 PMCID: PMC4423923 DOI: 10.1371/journal.pone.0123340] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/02/2015] [Indexed: 01/02/2023] Open
Abstract
The contribution of natural killer (NK) cells to the treatment efficacy of dendritic cell (DC)-based cancer vaccines is being increasingly recognized. Much current efforts to optimize this form of immunotherapy are therefore geared towards harnessing the NK cell-stimulatory ability of DCs. In this study, we investigated whether generation of human monocyte-derived DCs with interleukin (IL)-15 followed by activation with a Toll-like receptor stimulus endows these DCs, commonly referred to as "IL-15 DCs", with the capacity to stimulate NK cells. In a head-to-head comparison with "IL-4 DCs" used routinely for clinical studies, IL-15 DCs were found to induce a more activated, cytotoxic effector phenotype in NK cells, in particular in the CD56bright NK cell subset. With the exception of GM-CSF, no significant enhancement of cytokine/chemokine secretion was observed following co-culture of NK cells with IL-15 DCs. IL-15 DCs, but not IL-4 DCs, promoted NK cell tumoricidal activity towards both NK-sensitive and NK-resistant targets. This effect was found to require cell-to-cell contact and to be mediated by DC surface-bound IL-15. This study shows that DCs can express a membrane-bound form of IL-15 through which they enhance NK cell cytotoxic function. The observed lack of membrane-bound IL-15 on "gold-standard" IL-4 DCs and their consequent inability to effectively promote NK cell cytotoxicity may have important implications for the future design of DC-based cancer vaccine studies.
Collapse
Affiliation(s)
- Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Heleen H. Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Johan Van den Bergh
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Viggo F. Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L. Smits
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
- Center for Oncological Research, University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
- Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
21
|
Benteyn D, Heirman C, Bonehill A, Thielemans K, Breckpot K. mRNA-based dendritic cell vaccines. Expert Rev Vaccines 2014; 14:161-76. [PMID: 25196947 DOI: 10.1586/14760584.2014.957684] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy has been proposed as a powerful treatment modality. Active immunotherapy aspires to stimulate the patient's immune system, particularly T cells. These cells can recognize and kill cancer cells and can form an immunological memory. Dendritic cells (DCs) are the professional antigen-presenting cells of our immune system. They take up and process antigens to present them to T cells. Consequently, DCs have been investigated as a means to stimulate cancer-specific T-cell responses. An efficient strategy to program DCs is the use of mRNA, a well-defined and safe molecule that can be easily generated at high purity. Importantly, vaccines consisting of mRNA-modified DCs showed promising results in clinical trials. Therefore, we will introduce cancer immunotherapy and DCs and give a detailed overview on the application of mRNA to generate cancer-fighting DC vaccines.
Collapse
Affiliation(s)
- Daphné Benteyn
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Jette, Belgium
| | | | | | | | | |
Collapse
|
22
|
The immune system and head and neck squamous cell carcinoma: from carcinogenesis to new therapeutic opportunities. Immunol Res 2014; 57:52-69. [PMID: 24218361 DOI: 10.1007/s12026-013-8462-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCCs) exhibit complex interactions with the host immune system that may simultaneously explain resistance to various therapeutic modalities and that may also provide opportunities for therapeutic intervention. Discoveries in immunologic research over the last decade have led to an increased understanding of these interactions as well as the development of a multitude of investigational immunotherapies. Here, we describe the interaction between HNSCC and the immune system, including a discussion of immune cells involved with tumor carcinogenesis and the role of immune-modulating factors derived from tumors. We also describe the current immunotherapeutic approaches being investigated for HNSCC, including a discussion of the successes and limitations. With this review, we hope to present HNSCC as a model to guide future research in cancer immunology.
Collapse
|
23
|
Vogt A, Sievers E, Lukacs-Kornek V, Decker G, Raskopf E, Meumann N, Büning H, Sauerbruch T, Strassburg CP, Schmidt-Wolf IGH, Gonzalez-Carmona MA. Improving immunotherapy of hepatocellular carcinoma (HCC) using dendritic cells (DC) engineered to express IL-12 in vivo. Liver Int 2014; 34:447-61. [PMID: 23998316 DOI: 10.1111/liv.12284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/24/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Interleukin 12 (IL-12), one of the most potent Th1-cytokines, has been used to improve dendritic cells (DC)-based immunotherapy of cancer. However, it failed to achieve clinical response in patients with hepatocellular carcinoma (HCC). In this study, improved conditions of immunotherapy with DC engineered to express IL-12 were studied in murine subcutaneous HCC. METHODS Tumour-lysate pulsed DC were transduced with IL-12-encoding adenoviruses or cultivated with recombinant (r)IL-12. DC were injected intratumourally, subcutaneously or intravenously at different stages of tumour-development. RESULTS Dendritic cell overexpressing IL-12 by adenoviruses showed enhanced expression of costimulatory molecules and stronger priming of HCC-specific effector cells than DC cultured with rIL-12. Intratumoural but not systemic injections of IL-12-DC induced the strongest antitumoural effects reaching complete regressions in 75% of early-staged tumours and in 33% of advanced tumours. Importantly, antitumoural effects could be further enhanced through combination with sorafenib. Analysing the tumour-environment, IL-12-DC increased the levels of Th1-cytokines/chemokines and of CD4(+) -, CD8(+) -T- and NK-cells. Induced immunity was tumour-specific and sustained since all tumour-free animals were protected towards hepatic tumour-cell rechallenge. However, IL-12-DC also enhanced immunosuppressive cytokines, regulatory T cells and even myeloid-derived suppressor cells within the tumours. CONCLUSIONS Induced IL-12-overexpression by adenoviral vectors can effectively immunostimulate DC. Intratumoural but not systemic injection of activated IL-12-DC was crucial for effective tumour regression. The mechanism of this approach seems to be the induction of a sufficient Th1 tumour-environment allowing the recruitment of effector cells rather than the inhibition of tumour immunosuppression. Thus, improved immunotherapy with IL-12-DC represents a promising approach towards HCC.
Collapse
Affiliation(s)
- Annabelle Vogt
- Department of Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Several reports have described the use of tumor-extracted RNA as source of tumor antigen for the preparation of vaccines based on dendritic cells (DC) and its potential use for antigen-specific or polyvalent tumor vaccination. Upon transfection, RNA is transcribed into proteins that enter the cytoplasmic degradation pathway and can be presented by DC through class I major histocompatibility complex (MHC)-I, thus inducing specific T cell cytotoxic responses. In this chapter, we present a protocol to transfect murine dendritic cells with tumor mRNA by means of electroporation.
Collapse
Affiliation(s)
- Fabian Benencia
- Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, Athens, OH, USA
| |
Collapse
|
25
|
Benencia F. RNA vaccines for anti-tumor therapy. World J Exp Med 2013; 3:62-73. [DOI: 10.5493/wjem.v3.i4.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023] Open
Abstract
The immune system is able to recognize tumor antigens and this has been the basis for the development of cancer immunotherapies. The immune system can be instructed to recognize and attack tumor cells by means of vaccination strategies. One such strategy involves the delivery of tumor antigen as genetic material. Herewith we describe the use of RNA encoding tumor antigens for vaccination purposes in tumor settings. RNA has features that are interesting for vaccination. Upon transfection, the RNA has no possibility of integration into the genome, and the tumor translated proteins enter the intrinsic antigen processing pathway thus enabling presentation by MHC-I molecules. This can specifically activate cytotoxic CD8 T cells that can attack and kill tumor cells. RNA can be delivered as a naked molecule for vaccination purposes or can be used to transfect dendritic cells. The combination of RNA technology with dendritic cell vaccination provides a powerful tool for cancer immunotherapies.
Collapse
|
26
|
Turksma AW, Bontkes HJ, Ruizendaal JJ, Scholten KBJ, Akershoek J, Rampersad S, Moesbergen LM, Cillessen SAGM, Santegoets SJAM, de Gruijl TD, Leemans CR, Meijer CJLM, Hooijberg E. Exploring dendritic cell based vaccines targeting survivin for the treatment of head and neck cancer patients. J Transl Med 2013; 11:152. [PMID: 23787039 PMCID: PMC3695847 DOI: 10.1186/1479-5876-11-152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023] Open
Abstract
Background New treatment modalities are needed for the treatment of cancers of the head and neck region (HNSCC). Survivin is important for the survival and proliferation of tumor cells and may therefore provide a target for immunotherapy. Here we focused on the ex vivo presence and in vitro induction of survivin specific T cells. Methods Tetramer staining and ELIspot assays were used to document the presence of survivin specific T cells in patient derived material, and to monitor the presence and persistence of survivin specific T cells after repeated in vitro stimulation with autologous dendritic cells. Results Ex vivo analysis showed the presence of survivin-specific T cells in the peripheral blood (by tetramer analysis) and in the draining lymph node (by ELIspot analysis) in a HNSCC and a locally advanced breast cancer patient respectively. However, we were unable to maintain isolated survivin specific T cells for prolonged periods of time. For the in vitro generation of survivin specific T cells, monocyte derived DC were electroporated with mRNA encoding full length survivin or a survivin mini-gene together with either IL21 or IL12 mRNA. Western blotting and immunohistochemical staining of dendritic cell cytospin preparations confirmed translation of the full length survivin protein. After repeated stimulation we observed an increase, followed by a decrease, of the number of survivin specific T cells. FACS sorted or limiting dilution cloned survivin specific T cells could not be maintained on feeder mix for prolonged periods of time. Protein expression analysis subsequently showed that activated, but not resting T cells contain survivin protein. Conclusions Here we have shown that survivin specific T cells can be detected ex vivo in patient derived material. Furthermore, survivin specific T cells can be induced in vitro using autologous dendritic cells with enforced expression of survivin and cytokines. However, we were unable to maintain enriched or cloned survivin specific T cells for prolonged periods of time. Endogenous expression of survivin in activated T cells and subsequent fratricide killing might explain our in vitro observations. We therefore conclude that survivin, although it is a universal tumor antigen, might not be the ideal target for immunotherapeutic strategies for the treatment of cancer of the head and neck.
Collapse
Affiliation(s)
- Annelies W Turksma
- Department of Pathology, VU University Medical Center-Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Turksma AW, Braakhuis BJ, Bloemena E, Meijer CJ, Leemans CR, Hooijberg E. Immunotherapy for head and neck cancer patients: shifting the balance. Immunotherapy 2013; 5:49-61. [PMID: 23256798 DOI: 10.2217/imt.12.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer in the western world. Over the last few decades little improvement has been made to increase the relatively low 5-year survival rate. This calls for novel and improved therapies. Here, we describe opportunities in immunotherapy for head and neck cancer patients and hurdles yet to be overcome. Viruses are involved in a subset of head and neck squamous cell carcinoma cases. The incidence of HPV-related head and neck cancer is increasing and is a distinctly different disease from other head and neck carcinomas. Virus-induced tumors express viral antigens that are good targets for immunotherapeutic treatment options. The type of immunotherapeutic treatment, either active or passive, should be selected depending on the HPV status of the tumor and the immune status of the patient.
Collapse
Affiliation(s)
- Annelies W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology 2.26, de Boelelaan 1117, NL-1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Turksma AW, Bontkes HJ, Ruizendaal JJ, van den Heuvel H, Scholten KBJ, Santegoets SJAM, de Gruijl TD, Meijer CJLM, Hooijberg E. Increased cytotoxic capacity of tumor antigen specific human T cells after in vitro stimulation with IL21 producing dendritic cells. Hum Immunol 2013; 74:506-13. [PMID: 23376456 DOI: 10.1016/j.humimm.2013.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 12/04/2012] [Accepted: 01/14/2013] [Indexed: 01/01/2023]
Abstract
Monocyte derived dendritic cells (moDC) electroporated with tumor associated antigen derived mRNA can elicit specific T cells against tumor cells in vivo. IL21 has been shown to enhance activation and cytotoxicity in CD8+ T cells. We therefore investigated in vitro effects on human CD8+ T-cells after stimulation with IL21 mRNA electroporated moDC. Codon modification of the IL21 gene significantly enhanced IL21 production upon electroporation of moDC. Tumor associated antigen specific CTL induction efficiency was significantly enhanced when codon modified IL21 mRNA was co-electroporated with tumor associated antigen mRNA. Tumor associated antigen specific T cells induced by codon modified IL21-DC demonstrated increased cytotoxic capacity and killing compared to control cultures. In conclusion, ectopic expression of codon modified IL21 by moDC enhances the priming efficiency of the DC as well as the cytotoxic potential of the induced CTL.
Collapse
Affiliation(s)
- A W Turksma
- VU University Medical Center - Cancer Center Amsterdam, Department of Pathology, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Transfecting with in vitro transcribed, protein-encoding mRNA is a simple yet effective method to express high levels of the desired RNA-encoded proteins in primary cells. Cells can be transfected with antigen-encoding mRNA, which is translated into protein and is processed by the cellular antigen-processing pathway to generate antigen-presenting cells. Another elegant and increasingly popular application is to transfect cells with mRNA that encodes immune modulating molecules (cytokines, chemokines, toll-like receptors (TLRs), immune receptor ligands, immune receptor targeting antibodies) which, when translated into protein, can program cell behavior and/or function. In this chapter we describe an efficient method to deliver mRNA into human dendritic cells (DCs) by electroporation. This is currently the method of choice to deliver mRNA into antigen-presenting cells for generating vaccines for cancer immunotherapy.
Collapse
|
30
|
Lion E, Smits ELJM, Berneman ZN, Van Tendeloo VFI. NK cells: key to success of DC-based cancer vaccines? Oncologist 2012; 17:1256-70. [PMID: 22907975 DOI: 10.1634/theoncologist.2011-0122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, TIGR, University of Antwerp (UA), Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|
31
|
Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm 2012; 2012:690643. [PMID: 22851815 PMCID: PMC3407661 DOI: 10.1155/2012/690643] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/17/2012] [Indexed: 02/08/2023] Open
Abstract
Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.
Collapse
|
32
|
Nishimoto KP, Tseng SY, Lebkowski JS, Reddy A. Modification of human embryonic stem cell-derived dendritic cells with mRNA for efficient antigen presentation and enhanced potency. Regen Med 2011; 6:303-18. [PMID: 21548736 DOI: 10.2217/rme.11.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Dendritic cell (DC)-based vaccines are designed to exploit the intrinsic capacity of these highly effective antigen presenting cells to prime and boost antigen-specific T-cell immune responses. Successful development of DC-based vaccines will be dependent on the ability to utilize and harness the full potential of these potent immune stimulatory cells. Recent advances to generate DCs derived from human embryonic stem cells (hESCs) that are suitable for clinical use represent an alternative strategy from conventional approaches of using patient-specific DCs. Although the differentiation of hESC-derived DCs in serum-free defined conditions has been established, the stimulatory potential of these hESC-derived DCs have not been fully evaluated. METHODS hESC-derived DCs were differentiated in serum-free defined culture conditions. The delivery of antigen into hESC-derived DCs was investigated using mRNA transfection and replication-deficient adenoviral vector transduction. hESC-derived DCs modified with antigen were evaluated for their capacity to stimulate antigen-specific T-cell responses with known HLA matching. Since IL-12 is a key cytokine that drives T-cell function, further enhancement of DC potency was evaluated by transfecting mRNA encoding the IL-12p70 protein into hESC-derived DCs. RESULTS The transfection of mRNA into hESC-derived DCs was effective for heterologous protein expression. The efficiency of adenoviral vector transduction into hESC-derived DCs was poor. These mRNA-transfected DCs were capable of stimulating human telomerase reverse transcriptase antigen-specific T cells composed of varying degrees of HLA matching. In addition, we observed the transfection of mRNA encoding IL-12p70 enhanced the T-cell stimulation potency of hESC-derived DCs. CONCLUSION These data provide support for the development and modification of hESC-derived DCs with mRNA as a potential strategy for the induction of T-cell-mediated immunity.
Collapse
Affiliation(s)
- Kevin P Nishimoto
- Geron Corporation, 230 Constitution Drive, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
33
|
Lion E, Anguille S, Berneman ZN, Smits ELJM, Van Tendeloo VFI. Poly(I:C) enhances the susceptibility of leukemic cells to NK cell cytotoxicity and phagocytosis by DC. PLoS One 2011; 6:e20952. [PMID: 21698118 PMCID: PMC3117863 DOI: 10.1371/journal.pone.0020952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 12/20/2022] Open
Abstract
α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
34
|
Shurin MR, Gregory M, Morris JC, Malyguine AM. Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 2011; 10:1539-53. [PMID: 20955111 DOI: 10.1517/14712598.2010.526105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD Dendritic cells (DC) are powerful antigen-presenting cells that induce and maintain primary cytotoxic T lymphocyte (CTL) responses directed against tumor antigens. Consequently, there has been much interest in their application as antitumor vaccines. AREAS COVERED IN THIS REVIEW A large number of DC-based vaccine trials targeting a variety of cancers have been conducted; however, the rate of reported clinically significant responses remains low. Modification of DC to express tumor antigens or immunostimulatory molecules through the transfer of genes or mRNA transfection offers a logical alternative with potential advantages over peptide- or protein antigen-loaded DC. In this article, we review the current results and future prospects for genetically modified DC vaccines for the treatment of cancer. WHAT THE READER WILL GAIN Genetically-modified dendritic cell-based vaccines represent a powerful tool for cancer therapy. Numerous preclinical and clinical studies have demonstrated the potential of dendritic cell vaccines alone or in combination with other therapeutic modalities. TAKE HOME MESSAGE Genetically modified DC-based anti-cancer vaccination holds promise, perhaps being best employed in the adjuvant setting with minimal residual disease after primary therapy, or in combination with other antitumor or immune-enhancing therapies.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
35
|
Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. mRNA as gene therapeutic: How to control protein expression. J Control Release 2011; 150:238-47. [DOI: 10.1016/j.jconrel.2010.10.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
|
36
|
Lampen MH, Verweij MC, Querido B, van der Burg SH, Wiertz EJHJ, van Hall T. CD8+ T cell responses against TAP-inhibited cells are readily detected in the human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:6508-17. [PMID: 20980626 DOI: 10.4049/jimmunol.1001774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Target cell recognition by CTLs depends on the presentation of peptides by HLA class I molecules. Tumors and herpes viruses have adopted strategies to greatly hamper this peptide presentation at the important bottleneck, the peptide transporter TAP. Previously, we described the existence of a CD8(+) CTL subpopulation that selectively recognizes such TAP-deficient cells in mouse models. In this study, we show that the human counterpart of this CTL subset is readily detectable in healthy subjects. Autologous PBMC cultures were initiated with dendritic cells rendered TAP-impaired by gene transfer of the viral evasion molecule UL49.5. Strikingly, specific reactivity to B-LCLs expressing one of the other viral TAP-inhibitors (US6, ICP47, or BNLF2a) was already observed after three rounds of stimulation. These short-term T cell cultures and isolated CD8(+) CTL clones derived thereof did not recognize the normal B-LCL, indicating that the cognate peptide-epitopes emerge at the cell surface upon an inhibition in the MHC class I processing pathway. A diverse set of TCRs was used by the clones, and the cellular reactivity was TCR-dependent and HLA class I-restricted, implying the involvement of a broad antigenic peptide repertoire. Our data indicate that the human CD8(+) T cell pool comprises a diverse reactivity to target cells with impairments in the intracellular processing pathway, and these might be exploited for cancers that are associated with such defects and for infections with immune-evading herpes viruses.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Wang H, Zhang L, Kung SKP. Emerging applications of lentiviral vectors in dendritic cell-based immunotherapy. Immunotherapy 2010; 2:685-95. [DOI: 10.2217/imt.10.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells are professional antigen-presenting cells that initiate, regulate and shape the induction of specific immune responses. The ability to use dendritic cells in the induction of antigen-specific tolerance, antigen-specific immunity or specific differentiation of T-helper subsets holds great promise in dendritic cell-based immunotherapy of various diseases such as cancer, viral infections, allergy, as well as autoimmunity. Replication-incompetent HIV-1-based lentiviral vector is now emerging as a promising delivery system to genetically modify dendritic cells through antigen recognition, costimulatory molecules and/or polarization signals for the manipulation of antigen-specific immunity in vivo. This article discusses some of the recent advances in the uses of lentiviral vectors in dendritic cell-based immunotherapy.
Collapse
Affiliation(s)
- Huiming Wang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | - Liang Zhang
- University of Manitoba, Department of Immunology, Room 417 Apotex Center, 750 McDermot Avenue, Winnipeg, Manitoba, R3E 0T5, Canada
| | | |
Collapse
|
38
|
ten Brinke A, van Schijndel G, Visser R, de Gruijl TD, Zwaginga JJ, van Ham SM. Monophosphoryl lipid A plus IFNgamma maturation of dendritic cells induces antigen-specific CD8+ cytotoxic T cells with high cytolytic potential. Cancer Immunol Immunother 2010; 59:1185-95. [PMID: 20336295 PMCID: PMC11030766 DOI: 10.1007/s00262-010-0843-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are promising antigen presenting cells for cancer treatment. Previously, we showed that the combination of monophosphoryl lipid A (MPLA) with IFNgamma generates mature DCs that produce IL-12 and polarize CD4(+) T cells towards a Th1 phenotype. Here, we extended these observations by showing that the DCs generated with the clinical grade maturation cocktail of MPLA/IFNgamma induce superior tumour antigen-specific CD8(+) CTL responses compared to the cytokine cocktail matured DCs that are currently used in the clinic. MPLA/IFNgamma DCs can induce CTL responses in healthy individuals as well as in melanoma patients. The CTL induction was mainly dependent on the IL-12 produced by the MPLA/IFNgamma DCs. The high amounts of induced CTLs are functional as they produce IFNgamma and lyse target cells and this cytolytic activity is antigen specific and HLA restricted. Furthermore, the CTLs proved to kill tumour cells expressing endogenous tumour antigen in vitro. Therefore, MPLA/IFNgamma DCs are very promising for the use in future cancer immunotherapy.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, P.O. Box 9190, 1006 AD, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Yu SP, Yang J. Gemcitabine in combination with dendritic cell-induced immunoeffector cells inhibits the growth of BxPC-3 cells. Shijie Huaren Xiaohua Zazhi 2010; 18:2095-2101. [DOI: 10.11569/wcjd.v18.i20.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of gemcitabine (GEM) in combination with T lymphocytes activated by BxPC-3 cell whole lysate-pulsed dendritic cells (DCs) on the growth of BxPC-3 cells.
METHODS: After T lymphocytes were incubated with monocyte-derived DCs sensitized with whole lysate of BxPC-3 cells, the concentrations of IL-2, IFN-γ, TNF-α, IL-10 and TGF-β in cell supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Subsequently, GEM and activated T lymphocytes, alone or in combination, were added into cultured BxPC-3 cells. After incubation for 24 h, BxPC-3 cell proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay and colony formation assay, and early apoptosis of BxPC-3 cells was detected by flow cytometry.
RESULTS: After stimulation with sensitized DCs, the secretion of IL-2, IFN-γ and TNF-α by T lymphocytes was significantly enhanced (1 379 ng/L ± 307 ng/L vs 370 ng/L ± 64 ng/L, 1 269 ng/L ± 264 ng/L vs 420 ± 114 ng/L, and 1 062 ng/L ± 172 ng/L vs 515 ± 27 ng/L, all P < 0.01), while the production of IL-10 and TGF-β showed no significant changes (both P > 0.05). Compared with the negative control group, activated T lymphocytes and GEM, alone or in combination, could inhibit the growth of BxPC-3 cells. The death rate and apoptosis rate were highest, and the rate of colony formation was lowest in BxPC-3 cells treated with activated T lymphocytes and GEM in combination.
CONCLUSION: DCs sensitized with BxPC-3 cell whole lysate can induce the formation of tumor-killing cytotoxic T cells. Dendritic cell-induced immunoeffector cells in combination with gemcitabine have stronger tumor-killing activity than immunoeffector cells alone.
Collapse
|
40
|
|
41
|
Van Nuffel AMT, Corthals J, Neyns B, Heirman C, Thielemans K, Bonehill A. Immunotherapy of cancer with dendritic cells loaded with tumor antigens and activated through mRNA electroporation. Methods Mol Biol 2010; 629:405-52. [PMID: 20387165 DOI: 10.1007/978-1-60761-657-3_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. Considerable progress has been made in enhancing the efficacy of therapeutic anticancer vaccines. First, dendritic cells (DCs) have been identified as the key players in orchestrating primary immune responses. A better understanding of their biology and the development of procedures to generate vast amounts of DCs in vitro have accelerated the development of potent immunotherapeutic strategies for cancer. Second, tumor-associated antigens have been identified which are either selectively or preferentially expressed by tumor cells and can be recognized by the immune system. Finally, several studies have been performed on the genetic modification of DCs with tumor antigens. In this regard, loading the DCs with mRNA, which enables them to produce/process and present the tumor antigens themselves, has emerged as a promising strategy. Here, we will first overview the different aspects that must be taken into account when generating an mRNA-based DC vaccine and the published clinical studies exploiting mRNA-loaded DCs. Second, we will give a detailed description of a novel procedure to generate a vaccine consisting of tumor antigen-expressing dendritic cells with an in vitro superior capacity to induce anti-tumor immune responses. Here, immature DCs are electroporated with mRNAs encoding a tumor antigen, CD40 ligand (CD40L), CD70, and constitutively active (caTLR4) to generate mature antigen-presenting DCs.
Collapse
Affiliation(s)
- An M T Van Nuffel
- Laboratory of Molecular and Cellular Therapy, Department of Physiology - Immunology, Medical School of the Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Smits EL, Anguille S, Cools N, Berneman ZN, Van Tendeloo VF. Dendritic Cell-Based Cancer Gene Therapy. Hum Gene Ther 2009; 20:1106-18. [DOI: 10.1089/hum.2009.145] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Evelien L.J.M. Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
- Center for Cell Therapy and Regenerative Medicine (CCTRM), Antwerp University Hospital, B-2650 Edegem (Antwerp), Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
| | - Zwi N. Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
- Center for Cell Therapy and Regenerative Medicine (CCTRM), Antwerp University Hospital, B-2650 Edegem (Antwerp), Belgium
| | - Viggo F.I. Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, B-2610 Wilrijk (Antwerp), Belgium
- Center for Cell Therapy and Regenerative Medicine (CCTRM), Antwerp University Hospital, B-2650 Edegem (Antwerp), Belgium
| |
Collapse
|
43
|
Permanent silencing of NKG2A expression for cell-based therapeutics. J Mol Med (Berl) 2008; 87:199-210. [PMID: 19002424 DOI: 10.1007/s00109-008-0417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) and T-cell cytotoxicity is significantly reduced by signaling via CD94/NKG2A receptors. High levels of NKG2A on NK cells have been shown to compromise the graft-versus-leukemia effect in hematopoietic stem cell transplantation. We therefore evaluated the functional relevance of NKG2A silencing for the cytotoxic potential of genetically engineered NK and T cells. Lentiviral vectors containing short hairpin RNA (shRNA) sequences targeting NKG2A transcripts were used to transduce NKG2A(+) primary NK and T cells. NKG2A expression levels were measured by flow cytometry and real-time PCR. The effect of NKG2A silencing on the cytolytic potential of NK and T cells was evaluated in cytotoxicity assays using K562 and B lymphoblastoid cells as targets. Granzyme B mRNA transcript levels were detected by real-time PCR. The transduction of inducible RNAi cassettes containing the sequences for shRNAs targeting NKG2A reduced protein expression in NK and T cells by up to 95%. The cytotoxicity assays demonstrated that NKG2A silencing effectively enhanced NK and CD8+ T-cell lysis by up to 40% and 15%, respectively. However, lysis of K562 cells which lack human leukocyte antigen-E, the ligand of NKG2A, was associated with an upregulation of the natural cytotoxicity receptor NKp30 in NKG2A-silenced NK cells. Our data suggest that RNAi-mediated silencing of NKG2A in effector cells could improve the efficacy of cell-based immunotherapies but also show that indirect effects of NKG2A knockdown exist that have to be considered when designing therapeutic protocols with genetically engineered NK or T cells.
Collapse
|
44
|
Balkow S, Loser K, Krummen M, Higuchi T, Rothoeft T, Apelt J, Tuettenberg A, Weishaupt C, Beissert S, Grabbe S. Dendritic cell activation by combined exposure to anti-CD40 plus interleukin (IL)-12 and IL-18 efficiently stimulates anti-tumor immunity. Exp Dermatol 2008; 18:78-87. [PMID: 19054060 DOI: 10.1111/j.1600-0625.2008.00800.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite as yet limited clinical effectiveness, dendritic cell (DC)-based immunotherapy remains a promising approach for the treatment of cancer, but requires further improvement in its immunostimulatory effectiveness. Potent anti-tumor immunity often depends on the induction of type 1 (T(H)1) immune responses. Therefore, we combined different DC maturation stimuli that are known to induce T(H)1 immunity [anti-CD40, interleukin (IL)-12, IL-18], with the aim to trigger a T(H)1 driven anti-tumor CTL response. When compared with untreated DC or DC treated with anti-CD40 alone, DC matured with anti-CD40 plus IL-12 and IL-18 expressed significantly more IFN-gamma and IL-12, induced enhanced CD8(+) T-cell proliferation, prolonged synaptic interaction with T cells and increased CD8(+) T-cell-mediated cytotoxicity. To analyse if these DC are able to induce efficient anti-tumor immunity, mice carrying a B16-OVA tumor were treated with tumor antigen (TA)-loaded DC that had been exposed to anti-CD40 or to anti-CD40 plus IL-12 and IL-18. Our data show that anti-CD40 plus IL-12 and IL-18 matured DC are superior to controls in retarding tumor growth. These data indicate that maturation of DC with anti-CD40 plus IL-12 and IL-18 potently stimulates the generation of an anti-tumor immune response and may lead to improved immunotherapeutic capacity of DC vaccination.
Collapse
Affiliation(s)
- Sandra Balkow
- Department of Dermatology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Moreno M, Molling JW, von Mensdorff-Pouilly S, Verheijen RHM, Hooijberg E, Kramer D, Reurs AW, van den Eertwegh AJM, von Blomberg BME, Scheper RJ, Bontkes HJ. IFN-gamma-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. THE JOURNAL OF IMMUNOLOGY 2008; 181:2446-54. [PMID: 18684935 DOI: 10.4049/jimmunol.181.4.2446] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD1d-restricted invariant NKT (iNKT) cells can enhance immunity to cancer or prevent autoimmunity, depending on the cytokine profile secreted. Antitumor effects of the iNKT cell ligand alpha-galactosylceramide (alphaGC) and iNKT cell adoptive transfer have been demonstrated in various tumor models. Together with reduced numbers of iNKT cells in cancer patients, which have been linked to poor clinical outcome, these data suggest that cancer patients may benefit from therapy aiming at iNKT cell proliferation and activation. Herein we present results of investigations on the effects of human iNKT cells on Ag-specific CTL responses. iNKT cells were expanded using alphaGC-pulsed allogeneic DC derived from the acute myeloid leukemia cell line MUTZ-3, transduced with CD1d to enhance iNKT cell stimulation, and with IL-12 to stimulate type 1 cytokine production. Enhanced activation and increased IFN-gamma production was observed in iNKT cells, irrespective of CD4 expression, upon stimulation with IL-12-overexpressing dendritic cells. IL-12-stimulated iNKT cells strongly enhanced the MART-1 (melanoma Ag recognized by T cell 1)-specific CD8(+) CTL response, which was dependent on iNKT cell-derived IFN-gamma. Furthermore, autologous IL-12-overexpressing dendritic cells, loaded with Ag as well as alphaGC, was superior in stimulating both iNKT cells and Ag-specific CTL. This study shows that IL-12-overexpressing allogeneic dendritic cells expand IFN-gamma-producing iNKT cells, which may be more effective against tumors in vivo. Furthermore, the efficacy of autologous Ag-loaded DC vaccines may well be enhanced by IL-12 overexpression and loading with alphaGC.
Collapse
Affiliation(s)
- María Moreno
- Department of Pathology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|