1
|
Sundaram G, Bessede A, Gilot D, Staats Pires A, Sherman LS, Brew BJ, Guillemin GJ. Prophylactic and Therapeutic Effect of Kynurenine for Experimental Autoimmune Encephalomyelitis (EAE) Disease. Int J Tryptophan Res 2022; 15:11786469221118657. [PMID: 36004319 PMCID: PMC9393931 DOI: 10.1177/11786469221118657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background The essential amino acid, tryptophan, is predominantly metabolised through the kynurenine pathway (KP) to generate kynurenine, an aryl-hydrocarbon receptor (AhR) pro-ligand that exerts its effects in a ligand-dependent manner. Interaction between kynurenine and the AhR is an effector mechanism of immunosuppression. We previously found that the KP is involved in multiple sclerosis (MS) disease progression. We postulated that AhR activation by kynurenine might be neuroprotective by encouraging differentiation of Tregs. In this study, we assess both the prophylactic and therapeutic efficiency of kynurenine on disease severity and progression in mice with experimental autoimmune encephalomyelitis (EAE), an MS model. Methods Myelin oligodendrocyte glycoprotein induced EAE mice (n = 6 per group) were treated with 200 mg/kg L-kynurenine once daily for 10 days beginning on either day 1 of EAE induction (prophylactic) or once they demonstrated motor weakness (therapeutic). Clinical disease severity measured by disease score, time on rotarod, and body weight. Results The prophylactic kynurenine treatment significantly (P < .0001) prevented the development of a more severe disease course with mice demonstrating diminished relapse rate and improved clinical and behavioural outcomes. However, therapeutic kynurenine did not significantly (P = .4463) decrease the clinical signs until 36 days following induction of disease; after 36 days, it also significantly (P = .0479) reduced disease relapse. Mean body weight measurements only correlated with time on rotarod (r = -.6410; P = .0007) but not clinical scores (r = .1925; P = .3674). Conclusions Kynurenine ameliorates EAE disease progression prophylactically and reduces relapses therapeutically. Further investigations are needed to elucidate the molecular mechanism explaining the therapeutic role of kynurenine for MS.
Collapse
Affiliation(s)
- Gayathri Sundaram
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - David Gilot
- INSERM U1242, University of Rennes I, Rennes, France
| | - Ananda Staats Pires
- Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon, USA
| | - Bruce J Brew
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, NSW, Australia.,University of Notre Dame, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.,Neuroinflammation Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Mahadik R, Kiptoo P, Tolbert T, Siahaan TJ. Immune Modulation by Antigenic Peptides and Antigenic Peptide Conjugates for Treatment of Multiple Sclerosis. MEDICAL RESEARCH ARCHIVES 2022; 10:10.18103/mra.v10i5.2804. [PMID: 36381196 PMCID: PMC9648198 DOI: 10.18103/mra.v10i5.2804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The immune system defends our body by fighting infection from pathogens utilizing both the innate and adaptive immune responses. The innate immune response is generated rapidly as the first line of defense. It is followed by the adaptive immune response that selectively targets infected cells. The adaptive immune response is generated more slowly, but selectively, by targeting a wide range of foreign particles (i.e., viruses or bacteria) or molecules that enter the body, known as antigens. Autoimmune diseases are the results of immune system glitches, where the body's adaptive system recognizes self-antigens as foreign. Thus, the host immune system attacks the self-tissues or organs with a high level of inflammation and causes debilitation in patients. Many current treatments for autoimmune diseases (i.e., multiple sclerosis (MS), rheumatoid arthritis (RA)) have been effective but lead to adverse side effects due to general immune system suppression, which makes patients vulnerable to opportunistic infections. To counter these negative effects, many different avenues of antigen specific treatments are being developed to selectively target the autoreactive immune cells for a specific self-antigen or set of self-antigens while not compromising the general immune system. These approaches include soluble antigenic peptides, bifunctional peptide inhibitors (BPI) including IDAC and Fc-BPI, polymer conjugates, and peptide-drug conjugates. Here, various antigen-specific methods of potential treatments, their efficacy, and limitations will be discussed along with the potential mechanisms of action.
Collapse
Affiliation(s)
- Rucha Mahadik
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | | | - Tom Tolbert
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047
| |
Collapse
|
3
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
4
|
Kopec BM, Kiptoo P, Zhao L, Rosa-Molinar E, Siahaan TJ. Noninvasive Brain Delivery and Efficacy of BDNF to Stimulate Neuroregeneration and Suppression of Disease Relapse in EAE Mice. Mol Pharm 2019; 17:404-416. [PMID: 31846344 PMCID: PMC10088282 DOI: 10.1021/acs.molpharmaceut.9b00644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The number of FDA-approved protein drugs (biologics), such as antibodies, antibody-drug conjugates, hormones, and enzymes, continues to grow at a rapid rate; most of these drugs are used to treat diseases of the peripheral body. Unfortunately, most of these biologics cannot be used to treat brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and brain tumors in a noninvasive manner due to their inability to permeate the blood-brain barrier (BBB). Therefore, there is a need to develop an effective method to deliver protein drugs into the brain. Here, we report a proof of concept to deliver a recombinant brain-derived neurotrophic factor (BDNF) to the brains of healthy and experimental autoimmune encephalomyelitis (EAE) mice via intravenous (iv) injections by co-administering BDNF with a BBB modulator (BBBM) peptide ADTC5. Western blot evaluations indicated that ADTC5 enhanced the brain delivery of BDNF in healthy SJL/elite mice compared to BDNF alone and triggered the phosphorylation of TrkB receptors in the brain. The EAE mice treated with BDNF + ADTC5 suppressed EAE relapse compared to those treated with BDNF alone, ADTC5 alone, or vehicle. We further demonstrated that brain delivery of BDNF induced neuroregeneration via visible activation of oligodendrocytes, remyelination, and ARC and EGR1 mRNA transcript upregulation. In summary, we have demonstrated that ADTC5 peptide modulates the BBB to permit noninvasive delivery of BDNF to exert its neuroregeneration activity in the brains of EAE mice.
Collapse
|
5
|
Kuehl C, Thati S, Sullivan B, Sestak J, Thompson M, Siahaan T, Berkland C. Pulmonary Administration of Soluble Antigen Arrays Is Superior to Antigen in Treatment of Experimental Autoimmune Encephalomyelitis. J Pharm Sci 2017. [PMID: 28625726 DOI: 10.1016/j.xphs.2017.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen-specific immunotherapy has been used to hyposensitize patients to allergens and offers an enticing approach for attenuating autoimmune diseases. Applying antigen-specific immunotherapy to mucosal surfaces such as the lungs may engage unique immune response pathways to improve efficacy. Pulmonary delivery of soluble antigen arrays (SAgAs) was explored in mice with experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis model. SAgAs were designed to impede immune response to autoantigen epitopes and are composed of a hyaluronan backbone with peptides PLP139-151 (proteolipid protein) and LABL, a disease-causing proteolipid peptide epitope and an intracellular cell-adhesion molecule-1 ligand, respectively. Pulmonary instillation of SAgAs decreased disease score, improved weight gain, and decreased incidence of disease in EAE mice compared to pulmonary delivery of hyaluronic acid polymer, LABL, or PLP. Interestingly, treating with PLP alone also showed some improvement. Splenocytes from SAgA-treated animals showed increased interferon-gamma levels, and interleukin-6 (IL-6) and IL-17 were elevated in SAgA-treated animals compared to PLP treatments. IL-10, IL-2, and tumor necrosis factor-alpha levels showed no significant difference, yet trends across all cytokines suggested SAgAs induced a very different immune response compared to treatment with PLP alone. This work suggests that codelivery of peptide components is essential when treating EAE via pulmonary instillation, and the immune response may have shifted toward immune tolerance.
Collapse
Affiliation(s)
- Christopher Kuehl
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - Sharadvi Thati
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - Bradley Sullivan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - Joshua Sestak
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - Michael Thompson
- Department of Pathology, Lawrence Memorial Hospital, Lawrence, Kansas 66044
| | - Teruna Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047; Department of Chemical and Petroleum Engineering, The University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
6
|
Moral MEG, Siahaan TJ. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases. Curr Top Med Chem 2017; 17:3425-3443. [PMID: 29357802 PMCID: PMC5835217 DOI: 10.2174/1568026618666180118154514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022]
Abstract
Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings.
Collapse
Affiliation(s)
- Mario E G Moral
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Laboratory, 2095 Constant Ave., Lawrence, Kansas 66047, United States
| |
Collapse
|
7
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Badawi AH, Kiptoo P, Siahaan TJ. Immune Tolerance Induction against Experimental Autoimmune Encephalomyelitis (EAE) Using A New PLP-B7AP Conjugate that Simultaneously Targets B7/CD28 Costimulatory Signal and TCR/MHC-II Signal. JOURNAL OF MULTIPLE SCLEROSIS 2015; 2:1000131. [PMID: 26140285 PMCID: PMC4484621 DOI: 10.4172/2376-0389.1000131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most of the current therapies used in the treatment of multiple sclerosis (MS) are either ineffective or have adverse side effects. As such, there is a need to develop better therapies that specifically target myelin-specific aberrant immune cells involved in CNS inflammation without compromising the general immune system. In the present study, we developed a new bifunctional peptide inhibitor (BPI) that is effective and specific. Our BPI (PLP-B7AP) is composed of an antigenic peptide from myelin proteolipid protein (PLP139-151) and a B7 antisense peptide (B7AP) derived from CD28 receptor. The main hypothesis is that PLP-B7AP simultaneously targets MHC-II and B7-costimulatory molecules on the surface of antigen presenting cells (APC) and possibly alters the differentiation of naïve T cells from inflammatory to regulatory phenotypes. Results showed that PLP-B7AP was very effective in suppressing experimental autoimmune encephalomyelitis (EAE) compared to various controls in a mouse model. PLP-B7AP was effective when administered both before and after disease induction. Secreted cytokines from splenocytes isolated during periods of high disease severity and remission indicated that PLP-B7AP treatment induced an increased production of anti-inflammatory cytokines and inhibited the production of pro-inflammatory cytokines. Further, analysis of cortical brain tissue sections showed that PLP-B7AP treated mice had significantly lower demyelination compared to the control group. All these taken together indicate that the T cell receptor (TCR) and the CD28 receptor can be targeted simultaneously to improve efficacy and specificity of potential MS therapeutics.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
- KU Medical Center, The University of Kansas, Kansas City, KS 66160, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
9
|
Rosenthal KS, Mikecz K, Steiner HL, Glant TT, Finnegan A, Carambula RE, Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 2015; 14:891-908. [PMID: 25787143 DOI: 10.1586/14760584.2015.1026330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Collapse
|
10
|
Büyüktimkin B, Kiptoo P, Siahaan TJ. Bifunctional Peptide Inhibitors Suppress Interleukin-6 Proliferation and Ameliorates Murine Collagen-Induced Arthritis. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5:1000273. [PMID: 26251760 PMCID: PMC4524745 DOI: 10.4172/2155-9899.1000273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The objective of this study is to evaluate the efficacy and potential mechanism of action of type-II collagen bifunctional peptide inhibitor (CII-BPI) molecules in suppressing rheumatoid arthritis in the collagen-induced arthritis (CIA) mouse model. CII-BPI molecules (CII-BPI-1, CII-BPI-2, and CII-BPI-3) were formed through conjugation between an antigenic peptide derived from type-II collagen and a cell adhesion peptide LABL (CD11a237-246) from the I-domain of LFA-1 via a linker molecule. The hypothesis is that the CII-BPI molecules simultaneously bind to MHC-II and ICAM-1 on the surface of APC and block maturation of the immunological synapse. As a result, the differentiation of naïve T cells is altered from inflammatory to regulatory and/or suppressor T cells. The efficacies of CII-BPI molecules were evaluated upon intravenous injections in CIA mice. Results showed that CII-BPI-1 and CIIBPI-2 suppressed the joint inflammations in CIA mice in a dose-dependent manner and were more potent than the respective antigenic peptides alone. CII-BPI-3 was not as efficacious as CII-BPI-1 and CII-BPI-2. Significantly less joint damage was observed in CII-BPI-2 and CII-2 treated mice than in the control. The production of IL-6 was significantly lower at the peak of disease in mice treated with CII-BPI-2 compared to those treated with CII-2 and control. In conclusion, this is the first proof-of-concept study showing that BPI molecules can be used to suppress RA and may be a potential therapeutic strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
11
|
Liu X, Zhou Q, Ji Z, Fu G, Li Y, Zhang X, Shi X, Wang T, Kang Q. Protein 4.1R attenuates autoreactivity in experimental autoimmune encephalomyelitis by suppressing CD4(+) T cell activation. Cell Immunol 2014; 292:19-24. [PMID: 25243644 DOI: 10.1016/j.cellimm.2014.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/06/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
Immune synapse components contribute to multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) pathogenesis as they play important role in autoreactive T cell activation. Protein 4.1R, a red cell membrane cytoskeletal protein, recently was identified as an important component of immunological synapse (IS) and acted as the negative regulator of CD4(+) T cell activation. However, the pathological role of 4.1R in the MS/EAE pathogenesis is still not elucidated. In this study, we investigated the potential role of protein 4.1R in pathologic processes of EAE by using 4.1R knockout mouse model. Our results suggest that 4.1R can prevent pathogenic autoimmunity in MS/EAE progression by suppressing the CD4(+) T cell activation.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qingqing Zhou
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, 40 University Road, Zhengzhou 450052, PR China.
| | - Guo Fu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Yi Li
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Xiaobei Zhang
- Nanyang Pukang Pharmaceutical Corporation, Ltd., 143 Industrial Road, Nanyang 473053, PR China.
| | - Xiaofang Shi
- Nanyang Pukang Pharmaceutical Corporation, Ltd., 143 Industrial Road, Nanyang 473053, PR China.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
12
|
Wegmann KW, Archie Bouwer HG, Whitham RH, Hinrichs DJ. Eluding anaphylaxis allows peptide-specific prevention of the relapsing stage of experimental autoimmune encephalomyelitis. J Neuroimmunol 2014; 274:46-52. [PMID: 24997489 DOI: 10.1016/j.jneuroim.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
We have used a peptide derived from Acanthamoeba castellanii (ACA) to treat the relapsing phase of EAE that develops in SJL mice following immunization with the PLP 139-151 peptide. The native sequence of the ACA 81-95 peptide that shares key residues with the PLP 139-151 peptide is weakly encephalitogenic in SJL mice but is not recognized by antiserum from SJL mice immunized with PLP 139-151. A single amino acid change to the ACA 81-95 peptide sequence significantly enhanced its encephalitogenicity. When administered to SJL mice as a nonlinear peptide octamer, the modified ACA peptide prevented relapsing episodes of EAE in SJL mice previously immunized with the PLP 139-151 encephalitogenic peptide.
Collapse
Affiliation(s)
- Keith W Wegmann
- Immunology Research Group, United States; Veterans Affairs Medical Center, United States
| | - H G Archie Bouwer
- Immunology Research Group, United States; Veterans Affairs Medical Center, United States
| | - Ruth H Whitham
- Veterans Affairs Medical Center, United States; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, United States
| | - David J Hinrichs
- Immunology Research Group, United States; Veterans Affairs Medical Center, United States.
| |
Collapse
|
13
|
Suppression of MOG- and PLP-induced experimental autoimmune encephalomyelitis using a novel multivalent bifunctional peptide inhibitor. J Neuroimmunol 2013; 263:20-7. [PMID: 23911075 DOI: 10.1016/j.jneuroim.2013.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 01/08/2023]
Abstract
Previously, bifunctional peptide inhibitors (BPI) with a single antigenic peptide have been shown to suppress experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. In this study, a multivalent BPI (MVBMOG/PLP) with two antigenic peptides derived from myelin oligodendrocyte glycoprotein (MOG38-50) and myelin proteolipid protein (PLP139-151) was evaluated in suppressing MOG38-50- and PLP139-151-induced EAE. MVBMOG/PLP significantly suppressed both models of EAE even when there was some evidence of epitope spreading in the MOG38-50-induced EAE model. In addition, MVBMOG/PLP was found to be more effective than PLP-BPI and MOG-BPI in suppressing MOG38-50-induced EAE. Thus, the development of MVB molecules with broader antigenic targets can lead to suppression of epitope spreading in EAE.
Collapse
|
14
|
Sestak J, Mullins M, Northrup L, Thati S, Siahaan T, Berkland C. Single-step grafting of aminooxy-peptides to hyaluronan: a simple approach to multifunctional therapeutics for experimental autoimmune encephalomyelitis. J Control Release 2013; 168:334-40. [PMID: 23541930 PMCID: PMC3672265 DOI: 10.1016/j.jconrel.2013.03.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/19/2013] [Indexed: 01/19/2023]
Abstract
The immune response to antigens is directed in part by the presence or absence of costimulatory signals. The ability to coincidently present both antigen and, for example, a peptide that inhibits or activates the costimulatory pathway, would be a valuable tool for tolerization or immunization, respectively. A simple reaction scheme utilizing oxime chemistry was identified as a means to efficiently conjugate different peptide species to hyaluronan. Peptides synthesized with an aminooxy N-terminus reacted directly to hyaluronan under slightly acidic aqueous conditions without the need for a catalyst. The resulting oxime bond was found to rapidly hydrolyze at pH2 releasing peptide, but was stable at higher pH values (5.5 and 7). Two different peptide species, a multiple sclerosis antigen (PLP) and an ICAM-1 ligand (LABL) known to block immune cell stimulation, were functionalized with the aminooxy end group. These peptides showed similar reactivity to hyaluronan and were conjugated in an equimolar ratio. The resulting hyaluronan with grafted PLP and LABL significantly inhibited disease in mice with experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Aminooxy-peptides facilitate simple synthesis of multifunctional hyaluronan graft polymers, thus enabling novel approaches to antigen-specific immune modulation.
Collapse
Affiliation(s)
- Joshua. Sestak
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
| | - Meagan Mullins
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
| | - Laura Northrup
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
| | - Shara Thati
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
| | - Teruna Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr, Lawrence, KS 66047
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th, Rm 4132 Learned Hall, Lawrence, KS, 66045
| |
Collapse
|
15
|
Kiptoo P, Büyüktimkin B, Badawi AH, Stewart J, Ridwan R, Siahaan TJ. Controlling immune response and demyelination using highly potent bifunctional peptide inhibitors in the suppression of experimental autoimmune encephalomyelitis. Clin Exp Immunol 2013; 172:23-36. [PMID: 23480182 DOI: 10.1111/cei.12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
Abstract
In this study, we investigated the efficacy of new bifunctional peptide inhibitors (BPIs) in suppressing experimental autoimmune encephalomyelitis (EAE) in an animal model. BPI [e.g. proteolipid protein-cyclo(1,8)-CPRGGSVC-NH2 (PLP-cIBR)] is a conjugate between the PLP139-151 peptide derived from proteolipid protein (PLP) and the cIBR7 peptide derived from domain-1 (D1) of intercellular adhesion molecule-1 (ICAM-1). PLP-cIBR is designed to bind to major histocompatibility complex (MHC)-II and leucocyte function-associated antigen-1 (LFA-1) simultaneously to inhibit the formation of the immunological synapse and alter the differentiation and activation of a subpopulation of T cells, thus inducing immunotolerance. The results show that PLP-cIBR is highly potent in ameliorating EAE, even at low concentrations and less frequent injections. Mice treated with PLP-cIBR had a higher secretion of cytokines related to regulatory and/or suppressor cells compared to phosphate-buffered saline (PBS)-treated mice. In contrast, T helper type 1 (Th1) cytokines were higher in mice treated with PBS compared to PLP-cIBR, suggesting that it suppressed Th1 proliferation. Also, we observed significantly less demyelination in PLP-cIBR-treated mice compared to the control, further indicating that PLP-cIBR promoted protection against demyelination.
Collapse
Affiliation(s)
- P Kiptoo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | | | | | |
Collapse
|
16
|
Büyüktimkin B, Manikwar P, Kiptoo PK, Badawi AH, Stewart JM, Siahaan TJ. Vaccinelike and prophylactic treatments of EAE with novel I-domain antigen conjugates (IDAC): targeting multiple antigenic peptides to APC. Mol Pharm 2012; 10:297-306. [PMID: 23148513 DOI: 10.1021/mp300440x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this work is to utilize novel I-domain antigenic-peptide conjugates (IDAC) for targeting antigenic peptides to antigen-presenting cells (APC) to simulate tolerance in experimental autoimmune encephalomyelitis (EAE). IDAC-1 and IDAC-3 molecules are conjugates between the I-domain protein and PLP-Cys and Ac-PLP-Cys-NH(2) peptides, respectively, tethered to N-terminus and Lys residues on the I-domain. The hypothesis is that the I-domain protein binds to ICAM-1 and PLP peptide binds to MHC-II on the surface of APC; this binding event inhibits the formation of the immunological synapse at the APC-T-cell interface to alter T-cell differentiation from inflammatory to regulatory phenotypes. Conjugation of peptides to the I-domain did not change the secondary structure of IDAC molecules as determined by circular dichroism spectroscopy. The efficacies of IDAC-1 and -3 were evaluated in EAE mice by administering iv or sc injections of IDAC in a prophylactic or a vaccinelike dosing schedule. IDAC-3 was better than IDAC-1 in suppressing and delaying the onset of EAE when delivered in prophylactic and vaccinelike manners. IDAC-3 also suppressed subsequent relapse of the disease. The production of IL-17 was lowered in the IDAC-3-treated mice compared to those treated with PBS. In contrast, the production of IL-10 was increased, suggesting that there is a shift from inflammatory to regulatory T-cell populations in IDAC-3-treated mice. In conclusion, the I-domain can effectively deliver antigenic peptides in a vaccinelike or prophylactic manner for inducing immunotolerance in the EAE mouse model.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, Kansas 66047, United States
| | | | | | | | | | | |
Collapse
|
17
|
Manikwar P, Kiptoo P, Badawi AH, Büyüktimkin B, Siahaan TJ. Antigen-specific blocking of CD4-specific immunological synapse formation using BPI and current therapies for autoimmune diseases. Med Res Rev 2012; 32:727-64. [PMID: 21433035 PMCID: PMC4441537 DOI: 10.1002/med.20243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review, we discuss T-cell activation, etiology, and the current therapies of autoimmune diseases (i.e., MS, T1D, and RA). T-cells are activated upon interaction with antigen-presenting cells (APC) followed by a "bull's eye"-like formation of the immunological synapse (IS) at the T-cell-APC interface. Although the various disease-modifying therapies developed so far have been shown to modulate the IS and thus help in the management of these diseases, they are also known to present some undesirable side effects. In this study, we describe a novel and selective way to suppress autoimmunity by using a bifunctional peptide inhibitor (BPI). BPI uses an intercellular adhesion molecule-1 (ICAM-1)-binding peptide to target antigenic peptides (e.g., proteolipid peptide, glutamic acid decarboxylase, and type II collagen) to the APC and therefore modulate the immune response. The central hypothesis is that BPI blocks the IS formation by simultaneously binding to major histocompatibility complex-II and ICAM-1 on the APC and selectively alters the activation of T cells from T(H)1 to T(reg) and/or T(H)2 phenotypes, leading to tolerance.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KA 66047, USA
| | | | | | | | | |
Collapse
|
18
|
Badawi AH, Siahaan TJ. Immune modulating peptides for the treatment and suppression of multiple sclerosis. Clin Immunol 2012; 144:127-38. [PMID: 22722227 DOI: 10.1016/j.clim.2012.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease in which the immune system recognizes proteins of the myelin sheath as antigenic, thus initiating an inflammatory reaction in the central nervous system. This leads to demyelination of the axons, breakdown of the blood-brain barrier, and lesion formation. Current therapies for the treatment of MS are generally non-specific and weaken the global immune system, thus making the individual susceptible to opportunistic infections. Antigenic peptides and their derivatives are becoming more prevalent for investigation as therapeutic agents for MS because they possess immune-specific characteristics. In addition, other peptides that target vital components of the inflammatory immune response have also been developed. Therefore, the objectives of this review are to (a) summarize the immunological basis for the development of MS, (b) discuss specific and non-specific peptides tested in EAE and in humans, and (c) briefly address some problems and potential solutions with these novel therapies.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
19
|
Manikwar P, Büyüktimkin B, Kiptoo P, Badawi AH, Galeva NA, Williams TD, Siahaan TJ. I-domain-antigen conjugate (IDAC) for delivering antigenic peptides to APC: synthesis, characterization, and in vivo EAE suppression. Bioconjug Chem 2012; 23:509-17. [PMID: 22369638 PMCID: PMC3311109 DOI: 10.1021/bc200580j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of this work are to characterize the identity of I-domain-antigen conjugate (IDAC) and to evaluate the in vivo efficacy of IDAC in suppressing experimental autoimmune encephalomyelitis (EAE) in mouse model. The hypothesis is that the I-domain delivers PLP(139-151) peptides to antigen-presenting cells (APC) and alters the immune system by simultaneously binding to ICAM-1 and MHC-II, blocking immunological synapse formation. IDAC was synthesized by derivatizing the lysine residues with maleimide groups followed by conjugation with PLP-Cys-OH peptide. Conjugation with PLP peptide does not alter the secondary structure of the protein as determined by CD. IDAC suppresses the progression of EAE, while I-domain and GMB-I-domain could only delay the onset of EAE. As a positive control, Ac-PLP-BPI-NH(2)-2 can effectively suppress the progress of EAE. The number of conjugation sites and the sites of conjugations in IDAC were determined using tryptic digest followed by LC-MS analysis. In conclusion, conjugation of I-domain with an antigenic peptide (PLP) resulted in an active molecule to suppress EAE in vivo.
Collapse
Affiliation(s)
- Prakash Manikwar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Paul Kiptoo
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Ahmed H. Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Nadezhda A. Galeva
- Mass Spectrometry/Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Todd D. Williams
- Mass Spectrometry/Analytical Proteomics Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | - Teruna J. Siahaan
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
20
|
Büyüktimkin B, Wang Q, Kiptoo P, Stewart JM, Berkland C, Siahaan TJ. Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis. Mol Pharm 2012; 9:979-85. [PMID: 22375937 DOI: 10.1021/mp200614q] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of this work is to use colloidal gel from alginate-chitosan-PLGA complex to deliver Ac-PLP-BPI-NH₂-2 peptide in a controlled-release manner as a vaccine-like therapeutic to suppress experimental autoimmune encephalomyelitis (EAE) in the mouse model. Oppositely charged PLGA nanoparticles were prepared by a solvent diffusion method. The carboxyl group of the alginate and the amine group of the chitosan coated the nanoparticles with negative and positive charges, respectively. The peptide (Ac-PLP-BPI-NH₂-2), designed to bind to MHC-II and ICAM-1 simultaneously, was formulated into the colloidal gel by physical mixture. Vaccine-like administration of the peptide-loaded colloidal gel (Ac-PLP-BPI-NH₂-2-NP) was achieved by subcutaneous (sc) injection to EAE mice. Disease severity was measured using clinical scoring and percent change in body weight. Cytokine production was determined using the splenocytes from Ac-PLP-BPI-NH₂-2-NP-treated mice and compared to that of controls. Ac-PLP-BPI-NH₂-2-NP suppressed and delayed the onset of EAE as well as Ac-PLP-BPI-NH₂-2 when delivered in a vaccine-like manner. IL-6 and IL-17 levels were significantly lower in the Ac-PLP-BPI-NH₂-2-NP-treated mice compared to the mouse group treated with blank colloidal gel, suggesting that the mechanism of suppression of EAE is due to a shift in the immune response away from Th17 production. The results of this study suggest that a one-time sc administration of Ac-PLP-BPI-NH₂-2 formulated in a colloidal gel can produce long-term suppression of EAE by reducing Th17 proliferation.
Collapse
Affiliation(s)
- Barlas Büyüktimkin
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas , Lawrence, Kansas, USA
| | | | | | | | | | | |
Collapse
|
21
|
Badawi AH, Kiptoo P, Wang WT, Choi IY, Lee P, Vines CM, Siahaan TJ. Suppression of EAE and prevention of blood-brain barrier breakdown after vaccination with novel bifunctional peptide inhibitor. Neuropharmacology 2011; 62:1874-81. [PMID: 22210333 DOI: 10.1016/j.neuropharm.2011.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/29/2011] [Accepted: 12/11/2011] [Indexed: 01/17/2023]
Abstract
The efficacy of bifunctional peptide inhibitor (BPI) in preventing blood-brain barrier (BBB) breakdown during onset of experimental autoimmune encephalomyelitis (EAE) and suppression of the disease was evaluated in mice. The mechanism that defines how BPI prevents the disease was investigated by measuring the in vitro cytokine production of splenocytes. Peptides were injected 5-11 days prior to induction of EAE, and the severity of the disease was monitored by a standard clinical scoring protocol and change in body weight. The BBB breakdown in diseased and treated mice was compared to that in normal control mice by determining deposition of gadolinium diethylenetriaminepentaacetate (Gd-DTPA) in the brain using magnetic resonance imaging (MRI). Mice treated with PLP-BPI showed no or low indication of EAE as well as normal increase in body weight. In contrast, mice treated with the control peptide or PBS showed a decrease in body weight and a high disease score. The diseased mice had high deposition of Gd-DTPA in the brain, indicating breakdown in the BBB. However, the deposition of Gd-DTPA in PLP-BPI-treated mice was similar to that in normal control mice. Thus, PLP-BPI can suppress EAE when administered as a peptide vaccine and maintain the integrity of the BBB.
Collapse
Affiliation(s)
- Ahmed H Badawi
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Mix E, Meyer-Rienecker H, Hartung HP, Zettl UK. Animal models of multiple sclerosis--potentials and limitations. Prog Neurobiol 2010; 92:386-404. [PMID: 20558237 PMCID: PMC7117060 DOI: 10.1016/j.pneurobio.2010.06.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 12/17/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is still the most widely accepted animal model of multiple sclerosis (MS). Different types of EAE have been developed in order to investigate pathogenetic, clinical and therapeutic aspects of the heterogenic human disease. Generally, investigations in EAE are more suitable for the analysis of immunogenetic elements (major histocompatibility complex restriction and candidate risk genes) and for the study of histopathological features (inflammation, demyelination and degeneration) of the disease than for screening of new treatments. Recent studies in new EAE models, especially in transgenic ones, have in connection with new analytical techniques such as microarray assays provided a deeper insight into the pathogenic cellular and molecular mechanisms of EAE and potentially of MS. For example, it was possible to better delineate the role of soluble pro-inflammatory (tumor necrosis factor-α, interferon-γ and interleukins 1, 12 and 23), anti-inflammatory (transforming growth factor-β and interleukins 4, 10, 27 and 35) and neurotrophic factors (ciliary neurotrophic factor and brain-derived neurotrophic factor). Also, the regulatory and effector functions of distinct immune cell subpopulations such as CD4+ Th1, Th2, Th3 and Th17 cells, CD4+FoxP3+ Treg cells, CD8+ Tc1 and Tc2, B cells and γδ+ T cells have been disclosed in more detail. The new insights may help to identify novel targets for the treatment of MS. However, translation of the experimental results into the clinical practice requires prudence and great caution.
Collapse
Key Words
- apc, antigen-presenting cell
- at-eae, adoptive transfer eae
- bbb, blood–brain barrier
- bdnf, brain-derived neurotrophic factor
- cd, cluster of differentiation
- cns, central nervous system
- cntf, ciliary neurotrophic factor
- eae, experimental autoimmune encephalomyelitis
- hla, human leukocyte antigen
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ivig, intravenous immunoglobulin
- mab, monoclonal antibody
- mbp, myelin basic protein
- mhc, major histocompatibility complex
- mog, myelin oligodendrocyte glycoprotein
- mp, methylprednisolone
- mri, magnetic resonance imaging
- ms, multiple sclerosis
- nk, natural killer
- odc, oligodendrocyte
- qtl, quantitative trait locus
- plp, proteolipid protein
- tc, cytotoxic t cell
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tnf, tumor necrosis factor
- animal model
- autoimmunity
- experimental autoimmune encephalomyelitis
- immunogenetics
- immunomodulatory therapy
- multiple sclerosis
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Clinical Trials as Topic
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Gene Expression Profiling
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Microarray Analysis
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Multiple Sclerosis/therapy
Collapse
Affiliation(s)
- Eilhard Mix
- Department of Neurology, University of Rostock, Germany
| | | | - Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Uwe K. Zettl
- Department of Neurology, University of Rostock, Germany
| |
Collapse
|
23
|
Ridwan R, Kiptoo P, Kobayashi N, Weir S, Hughes M, Williams T, Soegianto R, Siahaan TJ. Antigen-specific suppression of experimental autoimmune encephalomyelitis by a novel bifunctional peptide inhibitor: structure optimization and pharmacokinetics. J Pharmacol Exp Ther 2009; 332:1136-45. [PMID: 20026673 DOI: 10.1124/jpet.109.161109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to optimize the in vivo activity of proteolipid protein (PLP)-bifunctional peptide inhibitor (BPI) molecule to suppress experimental autoimmune encephalomyelitis (EAE) in SJL/J mice and evaluate pharmacokinetic profiles of PLP-BPI. PLP-BPI is constructed via conjugation of myelin PLP(139-151) with CD11a(237-246)-derived peptide (LABL) via a spacer. The hypothesis is that PLP-BPI binds simultaneously to major histocompatibility complex-II and intercellular adhesion molecule-1 on the antigen-presenting cell (APC) and inhibits the formation of the immunological synapse during T-cell and APC interactions. In this study, the structure of BPI was modified by varying the spacer and was evaluated in the EAE model. Intravenous injections of BPI derivatives inhibited the onset, severity, and incidence of EAE more effectively and induced a lower incidence of anaphylaxis than that produced by unmodified PLP-BPI. As anticipated, production of interleukin-17, a proinflammatory cytokine commonly found in elevated levels among multiple sclerosis (MS) patients, was significantly lower in Ac-PLP-BPI-PEG6- or Ac-PLP-BPI-NH(2)-2-treated mice than in phosphate-buffered saline-treated mice. These results suggest that BPI-type molecules can be modified to achieve more efficient and better tolerated BPI-based derivatives for the treatment of MS.
Collapse
Affiliation(s)
- Rahmawati Ridwan
- Department of Pharmaceutical Chemistry, University of Kansas, Simons Research Laboratories, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhao H, Kiptoo P, Williams TD, Siahaan TJ, Topp EM. Immune response to controlled release of immunomodulating peptides in a murine experimental autoimmune encephalomyelitis (EAE) model. J Control Release 2009; 141:145-52. [PMID: 19748537 DOI: 10.1016/j.jconrel.2009.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 08/16/2009] [Accepted: 09/01/2009] [Indexed: 12/16/2022]
Abstract
The effects of controlled release on immune response to an immunomodulating peptide were evaluated in a murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). The peptide, Ac-PLP-BPI-NH(2)-2 (Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)(2)-ITDGEATDSG-NH(2); Ac = acetyl, Acp = epsilon aminocaproic acid) was designed to suppress T-cell activation in response to PLP(139-151), an antigenic peptide in MS. Poly-lactide-co-glycolide (PLGA) microparticles containing Ac-PLP-BPI-NH(2)-2 (8+/-4 microm, 1.4+/-0.2% (w/w)) were prepared by a powder-in oil-in water emulsion-solvent evaporation method, sterilized and administered subcutaneously (s.c.) to SJL/J (H-2(s)) mice in which EAE had been induced by immunization with PLP(139-151). Treatment groups received Ac-PLP-BPI-NH(2)-2: (i) in solution by repeated i.v. or s.c. injection, (ii) in solution co-administered with blank PLGA microparticles, (iii) in solution co-administered with Ac-PLP-BPI-NH(2)-2 loaded microparticles, and (iv) as Ac-PLP-BPI-NH(2)-2 loaded microparticles. Administration of Ac-PLP-BPI-NH(2)-2 as an s.c. solution produced clinical scores and maintenance of body weight comparable to i.v. solution, but with reduced overall survival, presumably due to anaphylaxis. Administration as s.c. microparticles provided a somewhat less effective reduction in symptoms but with no toxicity during treatment. Thus, the results suggest that s.c. administration of Ac-PLP-BPI-NH(2)-2 microparticles can provide pharmacological efficacy and reduction in dosing frequency without increased toxicity.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | | | |
Collapse
|
25
|
Mix E, Meyer-Rienecker H, Zettl UK. Animal models of multiple sclerosis for the development and validation of novel therapies - potential and limitations. J Neurol 2009; 255 Suppl 6:7-14. [PMID: 19300954 DOI: 10.1007/s00415-008-6003-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various types of experimental autoimmune encephalomyelitis (EAE) reflect some of the pathogenetic, clinical, and therapeutic features of the different forms of multiple sclerosis (MS), thereby, providing some, albeit limited, insight into the molecular and cellular basis of the human disease. Specific questions of MS therapy including the search for new therapeutic targets and strategies and their validation require investigations in different available EAE models. A survey is given of experimental therapeutic approaches that are currently under study with the most promising examples of monoclonal antibodies, gene therapy, stem cell transplantation and orally applied small molecular weight disease-modifying drugs. Reasons for therapy failure and adverse side-effects of some experimental trials are discussed. Precaution is advised, if results of new experimental approaches are translated into clinical practice.
Collapse
Affiliation(s)
- Eilhard Mix
- University of Rostock, Department of Neurology, Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | | | | |
Collapse
|