1
|
Cheng Y, Yang X, Wang Y, Ding Q, Huang Y, Zhang C. The role of the Gas6/TAM signal pathway in the LPS-induced pulmonary epithelial cells injury. Mol Immunol 2023; 163:181-187. [PMID: 37820442 DOI: 10.1016/j.molimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is an acute inflammatory respiratory disease. The interaction between growth arrest-specific 6 (Gas6) and tyrosine kinases of the Tyro3, Axl, Mer (TAM) family plays an important role in a variety of physiological and pathological processes, including inflammation. In this study, we mainly clarified the mechanism of the Gas6/TAM signal pathway in lipopolysaccharide (LPS)-induced pulmonary epithelial cells (BEAS-2B cells) injury. METHODS We cultured BEAS-2B cells in vitro and established a LPS-induced BEAS-2B cells injury model. Then, the siRNA sequence (siGas6-2) was transfected into cells. The expression of Gas6/TAM was measured based on quantitative reverse transcription polymerase chain reaction (qRT-RCR) and western blot (WB). Cell proliferation and apoptosis were measured by cell counting Kit-8 (CCK-8) and flow cytometry. The expression of pro-inflammatory factors was measured by qRT-RCR and WB. RESULTS Our study showed that when the 40 μg/mL LPS-induced BEAS-2B cells injury model was established, cell viability was significantly reduced, but the Gas6/TAM signal pathway was activated. When transfection with siGas6-2, low expression of Gas6 directly reduced the expression of downstream TAM receptors. Furthermore, the inhibition of the Gas6/TAM signal pathway significantly reduced the occurrence of cell apoptosis and the expression of inflammatory factors, and promoted cell proliferation. CONCLUSION Our research indicated that Gas6/TAM played an important role in cell proliferation, apoptosis, and inflammatory response in the LPS-induced BEAS-2B cells injury, and Gas6/TAM may be a new target in the treatment of ALI in the future.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Ying Wang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Quan Ding
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Yu Huang
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China.
| |
Collapse
|
2
|
Adams DE, Zhen Y, Qi X, Shao WH. Axl Expression in Renal Mesangial Cells Is Regulated by Sp1, Ap1, MZF1, and Ep300, and the IL-6/miR-34a Pathway. Cells 2022; 11:cells11121869. [PMID: 35740998 PMCID: PMC9221537 DOI: 10.3390/cells11121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Axl receptor tyrosine kinase expression in the kidney contributes to a variety of inflammatory renal disease by promoting glomerular proliferation. Axl expression in the kidney is negligible in healthy individuals but upregulated under inflammatory conditions. Little is known about Axl transcriptional regulation. We analyzed the 4.4 kb mouse Axl promoter region and found that many transcription factor (TF)-binding sites and regulatory elements are located within a 600 bp fragment proximal to the translation start site. Among four TFs (Sp1, Ap1, MZF1, and Ep300) identified, Sp1 was the most potent TF that promotes Axl expression. Luciferase assays confirmed the siRNA results and revealed additional mechanisms that regulate Axl expression, including sequences encoding a 5'-UTR mini-intron and potential G-quadruplex forming regions. Deletion of the Axl 5'-UTR mini-intron resulted in a 3.2-fold increases in luciferase activity over the full-length UTR (4.4 kb Axl construct). The addition of TMPyP4, a G-quadruplex stabilizer, resulted in a significantly decreased luciferase activity. Further analysis of the mouse Axl 3'-UTR revealed a miRNA-34a binding site, which inversely regulates Axl expression. The inhibitory role of miRNA-34a in Axl expression was demonstrated in mesangial cells using miRNA-34a mimicry and in primary kidney cells with IL-6 stimulated STAT3 activation. Taken together, Axl expression in mouse kidney is synergistically regulated by multiple factors, including TFs and secondary structures, such as mini-intron and G-quadruplex. A unique IL6/STAT3/miRNA-34a pathway was revealed to be critical in inflammatory renal Axl expression.
Collapse
Affiliation(s)
- David E. Adams
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (D.E.A.); (Y.Z.)
| | - Yuxuan Zhen
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (D.E.A.); (Y.Z.)
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Wen-Hai Shao
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (D.E.A.); (Y.Z.)
- Correspondence:
| |
Collapse
|
3
|
Axl regulated survival/proliferation network and its therapeutic intervention in mouse models of glomerulonephritis. Arthritis Res Ther 2022; 24:284. [PMID: 36578056 PMCID: PMC9795606 DOI: 10.1186/s13075-022-02965-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/02/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lupus nephritis (LN) is the most common and serious complication of systemic lupus erythematosus (SLE). LN pathogenesis is not fully understood. Axl receptor tyrosine kinase is upregulated and contributes to the pathogenic progress in LN. We have reported that Axl disruption attenuates nephritis development in mice. METHODS In this study, we analyzed the gene expression profiles with RNA-seq using renal cortical samples from nephritic mice. Axl-KO mice were bred onto a B6.lpr spontaneous lupus background, and renal disease development was followed and compared to the Axl-sufficient B6.lpr mice. Finally, anti-glomerular basement membrane (anti-GBM) Ab-induced nephritic mice were treated with Axl small molecule inhibitor, R428, at different stages of nephritis development. Blood urine nitrogen levels and renal pathologies were evaluated. RESULTS Transcriptome analysis revealed that renal Axl activation contributed to cell proliferation, survival, and motility through regulation of the Akt, c-Jun, and actin pathways. Spontaneous lupus-prone B6.lpr mice with Axl deficiency showed significantly reduced kidney damages and decreased T cell infiltration compared to the renal damage and T cell infiltration in Axl-sufficient B6.lpr mice. The improved kidney function was independent of autoAb production. Moreover, R428 significantly reduced anti-GBM glomerulonephritis at different stages of GN development compared to the untreated nephritic control mice. R428 administration reduced inflammatory cytokine (IL-6) production, T cell infiltration, and nephritis disease activity. CONCLUSIONS Results from this study emphasize the important role of Axl signaling in LN and highlight Axl as an attractive target in LN.
Collapse
|
4
|
Study of the Role of the Tyrosine Kinase Receptor MerTK in the Development of Kidney Ischemia-Reperfusion Injury in RCS Rats. Int J Mol Sci 2021; 22:ijms222212103. [PMID: 34829984 PMCID: PMC8618874 DOI: 10.3390/ijms222212103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Renal ischaemia reperfusion (I/R) triggers a cascade of events including oxidative stress, apoptotic body and microparticle (MP) formation as well as an acute inflammatory process that may contribute to organ failure. Macrophages are recruited to phagocytose cell debris and MPs. The tyrosine kinase receptor MerTK is a major player in the phagocytosis process. Experimental models of renal I/R events are of major importance for identifying I/R key players and for elaborating novel therapeutical approaches. A major aim of our study was to investigate possible involvement of MerTK in renal I/R. We performed our study on both natural mutant rats for MerTK (referred to as RCS) and on wild type rats referred to as WT. I/R was established by of bilateral clamping of the renal pedicles for 30' followed by three days of reperfusion. Plasma samples were analysed for creatinine, aspartate aminotransferase (ASAT), lactate dehydrogenase (LDH), kidney injury molecule -1 (KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) levels and for MPs. Kidney tissue damage and CD68-positive cell requirement were analysed by histochemistry. monocyte chemoattractant protein-1 (MCP-1), myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), and histone 3A (H3A) levels in kidney tissue lysates were analysed by western blotting. The phagocytic activity of blood-isolated monocytes collected from RCS or WT towards annexin-V positive bodies derived from cultured renal cell was assessed by fluorescence-activated single cell sorting (FACS) and confocal microscopy analyses. The renal I/R model for RCS rat described for the first time here paves the way for further investigations of MerTK-dependent events in renal tissue injury and repair mechanisms.
Collapse
|
5
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Huelse JM, Fridlyand DM, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020. [PMID: 32417270 DOI: 10.1016/j.pharmthera.2020.107577107577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Diana M Fridlyand
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Li Y, Wittchen ES, Monaghan-Benson E, Hahn C, Earp HS, Doerschuk CM, Burridge K. The role of endothelial MERTK during the inflammatory response in lungs. PLoS One 2019; 14:e0225051. [PMID: 31805065 PMCID: PMC6894824 DOI: 10.1371/journal.pone.0225051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022] Open
Abstract
As a key homeostasis regulator in mammals, the MERTK receptor tyrosine kinase is crucial for efferocytosis, a process that requires remodeling of the cell membrane and adjacent actin cytoskeleton. Membrane and cytoskeletal reorganization also occur in endothelial cells during inflammation, particularly during neutrophil transendothelial migration (TEM) and during changes in permeability. However, MERTK’s function in endothelial cells remains unclear. This study evaluated the contribution of endothelial MERTK to neutrophil TEM and endothelial barrier function. In vitro experiments using primary human pulmonary microvascular endothelial cells found that neutrophil TEM across the endothelial monolayers was enhanced when MERTK expression in endothelial cells was reduced by siRNA knockdown. Examination of endothelial barrier function revealed increased passage of dextran across the MERTK-depleted monolayers, suggesting that MERTK helps maintain endothelial barrier function. MERTK knockdown also altered adherens junction structure, decreased junction protein levels, and reduced basal Rac1 activity in endothelial cells, providing potential mechanisms of how MERTK regulates endothelial barrier function. To study MERTK’s function in vivo, inflammation in the lungs of global Mertk-/- mice was examined during acute pneumonia. In response to P. aeruginosa, more neutrophils were recruited to the lungs of Mertk-/- than wildtype mice. Vascular leakage of Evans blue dye into the lung tissue was also greater in Mertk-/- mice. To analyze endothelial MERTK’s involvement in these processes, we generated inducible endothelial cell-specific (iEC) Mertk-/- mice. When similarly challenged with P. aeruginosa, iEC Mertk-/- mice demonstrated no difference in neutrophil TEM into the inflamed lungs or in vascular permeability compared to control mice. These results suggest that deletion of MERTK in human pulmonary microvascular endothelial cells in vitro and in all cells in vivo aggravates the inflammatory response. However, selective MERTK deletion in endothelial cells in vivo failed to replicate this response.
Collapse
Affiliation(s)
- Yitong Li
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erika S Wittchen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cornelia Hahn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Claire M Doerschuk
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
TAM Receptor Pathways at the Crossroads of Neuroinflammation and Neurodegeneration. DISEASE MARKERS 2019; 2019:2387614. [PMID: 31636733 PMCID: PMC6766163 DOI: 10.1155/2019/2387614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/04/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that pathogenic mechanisms underlying neurodegeneration are strongly linked with neuroinflammatory responses. Tyro3, Axl, and Mertk (TAM receptors) constitute a subgroup of the receptor tyrosine kinase family, cell surface receptors which transmit signals from the extracellular space to the cytoplasm and nucleus. TAM receptors and the corresponding ligands, Growth Arrest Specific 6 and Protein S, are expressed in different tissues, including the nervous system, playing complex roles in tissue repair, inflammation and cell survival, proliferation, and migration. In the nervous system, TAM receptor signalling modulates neurogenesis and neuronal migration, synaptic plasticity, microglial activation, phagocytosis, myelination, and peripheral nerve repair, resulting in potential interest in neuroinflammatory and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. In Alzheimer and Parkinson diseases, a role of TAM receptors in neuronal survival and pathological protein aggregate clearance has been suggested, while in Multiple Sclerosis TAM receptors are involved in myelination and demyelination processes. To better clarify roles and pathways involving TAM receptors may have important therapeutic implications, given the fine modulation of multiple molecular processes which could be reached. In this review, we summarise the roles of TAM receptors in the central nervous system, focusing on the regulation of immune responses and microglial activities and analysing in vitro and in vivo studies regarding TAM signalling involvement in neurodegeneration.
Collapse
|
9
|
Clark R, Usselmann L, Brown MR, Goeppert AU, Corrigan A. A flexible high content imaging assay for profiling macrophage efferocytosis. J Immunol Methods 2019; 473:112636. [PMID: 31369739 DOI: 10.1016/j.jim.2019.112636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/11/2019] [Accepted: 07/26/2019] [Indexed: 11/29/2022]
Abstract
Macrophages are a diverse population of cells originating from the myeloid lineage, which form an important component of the innate immune system, helping to regulate immune response through secretion of pro/anti-inflammatory cytokines. However they also have an important homeostatic role - helping to remove cellular debris and apoptotic cells from the body (a phagocytic process known as efferocytosis). Here we describe a robust 384 well microplate based imaging assay, using apoptotic target cells for the specific quantification of efferocytosis in human primary monocyte derived macrophages. The methodology described allows for the assay to run in either fixed end-point or live-cell format (the former offering multiple morphological and intensity-based readouts, whilst the latter opens the possibility for future expansion of the methodology to encompass kinetic profiling). Within the methodology described we couple high content image acquisition (on the Cell Voyager 7000S) with multi-parametric image analysis - using Perkin Elmer Columbus combined with GeneData Screener.
Collapse
Affiliation(s)
- Roger Clark
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK.
| | - Laura Usselmann
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Martin R Brown
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Anne U Goeppert
- Precision Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Adam Corrigan
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
10
|
Gas6/TAM Receptors in Systemic Lupus Erythematosus. DISEASE MARKERS 2019; 2019:7838195. [PMID: 31360267 PMCID: PMC6652053 DOI: 10.1155/2019/7838195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 01/25/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease associated with impaired immune system regulation. The exact mechanisms of SLE development remain to be elucidated. TAM receptor tyrosine kinases (RTKs) are important for apoptotic cell clearance, immune homeostasis, and resolution of immune responses. TAM deficiency leads to lupus-like autoimmune diseases. Activation of TAM receptors leads to proteolytic cleavage of the receptors, generating soluble forms of TAM. Circulating TAM receptors have an immunoregulatory function and may also serve as biomarkers for disease prognosis. Here, we review the biological function and signaling of TAM RTKs in the development and pathogenesis of lupus and lupus nephritis. Targeting Gas6/TAM pathways may be of therapeutic benefit. A discussion of potential TAM activation and inhibition in the treatment of lupus and lupus nephritis is included.
Collapse
|
11
|
MERTK mediated novel site Akt phosphorylation alleviates SAV1 suppression. Nat Commun 2019; 10:1515. [PMID: 30944303 PMCID: PMC6447540 DOI: 10.1038/s41467-019-09233-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Akt plays indispensable roles in cell proliferation, survival and metabolism. Mechanisms underlying posttranslational modification-mediated Akt activation have been extensively studied yet the Akt interactome is less understood. Here, we report that SAV1, a Hippo signaling component, inhibits Akt, a function independent of its role in Hippo signaling. Binding to a proline-tyrosine motif in the Akt-PH domain, SAV1 suppresses Akt activation by blocking Akt’s movement to plasma membrane. We further identify cancer-associated SAV1 mutations with impaired ability to bind Akt, leading to Akt hyperactivation. We also determine that MERTK phosphorylates Akt1-Y26, releasing SAV1 binding and allowing Akt responsiveness to canonical PI-3K pathway activation. This work provides a mechanism underlying MERTK-mediated Akt activation and survival signaling in kidney cancer. Akt activation drives oncogenesis and therapeutic resistance; this mechanism of Akt regulation by MERTK/SAV1 provides yet another complexity in an extensively studied pathway, and may yield prognostic information and therapeutic targets. Hyperactivation of Akt promotes tumorigenesis. Here, the authors show that SAV1, a member of Hippo signalling, interacts with Akt to suppress Akt activity and MERTK-mediated Akt phosphorylation relieves this suppression to facilitate Akt oncogenic activity in clear cell renal carcinomas.
Collapse
|
12
|
Gong S, Xu Z, Liu Y, Xing L, Ma J, Yu C, Liu X, Jia X, Xie R, Sui M. Plasma sMer, sAxl and GAS6 levels correlate with disease activity and severity in lupus nephritis. Eur J Clin Invest 2019; 49:e13064. [PMID: 30588607 DOI: 10.1111/eci.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The purpose of this study is to determine whether TAM receptors and ligands associated with the activity and severity of lupus nephritis. METHODS Clinical data were statistically analysed and studied in 122 SLE patients, diagnosed from 2013 to 2016 in First Hospital Affiliated to Harbin Medical University. Levels of TAM receptors and ligands in the plasma of 122 SLE patients were measured by ELISA. Renal biopsies were performed to confirm lupus nephritis (LN) by histopathology in 68 patients. The associations of TAM receptors and ligands with clinical and serological parameters were analysed in 68 LN patients. RESULTS Amongst patients with SLE, those with LN had significantly higher plasma sMer, sAxl and GAS6 levels than those without renal involvement (P < 0.01 for all comparisons). Additional comparisons on the renal function-associated clinical parameters confirmed an indicative role of the sMer, sAXL and GAS6 levels in the cohort of patients with more severe nephritis. Patients with higher sMer, sAXL and GAS6 levels of LN patients tended to suffer from proliferative glomerulonephritis. The sAXL and GAS6 levels had a strong positive correlation with activity index (AI) in LN patients. Furthermore, there was a significant drop of the sMer, sAXL and GAS6 concentrations from the time of the biopsy to month t6, but no further decrease from months t6 to t12. CONCLUSIONS These results suggest that plasma sMer, sAxl and GAS6 can be an additional clinical marker related to the disease activity and severity in LN.
Collapse
Affiliation(s)
- Siwen Gong
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhen Xu
- Department of Clinical Laboratory Medicine, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Xing
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Ma
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaogang Liu
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xibei Jia
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rujuan Xie
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manshu Sui
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Zhen Y, Lee IJ, Finkelman FD, Shao WH. Targeted inhibition of Axl receptor tyrosine kinase ameliorates anti-GBM-induced lupus-like nephritis. J Autoimmun 2018; 93:37-44. [PMID: 29895432 DOI: 10.1016/j.jaut.2018.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Glomerulonephritis (GN) is a typical lesion in autoantibody and immune complex disorders, including SLE. Because the Gas6/Axl pathway has been implicated in the pathogenesis of many types of GN, targeting this pathway might ameliorate GN. Consequently, we have studied the efficacy and mechanism of R428, a potent selective Axl inhibitor, in the prevention of experimental anti-GBM nephritis. Axl upregulation was investigated with Sp1/3 siRNA in the SV40-transformed mesangial cells. For Axl inhibition, a daily dose of R428 (125 mg/kg) or vehicle was administered orally. GN was induced with anti-GBM sera. Renal disease development was followed by serial blood urine nitrogen (BUN) determinations and by evaluation of kidney histology at the time of sacrifice. Axl-associated signaling proteins were analyzed by Western blotting and inflammatory cytokine secretion was analyzed by Proteome array. SiRNA data revealed the transcription factor Sp1 to be an important regulator of mesangial Axl expression. Anti-GBM serum induced severe nephritis with azotemia, protein casts and necrotic cell death. R428 treatment diminished renal Axl expression and improved kidney function, with significantly decreased BUN and glomerular proliferation. R428 treatment inhibited Axl and significantly decreased Akt phosphorylation and renal inflammatory cytokine and chemokine expression; similar effects were observed in anti-GBM antiserum-treated Axl-KO mice. These studies support a role for Axl inhibition in glomerulonephritis.
Collapse
Affiliation(s)
- Yuxuan Zhen
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267 USA
| | - Iris J Lee
- Division of Nephrology, Department of Medicine, Temple University, Philadelphia, PA 19140 USA
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267 USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229 USA
| | - Wen-Hai Shao
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267 USA.
| |
Collapse
|
14
|
Zhen Y, Finkelman FD, Shao WH. Mechanism of Mer receptor tyrosine kinase inhibition of glomerular endothelial cell inflammation. J Leukoc Biol 2018; 103:709-717. [PMID: 29350876 DOI: 10.1002/jlb.3a0917-368r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
Endotoxin induces a variety of proinflammatory mediators and plays a crucial role in kidney inflammation. The receptor tyrosine kinase, Mer, diminishes renal inflammation by attenuating inflammatory responses. We previously reported that Mer is predominantly expressed on glomerular endothelial cells (GECs) and that Mer deficiency is associated with increased renal inflammation when mice are challenged with nephrotoxic serum. We consequently hypothesized that Mer signaling down-regulates LPS-driven inflammatory responses in GECs. To test this hypothesis, primary GECs were isolated from the kidneys of Mer-KO and wild-type (WT) control mice. LPS treatment induced Akt and STAT3 activation along with Bcl-xl up-regulation in WT GECs; these responses were all increased in Mer-deficient GECs. In addition, STAT1 and ERK1/2 up-regulation and activation were observed in Mer-KO GECs exposed to LPS. In contrast, expression of the inhibitory signaling molecule, suppressor of cytokine signaling-3 (SOCS-3), was much higher in LPS-stimulated WT than Mer-deficient GECs. Deficiency of Mer was also associated with significantly increased NF-κB expression and activation. These observations indicate that Mer functions as an intrinsic feedback inhibitor of inflammatory mediator-driven immune responses in GECs during kidney injury and suggest a new therapeutic strategy for glomerular diseases.
Collapse
Affiliation(s)
- Yuxuan Zhen
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wen-Hai Shao
- Division of Immunology, Allergy and Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Li S, Guo Q, Zhu H, Li Z, Su Y, Dong B. Increased Mer and Axl receptor tyrosine kinase expression on glomeruli in lupus nephritis. Clin Rheumatol 2017; 36:1063-1070. [PMID: 28127639 DOI: 10.1007/s10067-017-3550-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 12/14/2022]
Abstract
Mer and Axl receptor tyrosine kinases (MerTK and AxlTK) play important roles in the clearance of apoptotic cells and the inhibition of inflammatory responses. Previous studies demonstrated that they might participate in glomerular injury in mice model. This study aimed to elucidate the expression of MerTK and AxlTK on glomeruli and analyze their clinical significance in lupus nephritis (LN) patients. Twenty-nine LN and 10 primary nephrotic syndrome (NS) patients were recruited. The expression of MerTK and AxlTK on glomeruli was measured by immunohistochemistry. Correlations between the levels of MerTK and AxlTK and clinical data were investigated. Statistical differences in each group were calculated by one-way analysis of variance, t test, or Mann-Whitney U test. Correlations were evaluated with Pearson's or Spearman's correlation tests. Both MerTK and AxlTK were expressed mainly on mesangial cells. LN patients demonstrated more expression of MerTK and AxlTK than primary NS patients (1.19 ± 1.01 × 10-2 vs 0.21 ± 0.29 × 10-2, 7.25 ± 2.69 × 10-2 vs 3.10 ± 1.22 × 10-2, p < 0.01). In LN patients, MerTK expression correlated with AxlTK (r = 0.529, p < 0.01). LN patients with class IV expressed more MerTK and AxlTK (1.50 ± 1.03 × 10-2 and 7.56 ± 2.93 × 10-2). The expression of MerTK and AxlTK varied according to the deposition of immunoglobulin and complements on glomeruli. Both MerTK and AxlTK expressions were increased on glomeruli and varied according to pathological classifications. Thus, we assumed that both two subsets might participate in the pathogenesis of LN.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Qianyu Guo
- Department of Rheumatology and Immunology, Shanxi DaYi Hospital, Shanxi Academy of Medical Science, Taiyuan, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China.
| | - Bao Dong
- Department of Nephrology, People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
16
|
The Gas6/TAM System and Multiple Sclerosis. Int J Mol Sci 2016; 17:ijms17111807. [PMID: 27801848 PMCID: PMC5133808 DOI: 10.3390/ijms17111807] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 01/25/2023] Open
Abstract
Growth arrest specific 6 (Gas6) is a multimodular circulating protein, the biological actions of which are mediated by the interaction with three transmembrane tyrosine kinase receptors: Tyro3, Axl, and MerTK, collectively named TAM. Over the last few decades, many progresses have been done in the understanding of the biological activities of this highly pleiotropic system, which plays a role in the regulation of immune response, inflammation, coagulation, cell growth, and clearance of apoptotic bodies. Recent findings have further related Gas6 and TAM receptors to neuroinflammation in general and, specifically, to multiple sclerosis (MS). In this paper, we review the biology of the Gas6/TAM system and the current evidence supporting its potential role in the pathogenesis of MS.
Collapse
|
17
|
Zhen Y, Priest SO, Shao WH. Opposing Roles of Tyrosine Kinase Receptors Mer and Axl Determine Clinical Outcomes in Experimental Immune-Mediated Nephritis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2187-94. [PMID: 27527599 DOI: 10.4049/jimmunol.1600793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022]
Abstract
Glomerulonephritis is one of the most severe manifestations of systemic lupus erythematosus, with considerable morbidity and mortality. There remains a major unmet need for successful management of lupus nephritis. TAM family receptor tyrosine kinases (Mer and Axl) play an important role in the maintenance of immune homeostasis in the kidney. Mer is constitutively expressed in the glomeruli; Axl expression is inducible in glomeruli under inflammatory conditions. To investigate the distinct functions of Axl and Mer in lupus nephritis, we compared the severity of nephrotoxic serum glomerulonephritis in wild-type (WT), Axl-knockout (KO), Mer-KO, and Axl/Mer-KO mice. Mer-KO mice developed severe glomerulonephritis, with significantly decreased survival and increased blood urea nitrogen levels compared with WT mice given the same treatment. However, nephrotoxic serum-treated Axl-KO mice had significantly increased survival rates and improved renal function compared with similarly treated WT, Mer-KO, and Axl/Mer-KO mice. Interestingly, mice lacking both Axl and Mer developed kidney inflammation comparable to WT mice. Western blot analysis revealed significantly increased Stat3 phosphorylation and caspase-1 activation in the kidneys of nephritic Mer-KO mice. In contrast, Axl-deficient nephrotoxic serum-injected mice showed decreased Akt phosphorylation and Bcl-xL upregulation. Thus, the reciprocal activation of Axl and Mer receptor tyrosine kinases has a major impact on the outcome of renal inflammation.
Collapse
Affiliation(s)
- Yuxuan Zhen
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140
| | - Stephen O Priest
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140
| | - Wen-Hai Shao
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140
| |
Collapse
|
18
|
Shao WH, Gamero AM, Zhen Y, Lobue MJ, Priest SO, Albandar HJ, Cohen PL. Stat1 Regulates Lupus-like Chronic Graft-versus-Host Disease Severity via Interactions with Stat3. THE JOURNAL OF IMMUNOLOGY 2015; 195:4136-43. [PMID: 26392462 DOI: 10.4049/jimmunol.1501353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex multisystem autoimmune disease, characterized by a spectrum of autoantibodies that target multiple cellular components. Glomerulonephritis is a major cause of morbidity in patients with SLE. Little is known about the pathogenesis of SLE renal damage and compromised renal function. Activation of both Stat1 and Stat3 has been reported in lupus and lupus nephritis. The reciprocal activation of these two transcription factors may have a major impact on renal inflammation. To study the role of Stat1 in a lupus model, we induced lupus-like chronic graft-versus-host disease (cGVHD) in Stat1-knockout (KO) and wild-type (WT) mice by i.p. injection of class II-disparate bm12 splenocytes. WT recipients of these alloreactive cells developed anti-dsDNA autoantibodies starting at week 2 as expected, with a decline after week 4. In contrast, Stat1-KO hosts exhibited a prolonged and significant increase of anti-dsDNA autoantibody responses compared with WT mice (week 4 to week 8). Increased autoantibody titers were accompanied by increased proteinuria and mortality in the cGVHD host mice lacking Stat1. Further analysis revealed expression and activation of Stat3 in the glomeruli of Stat1-KO host mice but not WT mice with cGVHD. Glomerular Stat3 activity in the Stat1-KO mice was associated with increased IL-6 and IFN-γ secretion and macrophage infiltration. Interactions between Stat1 and Stat3 thus appear to be crucial in determining the severity of lupus-like disease in the cGVHD model.
Collapse
Affiliation(s)
- Wen-Hai Shao
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140
| | - Yuxuan Zhen
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Monica J Lobue
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Stephen O Priest
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Hazem J Albandar
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140; and
| | - Philip L Cohen
- Section of Rheumatology, Department of Medicine, Temple University, Philadelphia, PA 19140; and
| |
Collapse
|
19
|
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14:769-85. [PMID: 25568918 DOI: 10.1038/nrc3847] [Citation(s) in RCA: 521] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.
Collapse
|
20
|
Hyde GD, Taylor RF, Ashton N, Borland SJ, Wu HSG, Gilmore AP, Canfield AE. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia. PLoS One 2014; 9:e102096. [PMID: 25019319 PMCID: PMC4096921 DOI: 10.1371/journal.pone.0102096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as the progressive loss of renal function often involving glomerular, tubulo-interstitial and vascular pathology. CKD is associated with vascular calcification; the extent of which predicts morbidity and mortality. However, the molecular regulation of these events and the progression of chronic kidney disease are not fully elucidated. To investigate the function of Axl receptor tyrosine kinase in CKD we performed a sub-total nephrectomy and fed high phosphate (1%) diet to Axl+/+ and Axl−/− mice. Plasma Gas6 (Axl' ligand), renal Axl expression and downstream Akt signalling were all significantly up-regulated in Axl+/+ mice following renal mass reduction and high phosphate diet, compared to age-matched controls. Axl−/− mice had significantly enhanced uraemia, reduced bodyweight and significantly reduced survival following sub-total nephrectomy and high phosphate diet compared to Axl+/+ mice; only 45% of Axl−/− mice survived to 14 weeks post-surgery compared to 87% of Axl+/+ mice. Histological analysis of kidney remnants revealed no effect of loss of Axl on glomerular hypertrophy, calcification or renal sclerosis but identified significantly increased tubulo-interstitial apoptosis in Axl−/− mice. Vascular calcification was not induced in Axl+/+ or Axl−/− mice in the time frame we were able to examine. In conclusion, we identify the up-regulation of Gas6/Axl signalling as a protective mechanism which reduces tubulo-interstitial apoptosis and slows progression to end-stage renal failure in the murine nephrectomy and high phosphate diet model of CKD.
Collapse
Affiliation(s)
- Gareth D. Hyde
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Rebecca F. Taylor
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Samantha J. Borland
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Andrew P. Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ann E. Canfield
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Abstract
Abstract
TAM receptors (Tyro3, Axl, and Mer) belong to a family of receptor tyrosine kinases that have important effects on hemostasis and inflammation. Also, they affect cell proliferation, survival, adhesion, and migration. TAM receptors can be activated by the vitamin K–dependent proteins Gas6 and protein S. Protein S is more commonly known as an important cofactor for protein C as well as a direct inhibitor of multiple coagulation factors. To our knowledge, the functions of Gas6 are limited to TAM receptor activation. When activated, the TAM receptors have effects on primary hemostasis and coagulation and display an anti-inflammatory or a proinflammatory effect, depending on cell type. To comprehend the effects that the TAM receptors and their ligands have on hemostasis and inflammation, we compare studies that report the different phenotypes displayed by mice with deficiencies in the genes of this receptor family and its ligands (protein S+/−, Gas6−/−, TAM−/−, and variations of these). In this manner, we aim to display which features are attributable to the different ligands. Because of the effects TAM receptors have on hemostasis, inflammation, and cancer growth, their modulation could make interesting therapeutic targets in thromboembolic disease, atherosclerosis, sepsis, autoimmune disease, and cancer.
Collapse
|
22
|
Increased expression of Mer tyrosine kinase in circulating dendritic cells and monocytes of lupus patients: correlations with plasma interferon activity and steroid therapy. Arthritis Res Ther 2014; 16:R76. [PMID: 24650765 PMCID: PMC4060208 DOI: 10.1186/ar4517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 03/06/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The requirement for the immunoregulatory Mer tyrosine kinase (Mer) for optimal removal of apoptotic cells prompted us to look at its expression in systemic lupus erythematosus (SLE), in which apoptotic cell clearance is abnormal. We compared the levels of expression of Mer in normal human subjects and in patients with SLE. METHODS We used flow cytometry of isolated peripheral blood mononuclear cells to compare the levels of Mer on leukocyte subsets. We used a Mer-specific enzyme-linked immunosorbent assay (ELISA) to quantify soluble Mer (sMer) in plasmas. RESULTS Monocytes, CD1c⁺ myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from both normal individuals and from SLE patients expressed Mer. In both normal and SLE patients, the CD14⁺⁺CD16⁺ subpopulation of monocytes expressed the highest levels of Mer, with somewhat lower levels on the CD14(int)CD16⁺ population. Mer levels on CD1c⁺ mDCs and pDCs, and sMer levels in blood were increased in SLE patients compared with controls. In patients, Mer levels on CD14(int)CD16⁺, CD14⁺⁺CD16⁻ monocytes, and CD1c⁺ dendritic cells correlated positively with type I interferon (IFN-I) activity detected in blood. In SLE patients treated with corticosteroids, Mer expression on monocytes correlated with prednisone dose, CD1c⁺ myeloid dendritic cells in patients treated with prednisone had higher levels of Mer expression than those in patients not receiving prednisone. CONCLUSIONS We found no global defect in Mer expression in lupus blood. In contrast, we observed increased levels of Mer expression in DC populations, which could represent a response to increased IFN-I in SLE patients. Enhanced Mer expression induced by corticosteroids may contribute to its beneficial effects in SLE.
Collapse
|
23
|
The expression and clinical significance of different forms of Mer receptor tyrosine kinase in systemic lupus erythematosus. J Immunol Res 2014; 2014:431896. [PMID: 24741600 PMCID: PMC3987794 DOI: 10.1155/2014/431896] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To investigate the expression and clinical significance of trans-membrane MerTK (mMer) on circulating CD14+ monocytes/macrophages and soluble MerTK (sMer) levels in plasma in systemic lupus erythematosus (SLE). METHOD 108 SLE patients and 42 healthy controls were recruited in this study. The expression of mMer on the surfaces of CD14+ monocytes/macrophages was evaluated by flow cytometry (FCM). The sMer levels were measured by ELISA. Real-time quantitative PCR was applied to evaluate the mRNA levels of MerTK and ADAM17. RESULTS Both mMer expression on CD14+ monocytes/macrophages and sMer levels in plasma significantly increased in SLE patients compared to healthy subjects. The frequency of anti-inflammatory MerTK expressing CD14+CD16+ monocytes decreased in SLE. mMer expression was positively correlated with CD163 expression on CD14+ cells. Both the mMer expression on CD14+ monocytes/macrophages and sMer levels in plasma were positively correlated with SLEDAI. Furthermore, more elevated mMer and sMer levels were found in patients with higher SLEDAI, presence of anti-SSA, anti-Sm autoantibodies, and lupus nephritis. CONCLUSION Both mMer and sMer levels significantly increased in SLE and positively correlated with disease activity and severity. The upregulation of MerTK expression may serve as a biomarker of the disease activity and severity of SLE.
Collapse
|
24
|
A human monoclonal antibody against the collagen type IV α3NC1 domain is a non-invasive optical biomarker for glomerular diseases. Kidney Int 2013; 84:403-8. [PMID: 23515049 DOI: 10.1038/ki.2013.99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 11/09/2022]
Abstract
Progressive kidney disease is a significant clinical problem. However, despite research aimed toward developing improved predictors of disease, the major tool to assess kidney ultrastructure damage is the kidney biopsy. Here we tested the capability of a labeled human monoclonal antibody (F1.1), directed against the NC1 domain of α3(IV) collagen, to detect pathologic kidney alterations in vivo using mouse models of nephrotoxic serum-induced nephritis and puromycin aminoglycoside nephrosis. The F1.1 antibody-fluorophore conjugate signal rapidly localized specifically to injured glomeruli in both the severe and mild kidney disease models while minimally labeling healthy kidney. This differential labeling is likely due to cryptic NC1-domain exposure as enzymatic or chemical treatment of healthy human or mouse kidney sections significantly increased F1.1 binding to the glomeruli. Finally, kidney tissue from patients with renal disease show significant glomerular staining by F1.1 indicating that exposure of the NC1 domain occurs in clinically relevant circumstances. Thus, NC1 domain exposure may represent an in situ biomarker for assessment of kidney injury. Our study suggests that F1.1 and similar antibodies may represent a new class of non-invasive renal imaging reagents.
Collapse
|
25
|
Ravishankar B, McGaha TL. O death where is thy sting? Immunologic tolerance to apoptotic self. Cell Mol Life Sci 2013; 70:3571-89. [PMID: 23377225 DOI: 10.1007/s00018-013-1261-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/14/2012] [Accepted: 01/03/2013] [Indexed: 12/22/2022]
Abstract
In higher organisms, innate scavenging cells maintain physiologic homeostasis by removal of the billions of apoptotic cells generated on a daily basis. Apoptotic cell removal requires efficient recognition and uptake by professional and non-professional phagocytic cells, which are governed by an array of soluble and apoptotic cell-integral signals resulting in immunologically silent clearance. While apoptosis is associated with profound suppression of adaptive and innate inflammatory immunity, we have only begun to scratch the surface in understanding how immunologic tolerance to apoptotic self manifest at either the molecular or cellular level. In the last 10 years, data has emerged implicating professional phagocytes, most notably stromal macrophages and CD8α(+)CD103(+) dendritic cells, as critical in initiation of the regulatory cascade that will ultimately lead to long-term whole-animal immune tolerance. Importantly, recent work by our lab and others has shown that alterations in apoptotic cell perception by the innate immune system either by removal of critical phagocytic sentinels in secondary lymphoid organs or blockage of immunosuppressive pathways leads to pronounced inflammation with a breakdown of tolerance towards self. This challenges the paradigm that apoptotic cells are inherently immunosuppressive, suggesting that apoptotic cell tolerance is a "context-dependent" event.
Collapse
Affiliation(s)
- Buvana Ravishankar
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Georgia Regents University, Building CN4143, 1120 15th Street, Augusta, GA, 30904, USA
| | | |
Collapse
|
26
|
Galvan MD, Foreman DB, Zeng E, Tan JC, Bohlson SS. Complement component C1q regulates macrophage expression of Mer tyrosine kinase to promote clearance of apoptotic cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3716-23. [PMID: 22422887 DOI: 10.4049/jimmunol.1102920] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Failure to efficiently clear apoptotic cells is linked to defects in development and the onset of autoimmunity. Complement component C1q is required for efficient engulfment of apoptotic cells in mice and humans; however, the molecular mechanisms leading to C1q-dependent engulfment are not fully understood. In this study, we used primary mouse macrophages to identify and characterize a novel molecular mechanism for macrophage-mediated C1q-dependent engulfment of apoptotic cells. We found that macrophage activation with C1q resulted in cycloheximide-sensitive enhanced engulfment, indicating a requirement for de novo protein synthesis. To investigate the cycloheximide-sensitive pathway, C1q-elicited macrophage transcripts were identified by microarray. C1q triggered the expression of Mer tyrosine kinase (Mer) and the Mer ligand growth arrest-specific 6: a receptor-ligand pair that mediates clearance of apoptotic cells. Full-length native C1q, and not the collagen-like tail or heat-denatured protein, stimulated Mer expression. This novel pathway is specific to C1q because mannose-binding lectin, a related collectin, failed to upregulate Mer expression and function. Soluble Mer-Fc fusion protein inhibited C1q-dependent engulfment of apoptotic cells, indicating a requirement for Mer. Moreover, Mer-deficient macrophages failed to respond to C1q with enhanced engulfment. Our results suggest that C1q elicits a macrophage phenotype specifically tailored for apoptotic cell clearance, and these data are consistent with the established requirement for C1q in prevention of autoimmunity.
Collapse
Affiliation(s)
- Manuel D Galvan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|