1
|
Sjøgren T, Islam S, Filippov I, Jebrzycka A, Sulen A, Breivik LE, Hellesen A, Jørgensen AP, Lima K, Tserel L, Kisand K, Peterson P, Ranki A, Husebye ES, Oftedal BE, Wolff AS. Single cell characterization of blood and expanded regulatory T cells in autoimmune polyendocrine syndrome type 1. iScience 2024; 27:109610. [PMID: 38632993 PMCID: PMC11022049 DOI: 10.1016/j.isci.2024.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/06/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Immune tolerance fails in autoimmune polyendocrine syndrome type 1 (APS-1) because of AIRE mutations. We have used single cell transcriptomics to characterize regulatory T cells (Tregs) sorted directly from blood and from in vitro expanded Tregs in APS-1 patients compared to healthy controls. We revealed only CD52 and LTB (down) and TXNIP (up) as consistently differentially expressed genes in the datasets. There were furthermore no large differences of the TCR-repertoire of expanded Tregs between the cohorts, but unique patients showed a more restricted use of specific clonotypes. We also found that in vitro expanded Tregs from APS-1 patients had similar suppressive capacity as controls in co-culture assays, despite expanding faster and having more exhausted cells. Our results suggest that APS-1 patients do not have intrinsic defects in their Treg functionality, and that their Tregs can be expanded ex vivo for potential therapeutic applications.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Shahinul Islam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Igor Filippov
- QIAGEN Aarhus A/S, Aarhus, Denmark
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | - André Sulen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars E. Breivik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Kari Lima
- Department of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Liina Tserel
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Annamari Ranki
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, Finland
| | - Eystein S. Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S.B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Jarvis LB, Rainbow DB, Coppard V, Howlett SK, Georgieva Z, Davies JL, Mullay HK, Hester J, Ashmore T, Van Den Bosch A, Grist JT, Coles AJ, Mousa HS, Pluchino S, Mahbubani KT, Griffin JL, Saeb-Parsy K, Issa F, Peruzzotti-Jametti L, Wicker LS, Jones JL. Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Commun Biol 2021; 4:1186. [PMID: 34650224 PMCID: PMC8516976 DOI: 10.1038/s42003-021-02721-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
The adoptive transfer of regulatory T-cells (Tregs) is a promising therapeutic approach in transplantation and autoimmunity. However, because large cell numbers are needed to achieve a therapeutic effect, in vitro expansion is required. By comparing their function, phenotype and transcriptomic profile against ex vivo Tregs, we demonstrate that expanded human Tregs switch their metabolism to aerobic glycolysis and show enhanced suppressive function through hypoxia-inducible factor 1-alpha (HIF1A) driven acquisition of CD73 expression. In conjunction with CD39, CD73 expression enables expanded Tregs to convert ATP to immunosuppressive adenosine. We conclude that for maximum therapeutic benefit, Treg expansion protocols should be optimised for CD39/CD73 co-expression.
Collapse
Affiliation(s)
- Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel B Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Valerie Coppard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sarah K Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Zoya Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jessica L Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Joanna Hester
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hani S Mousa
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
- Imperial College London Dementia Research Institute & Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Fadi Issa
- Department of Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | | | - Linda S Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Hui Z, Zhang J, Zheng Y, Yang L, Yu W, An Y, Wei F, Ren X. Single-Cell Sequencing Reveals the Transcriptome and TCR Characteristics of pTregs and in vitro Expanded iTregs. Front Immunol 2021; 12:619932. [PMID: 33868236 PMCID: PMC8044526 DOI: 10.3389/fimmu.2021.619932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/23/2021] [Indexed: 01/29/2023] Open
Abstract
Regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance and tumor evasion. However, the relative low proportion of these cells in peripheral blood and tissues has hindered many studies. We sought to establish a rapamycin-based in vitro Treg expansion procedure in patients diagnosed with colorectal cancer and perform single-cell sequencing to explore the characteristics of Treg cells. CD25+ cells enriched from peripheral blood mononuclear cells (PBMC) of colorectal tumor patients were cultured in X-VIVO15 medium, supplemented with 5% human AB serum, L-glutamine, rapamycin, interleukin-2 (IL-2), and Dynabeads human Treg expander for 21 days to expand Tregs. Treg cells with satisfactory phenotype and function were successfully expanded from CD4+CD25+ cells in patients with colorectal cancer. The median expansion fold was 75 (range, 20-105-fold), and >90.0% of the harvest cells were CD4+CD25+CD127dim/- cells. The ratio of CD4+CD25+Foxp3+ cells exceeded 60%. Functional assays showed that iTregs significantly inhibited CD8+T cell proliferation in vitro. Single-cell sequencing showed that the transcriptome of pTreg (CD4+CD25+CD127dim/- cells isolated from PBMC of colorectal cancer patients) and iTreg (CD4+CD25+CD127dim/- cells expanded in vitro according to the above regimen) cells were interlaced. pTregs exhibited enhanced suppressive function, whereas iTregs exhibited increased proliferative capacity. TCR repertoire analysis indicated minimal overlap between pTregs and iTregs. Pseudo-time trajectory analysis of Tregs revealed that pTregs were a continuum composed of three main branches: activated/effector, resting and proliferative Tregs. In contrast, in vitro expanded iTregs were a mixture of proliferating and activated/effector cells. The expression of trafficking receptors was also different in pTregs and iTregs. Various chemokine receptors were upregulated in pTregs. Activated effector pTregs overexpressed the chemokine receptor CCR10, which was not expressed in iTregs. The chemokine CCL28 was overexpressed in colorectal cancer and associated with poor prognosis. CCR10 interacted with CCL28 to mediate the recruitment of Treg into tumors and accelerated tumor progression. Depletion of CCR10+Treg cells from tumor microenvironment (TME) could be used as an effective treatment strategy for colorectal cancer patients. Our data distinguished the transcriptomic characteristics of different subsets of Treg cells and revealed the context-dependent functions of different populations of Treg cells, which was crucial to the development of alternative therapeutic strategies for Treg cells in autoimmune disease and cancer.
Collapse
Affiliation(s)
- Zhenzhen Hui
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiali Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yu Zheng
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lili Yang
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Yu
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang An
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Wei
- National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
4
|
Cortés-Hernández A, Alvarez-Salazar E, Arteaga-Cruz S, Alberu-Gómez J, Soldevila G. Ex vivo expansion of regulatory T cells from long-term Belatacept-treated kidney transplant patients restores their phenotype and suppressive function but not their FOXP3 TSDR demethylation status. Cell Immunol 2020; 348:104044. [PMID: 32005344 DOI: 10.1016/j.cellimm.2020.104044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 02/09/2023]
Abstract
We recently reported that Tregs from long-term Belatacept-treated kidney transplant patients displayed an altered phenotype and impaired suppressive function compared to Tregs from healthy controls. However, it remains unknown whether ex vivo expansion of Tregs from patients who underwent long-term immunosuppression may be feasible to be used in their treatment. In this work, Tregs from Belatacept-treated patients were polyclonally expanded in vitro in the presence of rapamycin and IL-2. After four weeks of expansion, Tregs from patients expressed high levels of FOXP3, CD25, CTLA-4, Helios and CCR7, and showed strong suppressive activity, even in the presence of pro-inflammatory cytokines. However, FOXP3 TSDR demethylation remained lower in expanded Tregs from Belatacept-treated patients compared to healthy control Tregs. These data suggest that ex vivo expansion of Tregs from patients undergoing long-term immunosuppression may require the use of epigenetic modifying agents to stabilize FOXP3 expression to be considered as treatment in kidney transplant patients.
Collapse
Affiliation(s)
- A Cortés-Hernández
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - E Alvarez-Salazar
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - S Arteaga-Cruz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Alberu-Gómez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey, N.L., México 64710, Mexico
| | - G Soldevila
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Immunomodulatory Roles of PACAP and VIP: Lessons from Knockout Mice. J Mol Neurosci 2018; 66:102-113. [PMID: 30105629 DOI: 10.1007/s12031-018-1150-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023]
Abstract
A bidirectional cross-talk is established between the nervous and immune systems through common mediators including neuropeptides, neurotransmitters, and cytokines. Among these, PACAP and VIP are two highly related neuropeptides widely distributed in the organism with purported immunomodulatory actions. Due to their well-known anti-inflammatory properties, administration of these peptides has proven to be beneficial in models of acute and chronic inflammatory diseases. Nevertheless, the relevance of the endogenous source of these peptides in the modulation of immune responses remains to be elucidated. The development of transgenic mice with specific deletions in the genes coding for these neuropeptides (Vip and Adcyap1) or for their G-protein-coupled receptors VPAC1, VPAC2, and PAC1 (Vipr1, Vipr2, Adcyap1r1) has allowed to address this question, underscoring the complexity of the immunoregulatory properties of PACAP and VIP. The goal of this review is to integrate the existing information on the immune phenotypes of mice deficient for PACAP, VIP, or their receptors, to provide a global view on the roles of these endogenous neuropeptides during immunological health and disease.
Collapse
|
6
|
Abstract
T regulatory cells (Tregs) represent a phenotypically and functionally heterogeneous group of lymphocytes that exert immunosuppressive activities on effector immune responses. Tregs play a key role in maintaining immune tolerance and homeostasis through diverse mechanisms which involve interactions with components of both the innate and adaptive immune systems. As in many autoimmune diseases, Tregs have been proposed to play a relevant role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease characterized by a progressive breakdown of tolerance to self-antigens and the presence of concomitant hyperactive immune responses. Here, we review how Tregs dysfunction in SLE has been manipulated experimentally and preclinically in the attempt to restore, at last in part, the immune disturbances in the disease.
Collapse
|
7
|
Foma AM, Aslani S, Karami J, Jamshidi A, Mahmoudi M. Epigenetic involvement in etiopathogenesis and implications in treatment of systemic lupus erythematous. Inflamm Res 2017; 66:1057-1073. [DOI: 10.1007/s00011-017-1082-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/22/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022] Open
|
8
|
Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. T Regulatory Cells in Systemic Lupus Erythematosus: Current Knowledge and Future Prospects. Lupus 2017. [DOI: 10.5772/intechopen.68479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Henríquez C, Morán G, Carrasco C, Sarmiento J, Barría M, Folch H, Uberti B. Modulatory role of regulatory T cells in a murine model of severe equine asthma. BMC Vet Res 2017; 13:117. [PMID: 28454585 PMCID: PMC5410054 DOI: 10.1186/s12917-017-1037-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
Background It is accepted that T regulatory cells (Treg) control different types of immune responses. In connection with this role, we have recently described an important increase in CD4+, CD25high, Foxp3+ lymphocytes in the airway system of horses coursing with an exacerbation of severe equine asthma (EA). To explore the potential role of this population in the resolution of EA inflammation, we used a murine experimental model in which airway neutrophilic inflammation, which is similar to that observed in EA, is induced in mice by continual exposure to Aspergillus fumigatus contaminated hay. This model has the advantage that in mice we may induce a reduction of the Treg population using low doses of cyclophosphamide (Cy). Results The results indicated that the percentage of Treg cells increased with allergen exposure, as in horses; and animals partially depleted of Treg cells by treatment with Cy showed increased airway inflammation, demonstrated by an increased percentage of neutrophils and specific immunoglobulins in bronchoalveolar lavage fluid (BALF). Furthermore, a histopathologic study of animals that were pretreated with Cy before antigenic challenge showed higher cellular infiltration in the lung and deeper remodeling changes in the bronchi, including epithelial and goblet cell hyperplasia as well as airway smooth muscle hypertrophy. Conclusion In this murine model of EA, the reduced number and function of Treg induced by low doses of Cy, which directly correlates with increased airway inflammation and lung infiltration, indicates that Treg may play a major role in the regulation and resolution of EA.
Collapse
Affiliation(s)
- Claudio Henríquez
- Pharmacology and Morphophysiology Department, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Morán
- Pharmacology and Morphophysiology Department, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Cristian Carrasco
- Pathology Department, Regional Hospital of Valdivia, Valdivia, Chile
| | - José Sarmiento
- Physiology Department, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Miguel Barría
- Immunology Department, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Folch
- Immunology Department, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamin Uberti
- Veterinary Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
10
|
Qi W, Ren Y, Fu R, Wang H, Liu C, Shao Z. Detection and Significance of CD4+CD25+CD127dim Regulatory T Cells in Individuals with Severe Aplastic Anemia. Turk J Haematol 2017; 32:220-7. [PMID: 25912955 PMCID: PMC4563197 DOI: 10.4274/tjh.2013.0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: To investigate the relationship between CD4+CD25+CD127dim regulatory T cells (Tregs) and immune imbalance in acquired severe aplastic anemia (SAA). Materials and Methods: The quantity of CD4+CD25+CD127dim Tregs in 44 SAA patients and 23 normal controls was measured by flow cytometry. Correlations between Tregs and T cell subsets, dendritic cell (DC) subsets, granulocyte counts, and percentage of reticulocytes (RET%) were analyzed. Results: The percentage of CD4+CD25+CD127dim Tregs in peripheral blood lymphocytes (PBLs) of untreated patients was lower than in recovery patients and normal controls (0.83±0.44% vs. 2.91±1.24% and 2.18±0.55%, respectively, p<0.05). The percentage of CD4+CD25+CD127dim Tregs in CD4+ T lymphocytes of recovery patients was higher than that of untreated patients and normal controls (9.39±3.51% vs. 7.61±5.3% and 6.83±1.4%, respectively, p<0.05). The percentage of CD4+ T lymphocytes in PBLs of untreated patients was lower than in recovery patients and normal controls (13.55±7.37% vs. 31.82±8.43% and 32.12±5.88%, respectively, p<0.05). T cell subset (CD4+/CD8+ ratio) was 0.41±0.24 in untreated patients, which was lower than in recovery patients (1.2±0.4) and normal controls (1.11±0.23) (p<0.05). DC subset (myeloid DC/plasmacytoid DC ratio, DC1/DC2 ratio) was 3.08±0.72 in untreated patients, which was higher than in recovery patients (1.61±0.49) and normal controls (1.39±0.36) (p<0.05). The percentage of CD4+CD25+CD127dim Tregs in PBLs was positively associated with T cell subset (r=0.955, p<0.01) and negatively associated with DC subset (r=-0.765, p<0.01). There were significant positive correlations between CD4+CD25+CD127dim Tregs/PBL and granulocyte counts and RET% (r=0.739 and r=0.749, respectively, p<0.01). Conclusion: The decrease of CD4+CD25+CD127dim Tregs in SAA patients may cause excessive functioning of T lymphocytes and thus lead to hematopoiesis failure in SAA.
Collapse
|
11
|
Canavan JB, Scottà C, Vossenkämper A, Goldberg R, Elder MJ, Shoval I, Marks E, Stolarczyk E, Lo JW, Powell N, Fazekasova H, Irving PM, Sanderson JD, Howard JK, Yagel S, Afzali B, MacDonald TT, Hernandez-Fuentes MP, Shpigel NY, Lombardi G, Lord GM. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut 2016; 65:584-94. [PMID: 25715355 PMCID: PMC4819603 DOI: 10.1136/gutjnl-2014-306919] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. METHODS To define the optimum population for Treg cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(-) Treg subsets were isolated from patients' blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. RESULTS Tregs can be expanded from the blood of patients with CD to potential target dose within 22-24 days. Expanded CD45RA(+) Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(-) Tregs. CD45RA(+) Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CONCLUSIONS CD4(+)CD25(+)CD127(lo)CD45RA(+) Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials.
Collapse
Affiliation(s)
- James B Canavan
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Cristiano Scottà
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Anna Vossenkämper
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Rimma Goldberg
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Matthew J Elder
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Irit Shoval
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ellen Marks
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Emilie Stolarczyk
- National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Jonathan W Lo
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Nick Powell
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Henrieta Fazekasova
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Jane K Howard
- National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Simcha Yagel
- Department of Obstetrics & Gynaecology, Hadassah University Hospital, Jerusalem, Israel
| | - Behdad Afzali
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Thomas T MacDonald
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Maria P Hernandez-Fuentes
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Giovanna Lombardi
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Graham M Lord
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
12
|
Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin Immunol 2015; 162:58-73. [PMID: 26604012 DOI: 10.1016/j.clim.2015.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 01/30/2023]
Abstract
We sought to determine if a selective HDAC6 inhibitor (ACY-738) decreases disease in NZB/W mice. From 22 to 38weeks-of-age, mice were injected intraperitoneally with 5 or 20mg/kg of ACY-738, or vehicle control. Body weight and proteinuria were measured every 2weeks, while sera anti-dsDNA, Ig isotypes, and cytokine levels were measured every 4weeks. Kidney disease was determined by evaluation of sera, urine, immune complex deposition, and renal pathology. Flow cytometric analysis assessed thymic, splenic, bone marrow, and peripheral lymphocyte differentiation patterns. Our results showed HDAC6 inhibition decreased SLE disease by inhibiting immune complex-mediated glomerulonephritis, sera anti-dsDNA levels, and inflammatory cytokine production and increasing splenic Treg cells. Inhibition of HDAC6 increased the percentage of cells in the early-stage developmental fractions of both pro- and pre-B cells. These results suggest that specific HDAC6 inhibition may be able to decrease SLE disease by altering aberrant T and B cell differentiation.
Collapse
|
13
|
Epigenetics in the treatment of systemic lupus erythematosus: potential clinical application. Clin Immunol 2014; 155:79-90. [PMID: 25218424 DOI: 10.1016/j.clim.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 10/24/2022]
Abstract
The current treatments of systemic lupus erythematosus (SLE) have been based on the use of immunosuppressive drugs which are linked to serious side effects. The more effective therapeutic approaches with minimal or no side effects for SLE patients are hard to develop, mainly due to the complexity of the disease. The discovery of pharmacoepigenetics provides a new way to solve this problem. Epigenetic modifications can influence drug efficacy by altering gene expression via changing chromatin structure. Although still in early development, epigenetic studies in SLE are expected to reveal novel therapeutic targets and disease biomarkers in autoimmunity. For example, miRNAs, which have been identified to govern many genes including drug targets, are altered in disease development and after drug administration. This review aims to present an overview of current epigenetic mechanisms involved in the pathogenesis of SLE, and discuss their potential roles in clinical and pharmacological applications.
Collapse
|
14
|
Sindberg GM, Lindborg BA, Wang Q, Clarkson C, Graham M, Donahue R, Hering BJ, Verfaillie CM, Bansal-Pakala P, O'Brien TD. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells, multipotent adult progenitor cells, and dermal fibroblasts. J Med Primatol 2014; 43:231-241. [PMID: 24825538 DOI: 10.1111/jmp.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Potent immunomodulatory effects have been reported for mesenchymal stem/stromal cells (MSCs), multipotent adult progenitor cells (MAPCs), and fibroblasts. However, side-by-side comparisons of these cells specifically regarding immunophenotype, gene expression, and suppression of proliferation of CD4(+) and CD8(+) lymphocyte populations have not been reported. METHODS We developed MAPC and MSC lines from rhesus macaque bone marrow and fibroblast cell lines from rhesus dermis and assessed phenotypes based upon differentiation potential, flow cytometric analysis of immunophenotype, and quantitative RT-PCR analysis of gene expression. Using allogeneic lymphocyte proliferation assays, we compared the in vitro immunomodulatory potency of each cell type. RESULTS AND CONCLUSIONS Extensive phenotypic similarities exist among each cell type, although immunosuppressive potencies are distinct. MAPCs are most potent, and fibroblasts are the least potent cell type. All three cell types demonstrated immunomodulatory capacity such that each may have potential therapeutic applications such as in organ transplantation, where reduced local immune response is desirable.
Collapse
Affiliation(s)
- Gregory M Sindberg
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | - Beth A Lindborg
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA.,Stem Cell Institute, University of Minnesota, St. Paul, MN, USA
| | - Qi Wang
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, St. Paul, MN, USA
| | - Christina Clarkson
- Stem Cell Institute, University of Minnesota, St. Paul, MN, USA.,Veterinary and Biomedical Sciences Department, University of Minnesota, St. Paul, MN, USA
| | - Melanie Graham
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | - Robert Donahue
- Hematology Branch, National Heart Lung Blood Institute, Rockville, MD, USA
| | - Bernhard J Hering
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | | | - Pratima Bansal-Pakala
- Department of Surgery, University of Minnesota, St. Paul, MN, USA.,Schulze Diabetes Institute, University of Minnesota, St. Paul, MN, USA
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA.,Stem Cell Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
15
|
Ishikawa LLW, Shoenfeld Y, Sartori A. Immunomodulation in human and experimental arthritis: including vitamin D, helminths and heat-shock proteins. Lupus 2014; 23:577-87. [DOI: 10.1177/0961203314527369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is mainly directed to the joints, affecting the synovial membrane, the cartilage and also the bone. This disease affects 1% to 2% of the world population and is associated with significant morbidity and increased mortality. RA experimental models have allowed a great deal of information to be translated to the corresponding human disease. This review summarizes some of the most relevant findings targeting immunomodulation in arthritis. Some general guidelines to choose an adequate experimental model and also our experience with arthritis are supplied.
Collapse
Affiliation(s)
- LLW Ishikawa
- Department of Microbiology and Immunology, Biosciences Institute, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - A Sartori
- Department of Microbiology and Immunology, Biosciences Institute, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
16
|
|
17
|
The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. ARTHRITIS 2012; 2012:805875. [PMID: 23133752 PMCID: PMC3486158 DOI: 10.1155/2012/805875] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/11/2012] [Accepted: 09/20/2012] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease and a systemic inflammatory disease which is characterized by chronic joint inflammation and variable degrees of bone and cartilage erosion and hyperplasia of synovial tissues. Considering the role of autoreactive T cells (particularly Th1 and Th17 cells) in pathophysiology of RA, it might be assumed that the regulatory T cells (Tregs) will be able to control the initiation and progression of disease. The frequency, function, and properties of various subsets of Tregs including natural Tregs (nTregs), IL-10-producing type 1 Tregs (Tr1 cells), TGF-β-producing Th3 cells, CD8+ Tregs, and NKT regulatory cells have been investigated in various studies associated with RA and collagen-induced arthritis (CIA) as experimental model of this disease. In this paper, we intend to submit the comprehensive information about the immunobiology of various subsets of Tregs and their roles and function in immunopathophysiology of RA and its animal model, CIA.
Collapse
|
18
|
Current world literature. Curr Opin Rheumatol 2011; 23:497-503. [PMID: 21844756 DOI: 10.1097/bor.0b013e32834a96c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|