1
|
You Q, Song H, Zhu Z, Wang J, Wang R, Du M, Fu Y, Yuan J, Tan R. Decoding the enigmatic estrogen paradox in pulmonary hypertension: delving into estrogen metabolites and metabolic enzymes. Cell Mol Biol Lett 2024; 29:155. [PMID: 39695964 DOI: 10.1186/s11658-024-00671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Pulmonary hypertension (PH) presents a puzzling sex bias, being more prevalent in women yet often less severe than in men, and the underlying reasons remain unclear. Studies using animal models, and limited clinical data have revealed a protective influence of exogenous estrogens, known as the estrogen paradox. Research suggests that beyond its receptor-mediated effects, estrogen acts through metabolites such as 2-ME2, 4-OHE2, and 16-OHE2, which are capable of exhibiting protective or detrimental effects in PH, prompting the need to explore their roles in PH to untangle sex differences and the estrogen paradox. Hypoxia disrupts the balance of estrogen metabolites by affecting the enzymes responsible for estrogen metabolism. Delving into the role of these metabolic enzymes not only illuminates the sex difference in PH but also provides a potential rationale for the estrogen paradox. This review delves into the intricate interplay between estrogen metabolites, metabolic enzymes, and PH, offering a deeper understanding of sex-specific differences and the perplexing estrogen paradox in the context of this condition.
Collapse
Affiliation(s)
- Qiang You
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Hequn Song
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ziming Zhu
- College of Second Clinical Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Jinzheng Wang
- College of Second Clinical Medical, Jining Medical University, Jining, 272067, Shandong, China
| | - Ruixin Wang
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Mingjia Du
- School of Nursing, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yingjie Fu
- School of Pharmacy, Jining Medical University, Rizhao, 276826, Shandong, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, 272067, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Deswal B, Bagchi U, Santra MK, Garg M, Kapoor S. Inhibition of STAT3 by 2-Methoxyestradiol suppresses M2 polarization and protumoral functions of macrophages in breast cancer. BMC Cancer 2024; 24:1129. [PMID: 39256694 PMCID: PMC11389501 DOI: 10.1186/s12885-024-12871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Breast cancer metastasis remains the leading cause of cancer-related deaths in women worldwide. Infiltration of tumor-associated macrophages (TAMs) in the tumor stroma is known to be correlated with reduced overall survival. The inhibitors of TAMs are sought after for reprogramming the tumor microenvironment. Signal transducer and activator of transcription 3 (STAT3) is well known to contribute in pro-tumoral properties of TAMs. 2-Methoxyestradiol (2ME2), a potent anticancer and antiangiogenic agent, has been in clinical trials for treatment of breast cancer. Here, we investigated the potential of 2ME2 in modulating the pro-tumoral effects of TAMs in breast cancer. METHODS THP-1-derived macrophages were polarized to macrophages with or without 2ME2. The effect of 2ME2 on macrophage surface markers and anti-inflammatory genes was determined by Western blotting, flow cytometry, immunofluorescence, qRT‒PCR. The concentration of cytokines secreted by cells was monitored by ELISA. The effect of M2 macrophages on malignant properties of breast cancer cells was determined using colony formation, wound healing, transwell, and gelatin zymography assays. An orthotopic model of breast cancer was used to determine the effect of 2ME2 on macrophage polarization and metastasis in vivo. RESULTS First, our study found that polarization of monocytes to alternatively activated M2 macrophages is associated with the reorganization of the microtubule cytoskeleton. At lower concentrations, 2ME2 treatment depolymerized microtubules and reduced the expression of CD206 and CD163, suggesting that it inhibits the polarization of macrophages to M2 phenotype. However, the M1 polarization was not significantly affected at these concentrations. Importantly, 2ME2 inhibited the expression of several anti-inflammatory cytokines and growth factors, including CCL18, TGF-β, IL-10, FNT, arginase, CXCL12, MMP9, and VEGF-A, and hindered the metastasis-promoting effects of M2 macrophages. Concurrently, 2ME2 treatment reduced the expression of CD163 in tumors and inhibited lung metastasis in the orthotopic breast cancer model. Mechanistically, 2ME2 treatment reduced the phosphorylation and nuclear translocation of STAT3, an effect which was abrogated by colivelin. CONCLUSIONS Our study presents novel findings on mechanism of 2ME2 from the perspective of its effects on the polarization of the TAMs via the STAT3 signaling in breast cancer. Altogether, the data supports further clinical investigation of 2ME2 and its derivatives as therapeutic agents to modulate the tumor microenvironment and immune response in breast carcinoma.
Collapse
Affiliation(s)
- Bhawna Deswal
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Urmi Bagchi
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Manas Kumar Santra
- National Centre for Cell Science Complex, Savitribai Phule Pune University, Campus Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| | - Sonia Kapoor
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
3
|
Hareeri RH, Alam AM, Bagher AM, Alamoudi AJ, Aldurdunji MM, Shaik RA, Eid BG, Ashour OM. Protective Effects of 2-Methoxyestradiol on Acute Isoproterenol-Induced Cardiac Injury in Rats. Saudi Pharm J 2023; 31:101787. [PMID: 37766820 PMCID: PMC10520946 DOI: 10.1016/j.jsps.2023.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.
Collapse
Affiliation(s)
- Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M. Alam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Hosang L, Löhndorf A, Dohle W, Rosche A, Marry S, Diercks BP, Müller-Kirschbaum LC, Flügel LT, Potter BVL, Odoardi F, Guse AH, Flügel A. 2-Methoxyestradiol-3,17-O,O-bis-sulfamate inhibits store-operated Ca 2+ entry in T lymphocytes and prevents experimental autoimmune encephalomyelitis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119485. [PMID: 37150482 DOI: 10.1016/j.bbamcr.2023.119485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Ca2+ signaling is one of the essential signaling systems for T lymphocyte activation, the latter being an essential step in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). Store-operated Ca2+ entry (SOCE) ensures long lasting Ca2+ signaling and is of utmost importance for major downstream T lymphocyte activation steps, e.g. nuclear localization of the transcription factor 'nuclear factor of activated T cells' (NFAT). 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol (E2), blocks nuclear translocation of NFAT. The likely underlying mechanism is inhibition of SOCE, as shown for its synthetic sulfamate ester analogue 2-ethyl-3-sulfamoyloxy-17β-cyanomethylestra-1,3,5(10)-triene (STX564). Here, we demonstrate that another synthetic bis-sulfamoylated 2ME2 derivative, 2-methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE, STX140), an orally bioavailable, multi-targeting anticancer agent and potent steroid sulfatase (STS) inhibitor, antagonized SOCE in T lymphocytes. Downstream events, e.g. secretion of the pro-inflammatory cytokines interferon-γ and interleukin-17, were decreased by STX140 in in vitro experiments. Remarkably, STX140 dosed in vivo completely blocked the clinical disease in both active and transfer experimental autoimmune encephalomyelitis (EAE) in Lewis rats, a T cell-mediated animal model for MS, at a dose of 10 mg/kg/day i.p., whereas neither 2ME2 nor Irosustat, a pure STS inhibitor, showed any effect. The STS inhibitory activity of STX140 is therefore not responsible for its activity in this model. Taken together, inhibition of SOCE by STX140 resulting in full antagonism of clinical symptoms in EAE in the Lewis rat, paired with the known excellent bioavailability and pharmaceutical profile of this drug, open potentially new therapeutic avenues for the treatment of MS.
Collapse
Affiliation(s)
- Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Anke Löhndorf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Wolfgang Dohle
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Anette Rosche
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Stephen Marry
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Lukas C Müller-Kirschbaum
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Lioba T Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, D-37075 Göttingen, Germany
| | - Barry V L Potter
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany.
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany.
| |
Collapse
|
5
|
Dohle W, Asiki H, Gruchot W, Foster PA, Sahota HK, Bai R, Christensen KE, Hamel E, Potter BVL. 2-Difluoromethoxy-Substituted Estratriene Sulfamates: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Steroid Sulfatase Inhibition. ChemMedChem 2022; 17:e202200408. [PMID: 36109340 PMCID: PMC9742152 DOI: 10.1002/cmdc.202200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/14/2022] [Indexed: 01/14/2023]
Abstract
2-Difluoromethoxyestratriene derivatives were designed to improve potency and in vivo stability of the drug candidate 2-methoxyestradiol (2ME2). Compound evaluation in vitro against the proliferation of MCF-7 and MDA MB-231 breast cancer cells, as inhibitors of tubulin polymerisation and also steroid sulfatase (STS) both in cell lysates and in whole cells, showed promising activities. In antiproliferative assays 2-difluoromethoxyestradiol was less potent than 2ME2, but its sulfamates were often more potent than their corresponding non-fluorinated analogues. The fluorinated bis-sulfamate is a promising antiproliferative agent in MCF-7 cells (GI50 0.28 μM) vs the known 2-methoxyestradiol-3,17-O,O-bissulfamate (STX140, GI50 0.52 μM), confirming the utility of our approach. Compounds were also evaluated in the NCI 60-cell line panel and the fluorinated bis-sulfamate derivative displayed very good overall activities with a sub-micromolar average GI50 . It was a very potent STS inhibitor in whole JEG-3 cells (IC50 3.7 nM) similar to STX140 (4.2 nM) and additionally interferes with tubulin assembly in vitro and colchicine binding to tubulin. An X-ray study of 2-difluoromethoxy-3-benzyloxyestra-1,3,5(10)-trien-17-one examined conformational aspects of the fluorinated substituent. The known related derivative 2-difluoromethyl-3-sulfamoyloxyestrone was evaluated for STS inhibition in whole JEG-3 cells and showed an excellent IC50 of 55 pM.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Hannah Asiki
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Wojciech Gruchot
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Paul A Foster
- Institute of Metabolism & Systems Research, University of Birmingham, 2nd Floor IBR Tower Edgbaston, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Metabolism and Diabetes, University of Birmingham, Birmingham Health Partners, Birmingham, B15 2TT, UK
| | - Havreen K Sahota
- Institute of Metabolism & Systems Research, University of Birmingham, 2nd Floor IBR Tower Edgbaston, Birmingham, B15 2TT, UK
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702, USA
| | - Kirsten E Christensen
- Chemical Crystallography, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, 21702, USA
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| |
Collapse
|
6
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
7
|
Xu H, Tao L, Cao J, Zhang P, Zeng H, Zhao H. Yi Shen Juan Bi Pill alleviates bone destruction in inflammatory arthritis under postmenopausal conditions by regulating ephrinB2 signaling. Front Pharmacol 2022; 13:1010640. [PMID: 36249763 PMCID: PMC9561306 DOI: 10.3389/fphar.2022.1010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Yi Shen Juan Bi Pill (YSJB) is a traditional Chinese medicine (TCM) formulation that has a therapeutic effect upon rheumatoid arthritis (RA), but how YSJB affects bone destruction in arthritis under postmenopausal conditions is not known. We evaluated the therapeutic role of YSJB in bone destruction in postmenopausal arthritis, We used collagen-induced arthritis (CIA) rats who had been ovariectomized (OVX) as models and explored the possible mechanism from the synovium and bone marrow (BM). Arthritis was generated after ovariectomy or sham surgery for 12 weeks. After 14 days of primary immunization, rats were administered YSJB or estradiol valerate (EV) for 28 days. YSJB could prevent bone destruction in the inflamed joints of rats in the OVX + CIA group. CIA promoted osteoclast differentiation significantly in the synovial membrane according to tartrate resistant acid phosphatase (TRACP) staining, and OVX tended to aggravate the inflammatory reaction of CIA rats according to hematoxylin-and-eosin staining. Immunohistochemistry revealed that the synovium did not have significant changes in erythropoietin-producing hepatocellular interactor (ephrin)B2 or erythropoietin-producing hepatocellular (eph) B4 expression after YSJB treatment, but YSJB treatment reduced nuclear factor of activated T cells (NFATc)1 expression. The BM of rats in the OVX + CIA exhibited remarkable increases in the number of osteoclasts and NFATc1 expression, as well as significantly reduced expression of ephrinB2 and ephB4 compared with the CIA group and sham group. YSJB treatment reduced NFATc1 expression significantly but also increased ephrinB2 expression in the BM markedly. These data suggest that YSJB exhibit a bone-protective effect, it may be a promising therapeutic strategy for alleviating bone destruction in arthritis under postmenopausal conditions, and one of the mechanisms is associated with the modulation of ephrinB2 signaling.
Collapse
Affiliation(s)
- Huihui Xu
- Department of Bone & Joint Surgery and National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Li Tao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Jinfeng Cao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| | - Hui Zeng
- Department of Bone & Joint Surgery and National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
- *Correspondence: Peng Zhang, ; Hui Zeng, ; Hongyan Zhao,
| |
Collapse
|
8
|
Hu Q, Du Q, Yu W, Dong X. 2-Methoxyestradiol Alleviates Neuroinflammation and Brain Edema in Early Brain Injury After Subarachnoid Hemorrhage in Rats. Front Cell Neurosci 2022; 16:869546. [PMID: 35558877 PMCID: PMC9087802 DOI: 10.3389/fncel.2022.869546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Numerous studies have shown that neuroinflammation and brain edema play an important role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). 2-Methoxyestradiol (2-ME) has been shown to have anti-inflammatory and anti-angiogenic effects. This study aimed to investigate the effects of 2-ME on neuroinflammation and brain edema after SAH and its underlying mechanism of action. Methods Rats were used to produce an endovascular puncture model of SAH. 2-ME or the control agent was injected intraperitoneally 1 h after SAH induction. At 24 h after surgery, the neurological score, SAH grading, brain water content, and blood–brain barrier (BBB) permeability were examined. The microglial activation level in the rat brain tissue was determined using immunofluorescence staining, whereas the cell apoptosis in the rat brain tissue was assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, the levels of Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were measured by enzyme linked immunosorbent assay, and the expression levels of ZO-1, occludin, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP)-9 in the rat brain tissue were determined using western blotting. Results Twenty-four hours after SAH, brain water content, BBB permeability, microglial activation, and cell apoptosis were significantly increased, whereas neurological function deteriorated significantly in rats. Treatment with 2-ME significantly decreased brain water content, BBB permeability, microglial cell activation, and cell apoptosis and improved neurological dysfunction in rats. Treatment with 2-ME reduced the expression levels of inflammatory factors (IL-1β, IL-6, and TNF-α), which were significantly elevated 24 h after SAH. Treatment with 2-ME alleviated the disruption of tight junction proteins (ZO-1 and occludin), which significantly decreased 24 h after SAH. To further determine the mechanism of this protective effect, we found that 2-ME inhibited the expression of HIF-1α, MMP-9, and VEGF, which was associated with the inflammatory response to EBI and BBB disruption after SAH. Conclusion 2-ME alleviated neuroinflammation and brain edema as well as improved neurological deficits after SAH in rats. The neuroprotective effect of 2-ME on EBI after SAH in rats may be related to the inhibition of neuroinflammation and brain edema.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, Hangzhou Ninth People’s Hospital, Hangzhou, China
- *Correspondence: Wenhua Yu,
| | - Xiaoqiao Dong
- Department of Neurosurgery, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, China
- Department of Neurosurgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Chen W, Li A, Wang J, Zhong H, Yuan J, Luo Y, Ou J, Chen J, Li L. A Combined approach of QSAR study, molecular docking and pharmacokinetics prediction of promising Amide-Ac6-aminoacetonitriles Cathepsin K inhibitors. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Liao WI, Wu SY, Tsai SH, Pao HP, Huang KL, Chu SJ. 2-Methoxyestradiol Protects Against Lung Ischemia/Reperfusion Injury by Upregulating Annexin A1 Protein Expression. Front Immunol 2021; 12:596376. [PMID: 33796096 PMCID: PMC8007881 DOI: 10.3389/fimmu.2021.596376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: 2-Methoxyestradiol (2ME), a natural 17-β estradiol metabolite, is a potent anti-inflammatory agent, but its effect on ischemia/reperfusion (IR)-induced acute lung inflammation remains unknown. Annexin A1 (AnxA1), a glucocorticoid-regulated protein, is effective at inhibiting neutrophil transendothelial migration by binding the formyl peptide receptors (FPRs). We aimed to investigate whether 2ME upregulates the expression of AnxA1 and protects against IR-induced lung damage. Methods: IR-mediated acute lung inflammation was induced by ischemia for 40 min followed by reperfusion for 60 min in an isolated, perfused rat lung model. The rat lungs were randomly treated with vehicle or 2ME, and the functional relevance of AnxA1 was determined using an anti-AnxA1 antibody or BOC2 (a pan-receptor antagonist of the FPR). In vitro, human primary alveolar epithelial cells (HPAECs) and rat neutrophils were pretreated with 2ME and an AnxA1 siRNA or anti-AnxA1 antibody and subjected to hypoxia-reoxygenation (HR). Results: 2ME significantly decreased all lung edema parameters, neutrophil infiltration, oxidative stress, proinflammatory cytokine production, lung cell apoptosis, tight junction protein disruption, and lung tissue injury in the IR-induced acute lung inflammation model. 2ME also increased the expression of the AnxA1 mRNA and protein and suppressed the activation of nuclear factor-κB (NF-κB). In vitro, 2ME attenuated HR-triggered NF-κB activation and interleukin-8 production in HPAECs, decreased transendothelial migration, tumor necrosis factor-α production, and increased apoptosis in neutrophils exposed to HR. These protective effects of 2ME were significantly abrogated by BOC2, the anti-AnxA1 antibody, or AnxA1 siRNA. Conclusions: 2ME ameliorates IR-induced acute lung inflammation by increasing AnxA1 expression. Based on these results, 2ME may be a promising agent for attenuating IR-induced lung injury.
Collapse
Affiliation(s)
- Wen-I Liao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Sun MR, Kang YY, Duan YT, Liu HM. Concise synthesis of 2-methoxyestradiol through C(sp 2)-H methoxylation. Steroids 2020; 162:108697. [PMID: 32682814 DOI: 10.1016/j.steroids.2020.108697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/28/2022]
Abstract
An efficient and concise synthesis of 2-methoxyestradiol (4) from 17β-estradiol (1) has been achieved in three synthetic steps with a 63.3% overall yield. The key step was the palladium-catalyzed direct C(sp2)-H methoxylation of 2-aryloxypyridines. Using 2-pyridyloxyl as the directing group, Pd(OAc)2 as the catalyst, PhI(OAc)2 as the oxidant and methanol as both the methoxylation reagent and solvent, the methoxy group could be handily installed at the 2-position of 3-(2-pyridoxy) estradiol (2). Subsequently, the pyridyl group could be easily removed by nucleophilic substitution with a methoxy anion after being oxidized to a pyridyl N-oxide by m-chloroperoxybenzoic acid, delivering the target product 2-methoxyestradiol (4) in quantitative yield. In contrast, when the pyridyl directing group was removed by the TfOMe-NaOMe/MeOH system as reported in the literature, TfOMe inevitably methylated the 17-OH of 2-methoxy-3-(2-pyridoxy) estradiol (3). In effect, we have fortuitously found a new method to cleave the pyridyl directing group, which is highly suitable for substrates bearing hydroxy groups.
Collapse
Affiliation(s)
- Mo-Ran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Ying-Ying Kang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou 450018, China
| | - Hong-Min Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China.
| |
Collapse
|
12
|
2-Methoxyestradiol inhibits high fat diet-induced obesity in rats through modulation of adipose tissue macrophage infiltration and immunophenotype. Eur J Pharmacol 2020; 878:173106. [PMID: 32283059 DOI: 10.1016/j.ejphar.2020.173106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Recently, experimental studies demonstrated that 2-methoxyestradiol (2ME2) ameliorates high fat diet (HFD)-induced obesity and restores insulin sensitivity. However, the mechanisms underlying these effects are unveiled yet. The current study was undertaken to test the hypothesis that 2ME2 exerts its effects by modulating adipose tissue macrophages (ATMs) accumulation, polarization and immunophenotypes. The experiment was carried out in males Wistar rats (n = 28) for 13 consecutive weeks. In HFD-fed group; body weight, glucose intolerance, serum insulin, HOMA-IR, lipid profile and adipose tissue (AT) weight were significantly higher compared to normal standard diet (NSD)- fed rats. However, treatment of HFD-fed rats with 2ME2 (200 μg/kg/day; i.p. from the beginning of the 9th week) resulted in significant enhancements in all these parameters as compared to HFD-fed rats. Treatment with 2ME2 was associated with a significant reduction in macrophage infiltration in the AT, shifting macrophage polarization towards M2 phenotype as indicated by significant decrease in the expression of pro-inflammatory M1 macrophages markers (IL-6, IL-1β, CD11c and iNOS) and concurrent significant increase in the M2 anti-inflammatory macrophage markers (Arginase 1 and IL-10). 2ME2 ameliorates HFD-induced obesity and glucose intolerance through inhibition of ATM infiltration in AT and shifting macrophage polarization from pro-inflammatory M1 to M2 anti-inflammatory phenotypes.
Collapse
|
13
|
Stubelius A, Andersson A, Islander U, Carlsten H. Ovarian hormones in innate inflammation. Immunobiology 2017; 222:878-883. [DOI: 10.1016/j.imbio.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 10/19/2022]
|
14
|
Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA, Knowles HJ. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol 2017; 242:322-333. [PMID: 28418093 PMCID: PMC5518186 DOI: 10.1002/path.4906] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/27/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
Osteogenic-angiogenic coupling is promoted by the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, provoking interest in HIF activation as a therapeutic strategy to improve osteoblast mineralization and treat pathological osteolysis. However, HIF also enhances the bone-resorbing activity of mature osteoclasts. It is therefore essential to determine the full effect(s) of HIF on both the formation and the bone-resorbing function of osteoclasts in order to understand how they might respond to such a strategy. Expression of HIF-1α mRNA and protein increased during osteoclast differentiation from CD14+ monocytic precursors, additionally inducing expression of the HIF-regulated glycolytic enzymes. However, HIF-1α siRNA only moderately affected osteoclast differentiation, accelerating fusion of precursor cells. HIF induction by inhibition of the regulatory prolyl-4-hydroxylase (PHD) enzymes reduced osteoclastogenesis, but was confirmed to enhance bone resorption by mature osteoclasts. Phd2+/- murine osteoclasts also exhibited enhanced bone resorption, associated with increased expression of resorption-associated Acp5, in comparison with wild-type cells from littermate controls. Phd3-/- bone marrow precursors displayed accelerated early fusion, mirroring results with HIF-1α siRNA. In vivo, Phd2+/- and Phd3-/- mice exhibited reduced trabecular bone mass, associated with reduced mineralization by Phd2+/- osteoblasts. These data indicate that HIF predominantly functions as a regulator of osteoclast-mediated bone resorption, with little effect on osteoclast differentiation. Inhibition of HIF might therefore represent an alternative strategy to treat diseases characterized by pathological levels of osteolysis. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippa A Hulley
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aude Vernet
- BHF Experimental MR Unit, University of Oxford, Oxford, UK
| | | | - James R Edwards
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nick A Athanasou
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, Nuffield Orthopaedic Centre, University of Oxford, Oxford, UK
| | - Helen J Knowles
- Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Bastos P, Gomes T, Ribeiro L. Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. Rev Physiol Biochem Pharmacol 2017; 173:1-39. [DOI: 10.1007/112_2017_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
2-Methoxyestradiol protects against IgG immune complex-induced acute lung injury by blocking NF-κB and CCAAT/enhancer-binding protein β activities. Mol Immunol 2017; 85:89-99. [PMID: 28214650 DOI: 10.1016/j.molimm.2017.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/20/2022]
Abstract
Increasing evidences indicate that 2-Methoxyestradiol (2ME2) plays an essential role in protecting against inflammatory responses. However, its effect on IgG immune complex (IC)-induced acute lung injury (ALI) remains enigmatic. In the study, by using i.p. administration of 2ME2, we evaluated its influence on IgG IC-induced pulmonary injury in mice. We found that during IgG IC-induced ALI, mice treated by 2ME2 displayed a substantial decrease in vascular permeability and neutrophil influx (represented by myeloperoxidase activity) when compared with their counterparts receiving vehicle treatment. Furthermore, 2ME2 treatment significantly decreased pro-inflammatory mediator production and inflammatory cell, especially neutrophil accumulation in bronchoalveolar lavage fluids (BALFs) upon IgG IC stimulation. In vitro, IgG IC-triggered inflammatory mediator production was markedly down-regulated by 2ME2 in macrophages. Moreover, we verified that the activation of the transcription factors, NF-κB and CCAAT/enhancer-binding protein (C/EBP) β, were inhibited by 2ME2 in IgG IC-challenged macrophages. We demonstrated that alleviation of NF-κB-dependent transcription might be associated with reduced phosphorylation of NF-κB p65, and reduction of C/EBP activation was directly linked to its expression. In addition, we discovered that IgG IC-stimulated phosphorylation of both p38 MAPK and ERK1/2 was alleviated by 2ME2. These data indicated a novel strategy for blockade of IgG IC-induced inflammatory activities.
Collapse
|
17
|
Eriksson AL, Wilhelmson AS, Fagman JB, Ryberg H, Koskela A, Tuukkanen J, Tivesten Å, Ohlsson C. The Bone Sparing Effects of 2-Methoxyestradiol Are Mediated via Estrogen Receptor-α in Male Mice. Endocrinology 2016; 157:4200-4205. [PMID: 27631553 PMCID: PMC5086527 DOI: 10.1210/en.2016-1402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2-Methoxyestradiol (2ME2), a metabolite of 17β-estradiol (E2), exerts bone sparing effects in animal models. We hypothesized that the underlying mechanism is back conversion of 2ME2 to E2, which subsequently acts via estrogen receptor (ER)α. We measured serum E2 levels in orchidectomized wild-type (WT) mice treated with 2ME2 66.6 μg/d or placebo. In placebo-treated animals, E2 was below the detection limit. In 2ME2-treated mice, the serum E2 level was 4.97 ± 0.68 pg/mL. This corresponds to the level found in diesterus in cycling female mice. Next, we investigated bone parameters in orchidectomized WT and ERα knockout mice treated with 2ME2 or placebo for 35 days. 2ME2 (6.66 μg/d) preserved trabecular and cortical bone in WT mice. Trabecular volumetric-bone mineral density was 64 ± 20%, and trabecular bone volume/total volume was 60 ± 20% higher in the metaphyseal region of the femur in the 2ME2 group, compared with placebo (P < .01). Both trabecular number and trabecular thickness were increased (P < .01). Cortical bone mineral content in the diaphyseal region of the femur was 31 ± 3% higher in the 2ME2 group, compared with placebo (P < .001). This was due to larger cortical area (P < .001). Three-point bending showed an increased bone strength in WT 2ME2-treated animals compared with placebo (maximum load [Fmax] +19±5% in the 2ME2 group, P < .05). Importantly, no bone parameter was affected by 2ME2 treatment in ERα knockout mice. In conclusion, 2ME2 treatment of orchidectomized mice results in increased serum E2. ERα mediates the bone sparing effects of 2ME2. The likely mediator of this effect is E2 resulting from back conversion of 2ME2.
Collapse
Affiliation(s)
- Anna L Eriksson
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Anna S Wilhelmson
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Johan B Fagman
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Henrik Ryberg
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Antti Koskela
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Juha Tuukkanen
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Åsa Tivesten
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| | - Claes Ohlsson
- Center for Bone and Arthritis Research (A.L.E., H.R., C.O.), Department of Internal Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Wallenberg Laboratory for Cardiovascular and Metabolic Research (A.S.W., A.T.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Sahlgrenska Cancer Center (J.F.), Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden; Clinical Chemistry (H.R.), Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden; and Unit of Cancer Research and Translational Medicine (A.K., J.T.), Medical Research Center, Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-900 14 Oulu, Finland
| |
Collapse
|
18
|
Abstract
Bone integrity is maintained throughout life via the homeostatic actions of bone cells, namely, osteoclasts, which resorb bone, and osteoblasts, which produce bone. Disruption of this balance in favor of osteoclast activation results in pathological bone loss, which occurs in conditions including osteoporosis, rheumatoid arthritis, primary bone cancer, and cancer metastasis to bone. Hypoxia also plays a major role in these conditions, where it is associated with disease progression and poor prognosis. In recent years, considerable interest has arisen in the mechanisms whereby hypoxia and the hypoxia-inducible transcription factors, HIF-1α and HIF-2α, affect bone remodeling and bone pathologies. This review summarizes the current evidence for hypoxia-mediated regulation of osteoclast differentiation and bone resorption activity. Role(s) of HIF and HIF target genes in the formation of multinucleated osteoclasts from cells of the monocyte-macrophage lineage and in the activation of bone resorption by mature osteoclasts will be discussed. Specific attention will be paid to hypoxic metabolism and generation of ATP by osteoclasts. Hypoxia-driven increases in both glycolytic flux and mitochondrial metabolic activity, along with consequent generation of mitochondrial reactive oxygen species, have been found to be essential for osteoclast formation and resorption activity. Finally, evidence for the use of HIF inhibitors as potential therapeutic agents targeting bone resorption in osteolytic disease will be discussed.
Collapse
Affiliation(s)
- Helen J Knowles
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
19
|
Andersson A, Grahnemo L, Engdahl C, Stubelius A, Lagerquist MK, Carlsten H, Islander U. IL-17-producing γδT cells are regulated by estrogen during development of experimental arthritis. Clin Immunol 2015; 161:324-32. [PMID: 26423309 DOI: 10.1016/j.clim.2015.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023]
Abstract
Interleukin-17 (IL-17) drives inflammation and destruction of joints in rheumatoid arthritis (RA). The female sex hormone 17β-estradiol (E2) inhibits experimental arthritis. γδT cells are significant producers of IL-17, thus the aim of this study was to investigate if E2 influenced IL-17(+) γδT cells during arthritis development using a variety of experimental RA models: collagen-induced arthritis (CIA); antigen-induced arthritis (AIA); and collagen antibody-induced arthritis (CAIA). We demonstrate that E2 treatment decreases IL-17(+) γδT cell number in joints, but increases IL-17(+) γδT cells in draining lymph nodes, suggesting an E2-mediated prevention of IL-17(+) γδT cell migration from lymph nodes to joints, in concert with our recently reported effects of E2 on Th17 cells (Andersson et al., 2015). E2 did neither influence the general γδT cell population nor IFNγ(+) γδT cells, implying a selective regulation of IL-17-producing cells. In conclusion, this study contributes to the understanding of estrogen's role in autoimmune disease.
Collapse
Affiliation(s)
- Annica Andersson
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Louise Grahnemo
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden; Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Alexandra Stubelius
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Hans Carlsten
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Ulrika Islander
- Centre for Bone and Arthritis Research, Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
20
|
Zhu L, Song Y, Li M. 2-Methoxyestradiol inhibits bleomycin-induced systemic sclerosis through suppression of fibroblast activation. J Dermatol Sci 2014; 77:63-70. [PMID: 25465161 DOI: 10.1016/j.jdermsci.2014.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/30/2014] [Accepted: 10/20/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND The most dominant feature of systemic sclerosis (SSc) is fibrosis, which is caused by overproduction of collagen by fibroblasts. 2-Methoxyestradiol (2-ME) has exhibited disease-modifying activity in animal models of rheumatoid arthritis and autoimmune encephalomyelitis and inhibitory effect in cell proliferation and collagen synthesis. Therefore, we hypothesized that 2-ME may exhibit antifibrotic effect in SSc. OBJECTIVE To investigate the antifibrotic effect of 2-ME in SSc. METHODS We established a bleomycin-induced SSc mice model by injection with bleomycin daily for 21 days. 2-ME (100mg/kg/d) was simultaneously administered for 14 days. On the end of Week1 (W1), W2, W3 and W4, skins and lungs were collected for histological examination and analysis of hydroxyproline content and mRNA level of α1(I) procollagen (COL1A1) and COL1A2. In skin fibroblasts derived from SSc patients and healthy subjects treated with 2-ME (1, 5, or 25 μM), we examined cell proliferation, expression of α-smooth muscle actin (SMA) and mRNA level of COL1A1, COL1A2, COL3A1, matrix metalloproteinase(MMP)-1 and tissue inhibitors of MMP (TIMP)-1. RESULTS We found reduced dermal thickness and lung fibrosis and decreased hydroxyproline content and mRNA level of COL1A1 and COL1A2 in skin and lung in SSc mice treated with 2-ME. In cell study, we observed a dose- and time-dependent inhibitory effect on proliferation of SSc fibroblasts by 2-ME. We also detected reduced α-SMA expression, decreased mRNA level of COL1A1, COL1A2, COL3A1 and TIMP-1, and increased mRNA level of MMP-1 in SSc fibroblasts treated with 2-ME. CONCLUSION 2-ME could suppress SSc tissue fibrosis, which may be attributable to its inhibitory effect on the excessive proliferation, differentiation and production of collagen in fibroblasts. 2-ME is rising as a prospective agent for control of fibrosis in SSc.
Collapse
Affiliation(s)
- Lubing Zhu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yinghua Song
- Department of Dermatology, Wuhan No.1 Hospital, Wuhan, 430022, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
21
|
Stubelius A, Erlandsson MC, Islander U, Carlsten H. Immunomodulation by the estrogen metabolite 2-methoxyestradiol. Clin Immunol 2014; 153:40-8. [DOI: 10.1016/j.clim.2014.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/26/2014] [Accepted: 03/19/2014] [Indexed: 02/08/2023]
|
22
|
Quezada M, Alvarez M, Peña OA, Henríquez S, d' Alençon CA, Lange S, Oliva B, Owen GI, Allende ML. Antiangiogenic, antimigratory and antiinflammatory effects of 2-methoxyestradiol in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:141-9. [PMID: 23142146 DOI: 10.1016/j.cbpc.2012.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
2-Methoxyestradiol (2ME), an endogenous metabolite of 17β-estradiol, has been previously reported to possess antiangiogenic and antitumor properties. Herein, we demonstrate that the effects of this antiangiogenic steroid can be readily assayed in live zebrafish, introducing a convenient and robust new model system as a screening tool for both single cell and collective cell migration assays. Using the in vitro mammalian endothelial cell line EA.hy926, we first show that cell migration and angiogenesis, as estimated by wound assay and tube formation respectively, are antagonized by 2ME. In zebrafish (Danio rerio) larvae, dose-dependent exposure to 2ME diminishes (1) larval angiogenesis, (2) leukocyte recruitment to damaged lateral line neuromasts and (3) retards the lateral line primordium in its migration along the body. Our results indicate that 2ME has an effect on collective cell migration in vivo as well as previously reported anti-tumorigenic activity and suggests that the molecular mechanisms governing cell migration in a variety of contexts are conserved between fish and mammals. Moreover, we exemplify the versatility of the zebrafish larvae for testing diverse physiological processes and screening for antiangiogenic and antimigratory drugs in vivo.
Collapse
Affiliation(s)
- Marisol Quezada
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stubelius A, Wilhelmson AS, Gogos JA, Tivesten A, Islander U, Carlsten H. Sexual dimorphisms in the immune system of catechol-O-methyltransferase knockout mice. Immunobiology 2012; 217:751-60. [PMID: 22658921 DOI: 10.1016/j.imbio.2012.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/16/2012] [Accepted: 04/27/2012] [Indexed: 12/21/2022]
Abstract
The enzyme catechol-O-methyltransferase (COMT) is part of the metabolic pathway of 17β-estradiol, converting 2-hydroxyestradiol to 2-methoxyestradiol. We recently showed that administration of the COMT product 2-methoxyestradiol has anti-inflammatory and anti-osteoporotic effects. We have now investigated whether COMT affects the immune system, by immunologically phenotyping COMT deficient (COMT(-/-)) mice. Immunoglobulin production, T lymphocyte proliferation, NK cell cytotoxicity and oxygen radical production were assessed. In male COMT(-/-)-mice, the total number of T-, and B-lymphocytes from spleen increased but the T-cell proliferative response decreased. The NK cell population shifted toward less mature cells, leaving cytotoxic capacity unaffected. In COMT(-/-)-females, a higher frequency of neutrophils was found but the oxygen radical production was unaltered. In conclusion, only minor changes of the immune system were seen in COMT deficient mice, and the changes were usually seen in males. This study provides clues into how COMT activity, and hence gender differences, affects the immune system.
Collapse
Affiliation(s)
- Alexandra Stubelius
- Centre for Bone and Arthritis Research (CBAR), Institute of Medicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
Koganti S, Snyder R, Thekkumkara T. Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor down-regulation in rat liver epithelial and aortic smooth muscle cells. ACTA ACUST UNITED AC 2012; 9:76-93. [PMID: 22366193 DOI: 10.1016/j.genm.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/04/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Delayed onset of cardiovascular disease (CVD) in female patients is not well understood, but could be due in part to the protective effect of estrogen before menopause. Experimental studies have identified the angiotensin type 1 receptor (AT1R) as a key factor in the progression of CVD. OBJECTIVE We examined the effects of the estrogen metabolite 2-methoxyestradiol (2ME2) on AT1R expression. METHODS Rat liver cells were exposed to 2ME2 for 24 hours, and angiotensin II (AngII) binding and AT1R mRNA expressions were assessed. RESULTS In the presence of 2ME2, cells exhibited significant down-regulation of AngII binding that was both dose and time dependent, independent of estrogen receptors (ERα/ERβ). Down-regulation of AngII binding was AT1R specific, with no change in receptor affinity. Under similar conditions, we observed lower expression of AT1R mRNA, significant inhibition of AngII-mediated increase in intracellular Ca(2+), and increased phosphorylation of ERK1/2. Pretreatment of cells with the MEK inhibitor PD98059 prevented 2ME2-induced ERK1/2 phosphorylation and down-regulation of AT1R expression, which suggests that the observed inhibitory effect is mediated through ERK1/2 signaling intermediates. Similar analyses in stably transfected CHO (Chinese hamster ovary) cell lines with a constitutively active cytomegalovirus promoter showed no change in AT1R expression, which suggests that 2ME2-mediated effects are through transcriptional regulation. The effects of 2ME2 on AT1R down-regulation through ERK1/2 were consistently reproduced in primary rat aortic smooth muscle cells. CONCLUSIONS Because AT1R has a critical role in the control of CVD, 2ME2-induced changes in receptor expression may provide beneficial effects to the cardiovascular and other systems.
Collapse
MESH Headings
- 2-Methoxyestradiol
- Angiotensin II/drug effects
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Animals
- Aorta/drug effects
- Cricetinae
- Down-Regulation
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Liver/drug effects
- Male
- Microscopy, Fluorescence
- Myocytes, Smooth Muscle/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Sivaramakrishna Koganti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | |
Collapse
|