1
|
Salehi M, Neshati Z, Ahanchian H, Tafrishi R, Pasdar A, Safi M, Karimiani EG. Hyper IgE Syndromes: Understanding, Management, and Future Perspectives: A Narrative Review. Health Sci Rep 2025; 8:e70497. [PMID: 40114756 PMCID: PMC11922810 DOI: 10.1002/hsr2.70497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/09/2025] [Accepted: 02/07/2025] [Indexed: 03/22/2025] Open
Abstract
Background and Aim Hyper IgE syndromes (HIES) are rare primary immunodeficiency characterized by susceptibility to specific infections, eczema, and elevated IgE levels. Pathogenic mutations in STAT3, IL6R, IL6ST, ERBB2IP, PGM3, ZNF431, SPINK5, TGFBR1/2, and CARD11 have been identified as genetic factors contributing to phenotypes of HIES lead to hindered differentiation and activity, aberrant signaling cascades and disrupting immune regulation. HIES present a diverse clinical symptoms, challenging diagnosis and management; understanding its pathophysiology, genetics, and immunological abnormalities offer hope for improved outcomes. In this review we aim to provide a comprehensive understanding of the condition and also discuss latest updates on pathological features, clinical spectrum and its variability, immunological abnormalities, inheritance patterns, new candidate genes, challenges, management strategies, epidemiology and future directions of HIES. Methods This review conducted an extensive search of information from multiple databases, including PubMed, Scopus, WHO, and ClinVar to ensure comprehensive coverage. Preference was given to articles published recently to capture the latest research and developments. Endnote was employed as a reference manager. The relevant literature was meticulously reviewed to address the objectives of the study. Results Missense, nonsense, and frameshift variants are commonly observed in HIES. Understanding these genetic mutations is key to diagnosing and managing conditions such as Hyper-IgE recurrent infection syndromes (linked to IL6R, STAT3, and ZNF341 mutations), Atopy associated with ERBIN mutations which links STAT3 and TGF-β pathway, Immunodeficiency 23 (caused by PGM3 mutations), Netherton syndrome (resulting from SPINK5 mutations), and Loeys-Dietz syndrome (related to TGFBR mutations). Each year, new genes and variants responsible for this type of immune deficiency are added to the list. Conclusion Although rare, HIES significantly impacts patients due to its complex medical manifestations and need for lifelong management. Identifying casual variants is essential for effective clinical management of these complex conditions.
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Ahanchian
- Allergy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Rana Tafrishi
- Allergy Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
- Faculty of Medicine, Medical Genetics Research Centre Mashhad University of Medical Sciences Mashhad Iran
| | - Mojtaba Safi
- Department of Genetics Next Generation Genetic Polyclinic Mashhad Iran
| | | |
Collapse
|
2
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Kao AS, Deirawan H, Poowuttikul P, Daveluy S. Hyper IgE syndrome-related disease treated with dupilumab: A case report. Clin Case Rep 2023; 11:e7614. [PMID: 37720709 PMCID: PMC10500051 DOI: 10.1002/ccr3.7614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/07/2023] [Accepted: 05/25/2023] [Indexed: 09/19/2023] Open
Abstract
Phosphoglucomutase 3 (PGM3) catalyzes the glycosylation of immune system precursor proteins. Its impairment leads to severe infections and other developmental, musculoskeletal, and nervous system defects. We present a case of a 2-month-old female patient with recurrent infections and diffuse eczematous dermatitis recalcitrant to corticosteroids. A next-generation sequencing NGS gene panel for inherited immune dysfunction syndromes revealed multiple variants of unknown significance in key immune regulators, specifically heterozygous mutation c.337C⟩G (p.Pro113Ala) on exon 4 of PGM3 as a novel variant in the PGM3 associated diseases. Off-label use of dupilumab resulted in rapid improvement.
Collapse
Affiliation(s)
- Andrew S. Kao
- Department of DermatologyWayne State University School of MedicineDearbornMichiganUSA
| | - Hany Deirawan
- Department of DermatologyWayne State University School of MedicineDearbornMichiganUSA
| | - Pavadee Poowuttikul
- Department of PediatricsDivision of Allergy, Immunology, and RheumatologyCentral Michigan UniversityDearbornMichiganUSA
| | - Steven Daveluy
- Department of DermatologyWayne State University School of MedicineDearbornMichiganUSA
| |
Collapse
|
4
|
León B. A model of Th2 differentiation based on polarizing cytokine repression. Trends Immunol 2023; 44:399-407. [PMID: 37100645 PMCID: PMC10219849 DOI: 10.1016/j.it.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Azabdaftari A, Jones KDJ, Kammermeier J, Uhlig HH. Monogenic inflammatory bowel disease-genetic variants, functional mechanisms and personalised medicine in clinical practice. Hum Genet 2023; 142:599-611. [PMID: 35761107 DOI: 10.1007/s00439-022-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/03/2022] [Indexed: 11/04/2022]
Abstract
Over 100 genes are associated with monogenic forms of inflammatory bowel disease (IBD). These genes affect the epithelial barrier function, innate and adaptive immunity in the intestine, and immune tolerance. We provide an overview of newly discovered monogenic IBD genes and illustrate how a recently proposed taxonomy model can integrate phenotypes and shared pathways. We discuss how functional understanding of genetic disorders and clinical genomics supports personalised medicine for patients with monogenic IBD.
Collapse
Affiliation(s)
- Aline Azabdaftari
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kelsey D J Jones
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jochen Kammermeier
- Gastroenterology Department, Evelina London Children's Hospital, London, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
6
|
Tangye SG, Pathmanandavel K, Ma CS. Cytokine-mediated STAT-dependent pathways underpinning human B-cell differentiation and function. Curr Opin Immunol 2023; 81:102286. [PMID: 36764056 DOI: 10.1016/j.coi.2023.102286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
B cells are fundamental to host defence against infectious diseases; indeed, the ability of humans to elicit robust antibody responses following exposure to foreign antigens underpins long-lived humoral immunity and serological memory, as well as the success of most currently administered vaccines. However, B cells also have a dark side - they can cause myriad diseases, including autoimmunity, atopy, allergy and malignancy. Thus, it is critical to understand the molecular requirements for generating effective, high-affinity, specific immune responses following natural infection or vaccination, as well as for constraining B-cell function to mitigate B-cell-mediated immune dyscrasias. In this review, we discuss recent developments that have been derived from the identification and detailed analysis of individuals with inborn errors of immunity that disrupt cytokine signalling, resulting in immune dysregulatory conditions. These studies have defined fundamental cytokine/cytokine receptor/signal transducer and activator of transcription (STAT) signalling pathways that are critical for the generation and maintenance of human memory B-cell and plasma cell subsets during host defence, as well as revealed mechanisms of disease pathogenesis causing immune deficiency, autoimmunity and atopy. More importantly, these studies have identified molecules that could be targeted to either enhance humoral immunity in the settings of infection or vaccination, or attenuate humoral immunity that contributes to antibody-mediated autoimmunity or allergy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia.
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW 2010, Australia; CIRCA (Clinical Immunogenomics Research Consortium of Australasia), Australia
| |
Collapse
|
7
|
Ravikumar S, Amali AA, Capinpin SM, Ho HK, Chai LYA. Functional STAT3 Deficiency from Co-Localization with SMAD2/3 Can Account for Infective Predisposition and Hyper IgE-like Manifestation in Loeys-Dietz Syndrome. J Clin Immunol 2023; 43:327-330. [PMID: 36350438 DOI: 10.1007/s10875-022-01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sharada Ravikumar
- Division of Infectious Diseases, Department of Medicine, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, 119228, Singapore
| | - Aseervatham Anusha Amali
- Division of Infectious Diseases, Department of Medicine, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, 119228, Singapore
| | - Sharah Mae Capinpin
- Molecular Diagnostic Centre, National University Hospital, Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Louis Yi Ann Chai
- Division of Infectious Diseases, Department of Medicine, National University Health System, NUHS Tower Block, 1E Kent Ridge Road, 119228, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Giancotta C, Colantoni N, Pacillo L, Santilli V, Amodio D, Manno EC, Cotugno N, Rotulo GA, Rivalta B, Finocchi A, Cancrini C, Diociaiuti A, El Hachem M, Zangari P. Tailored treatments in inborn errors of immunity associated with atopy (IEIs-A) with skin involvement. Front Pediatr 2023; 11:1129249. [PMID: 37033173 PMCID: PMC10073443 DOI: 10.3389/fped.2023.1129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Inborn errors of immunity associated with atopy (IEIs-A) are a group of inherited monogenic disorders that occur with immune dysregulation and frequent skin involvement. Several pathways are involved in the pathogenesis of these conditions, including immune system defects, alterations of skin barrier and metabolism perturbations. Current technological improvements and the higher accessibility to genetic testing, recently allowed the identification of novel molecular pathways involved in IEIs-A, also informing on potential tailored therapeutic strategies. Compared to other systemic therapy for skin diseases, biologics have the less toxic and the best tolerated profile in the setting of immune dysregulation. Here, we review IEIs-A with skin involvement focusing on the tailored therapeutic approach according to their pathogenetic mechanism.
Collapse
Affiliation(s)
- Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicole Colantoni
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Correspondence: Paola Zangari
| |
Collapse
|
9
|
Gkalpakiotis S, Maresova T. Severe atopic dermatitis in a patient with Loeys-Dietz syndrome treated with dupilumab. J Eur Acad Dermatol Venereol 2023; 37:e70-e72. [PMID: 35964299 DOI: 10.1111/jdv.18504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Spyridon Gkalpakiotis
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and University Hospital of Kralovske Vinohrady, Prague, Czech Republic
| | - Tereza Maresova
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University and University Hospital of Kralovske Vinohrady, Prague, Czech Republic
| |
Collapse
|
10
|
Rodari MM, Cerf-Bensussan N, Parlato M. Dysregulation of the immune response in TGF-β signalopathies. Front Immunol 2022; 13:1066375. [PMID: 36569843 PMCID: PMC9780292 DOI: 10.3389/fimmu.2022.1066375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family of cytokines exerts pleiotropic functions during embryonic development, tissue homeostasis and repair as well as within the immune system. Single gene defects in individual component of this signaling machinery cause defined Mendelian diseases associated with aberrant activation of TGF-β signaling, ultimately leading to impaired development, immune responses or both. Gene defects that affect members of the TGF-β cytokine family result in more restricted phenotypes, while those affecting downstream components of the signaling machinery induce broader defects. These rare disorders, also known as TGF-β signalopathies, provide the unique opportunity to improve our understanding of the role and the relevance of the TGF-β signaling in the human immune system. Here, we summarize this elaborate signaling pathway, review the diverse clinical presentations and immunological phenotypes observed in these patients and discuss the phenotypic overlap between humans and mice genetically deficient for individual components of the TGF-β signaling cascade.
Collapse
|
11
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
12
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
13
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
14
|
Tun MH, Borg B, Godfrey M, Hadley-Miller N, Chan ED. Respiratory manifestations of Marfan syndrome: a narrative review. J Thorac Dis 2021; 13:6012-6025. [PMID: 34795948 PMCID: PMC8575822 DOI: 10.21037/jtd-21-1064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022]
Abstract
Objective The prevalence of Marfan syndrome (MFS) is estimated to be 1 in 10,000 to 15,000 individuals, but the phenotype of MFS may not be apparent and hence its diagnosis may not be considered by clinicians. Furthermore, the effects of MFS on the lungs and breathing are underrecognized despite the high morbidity that can occur. The objective of this Narrative Review is to delineate the molecular consequences of a defective fibrillin-1 protein and the skeletal and lung abnormalities in MFS that may contribute to respiratory compromise. It is important for clinicians to be cognizant of these MFS-associated respiratory conditions, and a contemporaneous review is needed. Background MFS is an autosomal dominant, connective tissue disorder caused by mutations in the FIBRILLIN-1 (FBN1) gene, resulting in abnormal elastic fibers as well as increased tissue availability of transforming growth factor-beta (TGFβ), both of which lead to the protean clinical abnormalities. While these clinical characteristics are most often recognized in the cardiovascular, skeletal, and ocular systems, MFS may also cause significant impairment on the lungs and breathing. Methods We searched PubMed for the key words of “Marfan syndrome,” “pectus excavatum,” and “scoliosis” with that of “lung disease,” “breathing”, or “respiratory disease.” The bibliographies of identified articles were further searched for relevant articles not previously identified. Each relevant article was reviewed by one or more of the authors and a narrative review was composed. Conclusions Though the classic manifestations of MFS are cardiovascular, skeletal, and ocular, FBN1 gene mutation can induce a variety of effects on the respiratory system, inducing substantial morbidity and potentially increased mortality. These respiratory effects may include chest wall and spinal deformities, emphysema, pneumothorax, sleep apnea, and potentially increased incidence of asthma, bronchiectasis, and interstitial lung disease. Further research into approaches to prevent respiratory complications is needed, but improved recognition of the respiratory complications of MFS is necessary before this research is likely to occur.
Collapse
Affiliation(s)
- Mon Hnin Tun
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Bryan Borg
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
| | - Maurice Godfrey
- Munroe Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO, USA
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.,Department of Academic Affairs, National Jewish Health, Denver, CO, USA
| |
Collapse
|
15
|
Chen YH, Spencer S, Laurence A, Thaventhiran JE, Uhlig HH. Inborn errors of IL-6 family cytokine responses. Curr Opin Immunol 2021; 72:135-145. [PMID: 34044328 PMCID: PMC8591178 DOI: 10.1016/j.coi.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/25/2023]
Abstract
The IL-6 family of cytokines mediates functions in host protective immunity, development of multiple organs, tissue regeneration and metabolism. Inborn errors in cytokines or cytokine receptor units highlight specific roles for IL-6, IL-11, LIF, OSM, and CLC signaling whereas incomplete loss-of-function variants in the common receptor chain GP130 encoded by IL6ST or the transcription factor STAT3, as well as genes that affect either GP130 glycosylation (PGM3) or STAT3 transcriptional control (ZNF341) lead to complex phenotypes including features of hyper-IgE syndrome. Gain-of-function variants in the GP130-STAT3 signaling pathway cause immune dysregulation disorders. Insights into IL-6 family cytokine signaling inform on therapeutic application in immune-mediated disorders and potential side effects such as infection susceptibility.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah Spencer
- MRC Toxicology Unit, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, UK
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Biomedical Research Center, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Ziegler SG, MacCarrick G, Dietz HC. Toward precision medicine in vascular connective tissue disorders. Am J Med Genet A 2021; 185:3340-3349. [PMID: 34428348 DOI: 10.1002/ajmg.a.62461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Tremendous progress has been made in understanding the etiology, pathogenesis, and treatment of inherited vascular connective tissue disorders. While new insights regarding disease etiology and pathogenesis have informed patient counseling and care, there are numerous obstacles that need to be overcome in order to achieve the full promise of precision medicine. In this review, these issues will be discussed in the context of Marfan syndrome and Loeys-Dietz syndrome, with additional emphasis on the pioneering contributions made by Victor McKusick.
Collapse
Affiliation(s)
- Shira G Ziegler
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gretchen MacCarrick
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C Dietz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Frede N, Rojas-Restrepo J, Caballero Garcia de Oteyza A, Buchta M, Hübscher K, Gámez-Díaz L, Proietti M, Saghafi S, Chavoshzadeh Z, Soler-Palacin P, Galal N, Adeli M, Aldave-Becerra JC, Al-Ddafari MS, Ardenyz Ö, Atkinson TP, Kut FB, Çelmeli F, Rees H, Kilic SS, Kirovski I, Klein C, Kobbe R, Korganow AS, Lilic D, Lunt P, Makwana N, Metin A, Özgür TT, Karakas AA, Seneviratne S, Sherkat R, Sousa AB, Unal E, Patiroglu T, Wahn V, von Bernuth H, Whiteford M, Doffinger R, Jouhadi Z, Grimbacher B. Genetic Analysis of a Cohort of 275 Patients with Hyper-IgE Syndromes and/or Chronic Mucocutaneous Candidiasis. J Clin Immunol 2021; 41:1804-1838. [PMID: 34390440 PMCID: PMC8604890 DOI: 10.1007/s10875-021-01086-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/05/2021] [Indexed: 01/24/2023]
Abstract
Hyper-IgE syndromes and chronic mucocutaneous candidiasis constitute rare primary immunodeficiency syndromes with an overlapping clinical phenotype. In recent years, a growing number of underlying genetic defects have been identified. To characterize the underlying genetic defects in a large international cohort of 275 patients, of whom 211 had been clinically diagnosed with hyper-IgE syndrome and 64 with chronic mucocutaneous candidiasis, targeted panel sequencing was performed, relying on Agilent HaloPlex and Illumina MiSeq technologies. The targeted panel sequencing approach allowed us to identify 87 (32 novel and 55 previously described) mutations in 78 patients, which generated a diagnostic success rate of 28.4%. Specifically, mutations in DOCK8 (26 patients), STAT3 (21), STAT1 (15), CARD9 (6), AIRE (3), IL17RA (2), SPINK5 (3), ZNF341 (2), CARMIL2/RLTPR (1), IL12RB1 (1), and WAS (1) have been detected. The most common clinical findings in this cohort were elevated IgE (81.5%), eczema (71.7%), and eosinophilia (62.9%). Regarding infections, 54.7% of patients had a history of radiologically proven pneumonia, and 28.3% have had other serious infections. History of fungal infection was noted in 53% of cases and skin abscesses in 52.9%. Skeletal or dental abnormalities were observed in 46.2% of patients with a characteristic face being the most commonly reported feature (23.1%), followed by retained primary teeth in 18.9% of patients. Targeted panel sequencing provides a cost-effective first-line genetic screening method which allows for the identification of mutations also in patients with atypical clinical presentations and should be routinely implemented in referral centers.
Collapse
Affiliation(s)
- Natalie Frede
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrés Caballero Garcia de Oteyza
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mary Buchta
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Hübscher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shiva Saghafi
- Immunology Asthma and Allergy Research Institute Tehran University of Medical Sciences , Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infectious Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall D'Hebron, Barcelona, Catalonia, Spain
| | - Nermeen Galal
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mehdi Adeli
- Sidra Medicine, Weill Cornell Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Moudjahed Saleh Al-Ddafari
- Laboratory of Applied Molecular Biology and Immunology, University of Abou-Bekr Belkaïd, Tlemcen, Algeria
| | - Ömür Ardenyz
- Division of Allergy and Immunology, Department of Internal Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| | - T Prescott Atkinson
- Division of Pediatric Allergy & Immunology, University of Alabama At Birmingham, Birmingham, AL, USA
| | - Fulya Bektas Kut
- Departmant of Pediatrics, Division of Pediatric Immunology and Allergy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatih Çelmeli
- Antalya Education and Research Hospital Department of Pediatric Immunology and Allergy, Antalya, Turkey
| | - Helen Rees
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Sara S Kilic
- Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Ilija Kirovski
- Medical Faculty Skopje, 50 Divizija BB, 1000, Skopje, Macedonia
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Robin Kobbe
- First Department of Medicine, Division of Infectious Diseases, University Medical Center , Hamburg-Eppendorf, Germany
| | | | - Desa Lilic
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Lunt
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| | - Niten Makwana
- Department of Pediatrics, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, UK
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Tuba Turul Özgür
- Department of Pediatrics, Division of Immunology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Ayse Akman Karakas
- Department of Dermatology and Venerology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Suranjith Seneviratne
- Institute of Immunity and Transplantation, Royal Free Hospital and University College London, London, UK
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ana Berta Sousa
- Serviço de Genética, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, and Laboratório de Imunologia Básica, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Ekrem Unal
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey.,Deparment of Molecular Biology and Genetics, Gevher Nesibe Genom and Stem Cell Institution, GENKOK Genome and Stem Cell Center, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Turkan Patiroglu
- Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, 38010, Melikgazi, Kayseri, Turkey
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Immunology, Labor Berlin GmbH, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Margo Whiteford
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Zineb Jouhadi
- Department of Pediatric Infectious Diseases, Children's Hospital CHU Ibn Rochd, University Hassan 2, Casablanca, Morocco
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany. .,CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany. .,RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany. .,CCI-Center for Chronic Immunodeficiency, Universitätsklinikum Freiburg, Breisacher Straße 115, 79106, Freiburg, Germany.
| |
Collapse
|
18
|
Tsilifis C, Freeman AF, Gennery AR. STAT3 Hyper-IgE Syndrome-an Update and Unanswered Questions. J Clin Immunol 2021; 41:864-880. [PMID: 33932191 PMCID: PMC8249299 DOI: 10.1007/s10875-021-01051-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022]
Abstract
The hyper-IgE syndromes (HIES) are a heterogeneous group of inborn errors of immunity sharing manifestations including increased infection susceptibility, eczema, and raised serum IgE. Since the prototypical HIES description 55 years ago, areas of significant progress have included description of key disease-causing genes and differentiation into clinically distinct entities. The first two patients reported had what is now understood to be HIES from dominant-negative mutations in signal transduction and activator of transcription 3 (STAT3-HIES), conferring a broad immune defect across both innate and acquired arms, as well as defects in skeletal, connective tissue, and vascular function, causing a clinical phenotype including eczema, staphylococcal and fungal skin and pulmonary infection, scoliosis and minimal trauma fractures, and vascular tortuosity and aneurysm. Due to the constitutionally expressed nature of STAT3, initial reports at treatment with allogeneic stem cell transplantation were not positive and treatment has hinged on aggressive antimicrobial prophylaxis and treatment to prevent the development of end-organ disease such as pneumatocele. Research into the pathophysiology of STAT3-HIES has driven understanding of the interface of several signaling pathways, including the JAK-STAT pathways, interleukins 6 and 17, and the role of Th17 lymphocytes, and has been expanded by identification of phenocopies such as mutations in IL6ST and ZNF341. In this review we summarize the published literature on STAT3-HIES, present the diverse clinical manifestations of this syndrome with current management strategies, and update on the uncertain role of stem cell transplantation for this disease. We outline key unanswered questions for further study.
Collapse
Affiliation(s)
- Christo Tsilifis
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
19
|
Asano T, Khourieh J, Zhang P, Rapaport F, Spaan AN, Li J, Lei WT, Pelham SJ, Hum D, Chrabieh M, Han JE, Guérin A, Mackie J, Gupta S, Saikia B, Baghdadi JEI, Fadil I, Bousfiha A, Habib T, Marr N, Ganeshanandan L, Peake J, Droney L, Williams A, Celmeli F, Hatipoglu N, Ozcelik T, Picard C, Abel L, Tangye SG, Boisson-Dupuis S, Zhang Q, Puel A, Béziat V, Casanova JL, Boisson B. Human STAT3 variants underlie autosomal dominant hyper-IgE syndrome by negative dominance. J Exp Med 2021; 218:212397. [PMID: 34137790 PMCID: PMC8217968 DOI: 10.1084/jem.20202592] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Most patients with autosomal dominant hyper-IgE syndrome (AD-HIES) carry rare heterozygous STAT3 variants. Only six of the 135 in-frame variants reported have been experimentally shown to be dominant negative (DN), and it has been recently suggested that eight out-of-frame variants operate by haploinsufficiency. We experimentally tested these 143 variants, 7 novel out-of-frame variants found in HIES patients, and other STAT3 variants from the general population. Strikingly, all 15 out-of-frame variants were DN via their encoded (1) truncated proteins, (2) neoproteins generated from a translation reinitiation codon, and (3) isoforms from alternative transcripts or a combination thereof. Moreover, 128 of the 135 in-frame variants (95%) were also DN. The patients carrying the seven non-DN STAT3 in-frame variants have not been studied for other genetic etiologies. Finally, none of the variants from the general population tested, including an out-of-frame variant, were DN. Overall, our findings show that heterozygous STAT3 variants, whether in or out of frame, underlie AD-HIES through negative dominance rather than haploinsufficiency.
Collapse
Affiliation(s)
- Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Joëlle Khourieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Maya Chrabieh
- Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, King Hassan II University, Casablanca, Morocco.,Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Children's Hospital, Averroes University Hospital Center, Casablanca, Morocco
| | - Tanwir Habib
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar
| | - Nico Marr
- Research Branch, Sidra Medicine, Qatar Foundation, Doha, Qatar.,College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Luckshman Ganeshanandan
- Department of Clinical Immunology, PathWest Laboratory Medicine Western Australia, Fiona Stanley Hospital, Perth, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Australia
| | - Luke Droney
- Department of Clinical Immunology, Princess Alexandra Hospital, Brisbane, Australia
| | - Andrew Williams
- Immunology Laboratory, Children's Hospital Westmead, Westmead, Australia
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science Antalya Education and Research Hospital, Antalya, Turkey
| | - Nevin Hatipoglu
- Bakirkoy Dr Sadi Konuk Education and Training Hospital, Istanbul, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Capucine Picard
- Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Institut National de la Santé et de la Recherche Médicale UMR 1163, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia.,St. Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Paris University, Imagine Institute, Paris, France.,Laboratory of Human Genetics of Infectious Disease, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
| |
Collapse
|
20
|
Fadil I, Ben-Ali M, Jeddane L, Barbouche MR, Bousfiha AA. The Seven STAT3-Related Hyper-IgE Syndromes. J Clin Immunol 2021; 41:1384-1389. [PMID: 33903995 DOI: 10.1007/s10875-021-01041-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/12/2021] [Indexed: 11/24/2022]
Affiliation(s)
- Ilham Fadil
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Meriem Ben-Ali
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Leila Jeddane
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco.,Immunology-Allergology Unit, National Reference Laboratory, University Mohammed VI of Health Sciences, Casablanca, Morocco
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis El-Manar, Tunis, Tunisia.,Faculty of Medicine of Tunis, University Tunis El-Manar, Tunis, Tunisia
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco. .,Clinical Immunology Unit, Department of Infectious Diseases, Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco.
| |
Collapse
|
21
|
Fourzali K, Yosipovitch G. Genodermatoses with itch as a prominent feature. J Eur Acad Dermatol Venereol 2020; 35:807-814. [PMID: 32977353 DOI: 10.1111/jdv.16963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
A number of inherited conditions cause chronic itch as a part of the recognized phenotype. Advances in the understanding of the genetic factors that cause these diseases elucidate the molecular underpinning of itch as a symptom. Our knowledge of the causes of chronic itch has also advanced, providing an opportunity to integrate the genetic pathophysiology with the molecular landscape of chronic itch mediators. This article reviews select genodermatoses that have itch as a predominant feature with a focus on the pathophysiology of the disease, how it may lead to itch and potential therapeutic targets.
Collapse
Affiliation(s)
- K Fourzali
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, Grossman AB. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 70:389-403. [PMID: 32079889 DOI: 10.1097/mpg.0000000000002567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of pediatric inflammatory bowel disease (IBD) has been increasing over the last decade and this increase has occurred most rapidly in the youngest children diagnosed <6 years, known as very early-onset inflammatory bowel disease (VEO-IBD). These children can present with more extensive and severe disease than older children and adults. The contribution of host genetics in this population is underscored by the young age of onset and the distinct, aggressive phenotype. In fact, monogenic defects, often involving primary immunodeficiency genes, have been identified in children with VEO-IBD and have led to targeted and life-saving therapy. This position paper will discuss the phenotype of VEO-IBD and outline the approach and evaluation for these children and what factors should trigger concern for an underlying immunodeficiency. We will then review the immunological assays and genetic studies that can facilitate the identification of the underlying diagnosis in patients with VEO-IBD and how this evaluation may lead to directed therapies. The position paper will also aid the pediatric gastroenterologist in recognizing when a patient should be referred to a center specializing in the care of these patients. These guidelines are intended for pediatricians, allied health professionals caring for children, pediatric gastroenterologists, pediatric pathologists, and immunologists.
Collapse
Affiliation(s)
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shervin Rabizadeh
- Division of Gastroenterology, Hepatology, and Nutrition, Cedar-Sinai Medical Center, Los Angeles, CA
| | - Namita Singh
- Division of Gastroenterology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
- Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Abdul Elkadri
- Division of Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
23
|
Cozijnsen L, Plomp AS, Post JG, Pals G, Bogunovic N, Yeung KK, Niessen HWM, Goumans MJTH, Barge-Schaapveld DQCM, Micha D. Pathogenic effect of a TGFBR1 mutation in a family with Loeys-Dietz syndrome. Mol Genet Genomic Med 2019; 7:e00943. [PMID: 31475485 PMCID: PMC6785444 DOI: 10.1002/mgg3.943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Thoracic aortic aneurysms and dissections (TAAD) may have a heritable cause in up to 20% of cases. We aimed to investigate the pathogenic effect of a TGFBR1 mutation in relation to TAAD. Methods Co‐segregation analysis was performed followed by functional investigations, including myogenic transdifferentiation. Results The c.1043G>A TGFBR1 mutation was found in the index patient, in a deceased brother, and in five presymptomatic family members. Evidence for pathogenicity was found by the predicted damaging effect of this mutation and the co‐segregation in the family. Functional analysis with myogenic transdifferentiation of dermal fibroblasts to smooth muscle‐like cells, revealed increased myogenic differentiation in patient cells with the TGFBR1 mutation, shown by a higher expression of myogenic markers ACTA2, MYH11 and CNN1 compared to cells from healthy controls. Conclusion Our findings confirm the pathogenic effect of the TGFBR1 mutation in causing TAAD in Loeys–Dietz syndrome and show increased myogenic differentiation of patient fibroblasts.
Collapse
Affiliation(s)
- Luc Cozijnsen
- Department of Cardiology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam University Medical Centre, AMC, Amsterdam, The Netherlands
| | - Jan G Post
- Department of Genetics, University Medical Centre, Utrecht, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Natalija Bogunovic
- Department of Physiology, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Kak K Yeung
- Department of Physiology, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Marie-José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Centre, VUMC, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
24
|
A deep intronic splice mutation of STAT3 underlies hyper IgE syndrome by negative dominance. Proc Natl Acad Sci U S A 2019; 116:16463-16472. [PMID: 31346092 DOI: 10.1073/pnas.1901409116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Heterozygous in-frame mutations in coding regions of human STAT3 underlie the only known autosomal dominant form of hyper IgE syndrome (AD HIES). About 5% of familial cases remain unexplained. The mutant proteins are loss-of-function and dominant-negative when tested following overproduction in recipient cells. However, the production of mutant proteins has not been detected and quantified in the cells of heterozygous patients. We report a deep intronic heterozygous STAT3 mutation, c.1282-89C>T, in 7 relatives with AD HIES. This mutation creates a new exon in the STAT3 complementary DNA, which, when overexpressed, generates a mutant STAT3 protein (D427ins17) that is loss-of-function and dominant-negative in terms of tyrosine phosphorylation, DNA binding, and transcriptional activity. In immortalized B cells from these patients, the D427ins17 protein was 2 kDa larger and 4-fold less abundant than wild-type STAT3, on mass spectrometry. The patients' primary B and T lymphocytes responded poorly to STAT3-dependent cytokines. These findings are reminiscent of the impaired responses of leukocytes from other patients with AD HIES due to typical STAT3 coding mutations, providing further evidence for the dominance of the mutant intronic allele. These findings highlight the importance of sequencing STAT3 introns in patients with HIES without candidate variants in coding regions and essential splice sites. They also show that AD HIES-causing STAT3 mutant alleles can be dominant-negative even if the encoded protein is produced in significantly smaller amounts than wild-type STAT3.
Collapse
|
25
|
Determination of antibodies in everyday rheumatological practice. Reumatologia 2019; 57:91-99. [PMID: 31130747 PMCID: PMC6532108 DOI: 10.5114/reum.2019.84814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Antibody determination is routinely used in everyday rheumatological practice. Its result repeatedly determines the diagnosis or exclusion of a particular disease. Antibodies are immunoglobulins, i.e. some of the most important proteins in the immune system, and have specific properties that we should know. In addition, there are a number of factors that can affect their concentration, including drugs commonly used in the treatment of rheumatic diseases. There are definite indications, when the total concentrations of individual classes of immunoglobulins should be initially determined and it should be evaluated whether the patient produces them at all or their production is impaired. In some cases, we should evaluate the levels of specific antibodies along with the total protein concentration and the γ-globulin fraction, in which the antibodies are contained. The article presents information on the most common mistakes made when performing these tests.
Collapse
|
26
|
Shahin T, Aschenbrenner D, Cagdas D, Bal SK, Conde CD, Garncarz W, Medgyesi D, Schwerd T, Karaatmaca B, Cetinkaya PG, Esenboga S, Twigg SRF, Cant A, Wilkie AOM, Tezcan I, Uhlig HH, Boztug K. Selective loss of function variants in IL6ST cause Hyper-IgE syndrome with distinct impairments of T-cell phenotype and function. Haematologica 2018; 104:609-621. [PMID: 30309848 PMCID: PMC6395342 DOI: 10.3324/haematol.2018.194233] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Hyper-IgE syndromes comprise a group of inborn errors of immunity. STAT3-deficient hyper-IgE syndrome is characterized by elevated serum IgE levels, recurrent infections and eczema, and characteristic skeletal anomalies. A loss-of-function biallelic mutation in IL6ST encoding the GP130 receptor subunit (p.N404Y) has very recently been identified in a singleton patient (herein referred to as PN404Y) as a novel etiology of hyper-IgE syndrome. Here, we studied a patient with hyper-IgE syndrome caused by a novel homozygous mutation in IL6ST (p.P498L; patient herein referred to as PP498L) leading to abrogated GP130 signaling after stimulation with IL-6 and IL-27 in peripheral blood mononuclear cells as well as IL-6 and IL-11 in fibroblasts. Extending the initial identification of selective GP130 deficiency, we aimed to dissect the effects of aberrant cytokine signaling on T-helper cell differentiation in both patients. Our results reveal the importance of IL-6 signaling for the development of CCR6-expressing memory CD4+ T cells (including T-helper 17-enriched subsets) and non-conventional CD8+T cells which were reduced in both patients. Downstream functional analysis of the GP130 mutants (p.N404Y and p.P498L) have shown differences in response to IL-27, with the p.P498L mutation having a more severe effect that is reflected by reduced T-helper 1 cells in this patient (PP498L) only. Collectively, our data suggest that characteristic features of GP130-deficient hyper-IgE syndrome phenotype are IL-6 and IL-11 dominated, and indicate selective roles of aberrant IL-6 and IL-27 signaling on the differentiation of T-cell subsets.
Collapse
Affiliation(s)
- Tala Shahin
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, UK
| | - Deniz Cagdas
- Section of Pediatric Immunology, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey.,Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Sevgi Köstel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatric Allergy and Immunology, Ankara University School of Medicine, Cebeci, Turkey
| | - Cecilia Domínguez Conde
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wojciech Garncarz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - David Medgyesi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tobias Schwerd
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, UK.,Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University of Munich, Germany
| | - Betül Karaatmaca
- Section of Pediatric Immunology, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Pınar Gur Cetinkaya
- Section of Pediatric Immunology, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Section of Pediatric Immunology, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK
| | - Andrew Cant
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, UK
| | - Ilhan Tezcan
- Section of Pediatric Immunology, Ihsan Doğramacı Children's Hospital, Hacettepe University, Ankara, Turkey.,Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Holm H Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, UK .,Department of Paediatrics, University of Oxford, UK
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria.,St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Austria
| |
Collapse
|
27
|
Casanova EL, Sharp JL, Edelson SM, Kelly DP, Casanova MF. A Cohort Study Comparing Women with Autism Spectrum Disorder with and without Generalized Joint Hypermobility. Behav Sci (Basel) 2018; 8:bs8030035. [PMID: 29562607 PMCID: PMC5867488 DOI: 10.3390/bs8030035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 01/22/2023] Open
Abstract
Reports suggest comorbidity between autism spectrum disorder (ASD) and the connective tissue disorder, Ehlers-Danlos syndrome (EDS). People with EDS and the broader spectrum of Generalized Joint Hypermobility (GJH) often present with immune- and endocrine-mediated conditions. Meanwhile, immune/endocrine dysregulation is a popular theme in autism research. We surveyed a group of ASD women with/without GJH to determine differences in immune/endocrine exophenotypes. ASD women 25 years or older were invited to participate in an online survey. Respondents completed a questionnaire concerning diagnoses, immune/endocrine symptom history, experiences with pain, and seizure history. ASD women with GJH (ASD/GJH) reported more immune- and endocrine-mediated conditions than their non-GJH counterparts (p = 0.001). Autoimmune conditions were especially prominent in the ASD/GJH group (p = 0.027). Presence of immune-mediated symptoms often co-occurred with one another (p < 0.001–0.020), as did endocrine-mediated symptoms (p < 0.001–0.045), irrespective of the group. Finally, the numbers of immune- and endocrine-mediated symptoms shared a strong inter-relationship (p < 0.001), suggesting potential system crosstalk. While our results cannot estimate comorbidity, they reinforce concepts of an etiological relationship between ASD and GJH. Meanwhile, women with ASD/GJH have complex immune/endocrine exophenotypes compared to their non-GJH counterparts. Further, we discuss how connective tissue regulates the immune system and how the immune/endocrine systems in turn may modulate collagen synthesis, potentially leading to higher rates of GJH in this subpopulation.
Collapse
Affiliation(s)
- Emily L Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA.
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| | - Julia L Sharp
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA.
| | | | - Desmond P Kelly
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| | - Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA.
- Department of Pediatrics, Greenville Health System Children's Hospital, Greenville, SC 29605, USA.
| |
Collapse
|
28
|
Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Trastornos genéticos con eccema moderado-grave refractario y elevación de inmunoglobulina E: diagnóstico diferencial. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:116-24. [DOI: 10.1016/j.ad.2015.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 09/19/2015] [Indexed: 02/06/2023] Open
|
29
|
Hagl B, Heinz V, Schlesinger A, Spielberger BD, Sawalle-Belohradsky J, Senn-Rauh M, Magg T, Boos AC, Hönig M, Schwarz K, Dückers G, von Bernuth H, Pache C, Karitnig-Weiss C, Belohradsky BH, Frank J, Niehues T, Wahn V, Albert MH, Wollenberg A, Jansson AF, Renner ED. Key findings to expedite the diagnosis of hyper-IgE syndromes in infants and young children. Pediatr Allergy Immunol 2016; 27:177-84. [PMID: 26592211 DOI: 10.1111/pai.12512] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Hyper-IgE syndromes (HIES) are primary immunodeficiency disorders characterized by elevated serum IgE, eczema, and recurrent infections. Despite the availability of confirmatory molecular diagnosis of several distinct HIES entities, the differentiation of HIES particularly from severe forms of atopic dermatitis remains a challenge. The two most common forms of HIES are caused by mutations in the genes STAT3 and DOCK8. METHODS Here, we assess the clinical and immunologic phenotype of DOCK8- and STAT3-HIES patients including the cell activation, proliferation, and cytokine release after stimulation. RESULTS Existing HIES scoring systems are helpful to identify HIES patients. However, those scores may fail in infants and young children due to the age-related lack of clinical symptoms. Furthermore, our long-term observations showed a striking variation of laboratory results over time in the individual patient. Reduced memory B-cell counts in concert with low specific antibody production are the most consistent findings likely contributing to the high susceptibility to bacterial and fungal infection. In DOCK8-HIES, T-cell lymphopenia and low IFN-gamma secretion after stimulation were common, likely promoting viral infections. In contrast to STAT3-HIES, DOCK8-HIES patients showed more severe inflammation with regard to allergic manifestations, elevated activation markers (HLA-DR, CD69, CD86, and CD154), and significantly increased inflammatory cytokines (IL1-beta, IL4, IL6, and IFN-gamma). CONCLUSION Differentiating HIES from other diseases such as atopic dermatitis early in life is essential for patients because treatment modalities differ. To expedite the diagnosis process, we propose here a diagnostic workflow.
Collapse
Affiliation(s)
- Beate Hagl
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Valerie Heinz
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Anne Schlesinger
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany.,Dermatology Hospital, Ludwig Maximilian University, Munich, Germany
| | | | | | - Monika Senn-Rauh
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Thomas Magg
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Annette C Boos
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany.,Dermatology Hospital, Ludwig Maximilian University, Munich, Germany
| | - Manfred Hönig
- University Children's Hospital, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Ulm, Germany
| | | | | | - Christoph Pache
- Oral and Maxillofacial Surgery, Ludwig Maximilian University, Munich, Germany
| | | | - Bernd H Belohradsky
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Josef Frank
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, Ludwig Maximilian University, Munich, Germany
| | - Tim Niehues
- HELIOS Children's Hospital, Krefeld, Germany
| | - Volker Wahn
- University Children's Hospital, Charité, Berlin, Germany
| | - Michael H Albert
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | | | - Annette F Jansson
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Ellen D Renner
- Dr. von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
30
|
Arjona Aguilera C, Albarrán Planelles C, Tercedor Sánchez J. Differential Diagnosis of Genetic Disorders Associated with Moderate to Severe Refractory Eczema and Elevated Immunoglobulin E. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2016.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Lundin KE, Hamasy A, Backe PH, Moens LN, Falk-Sörqvist E, Elgstøen KB, Mørkrid L, Bjørås M, Granert C, Norlin AC, Nilsson M, Christensson B, Stenmark S, Smith CIE. Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene. Clin Immunol 2015; 161:366-72. [PMID: 26482871 PMCID: PMC4695917 DOI: 10.1016/j.clim.2015.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/17/2015] [Accepted: 10/13/2015] [Indexed: 10/28/2022]
Abstract
Phosphoglucomutase 3 (PGM3) is an enzyme converting N-acetyl-glucosamine-6-phosphate to N-acetyl-glucosamine-1-phosphate, a precursor important for glycosylation. Mutations in the PGM3 gene have recently been identified as the cause of novel primary immunodeficiency with a hyper-IgE like syndrome. Here we report the occurrence of a homozygous mutation in the PGM3 gene in a family with immunodeficient children, described already in 1976. DNA from two of the immunodeficient siblings was sequenced and shown to encode the same homozygous missense mutation, causing a destabilized protein with reduced enzymatic capacity. Affected individuals were highly prone to infections, but lack the developmental defects in the nervous and skeletal systems, reported in other families. Moreover, normal IgE levels were found. Thus, belonging to the expanding group of congenital glycosylation defects, PGM3 deficiency is characterized by immunodeficiency, with or without increased IgE levels, and with variable forms of developmental defects affecting other organ systems.
Collapse
Affiliation(s)
- Karin E Lundin
- Clinical Research Center, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, S-141 86 Huddinge, Sweden.
| | - Abdulrahman Hamasy
- Clinical Research Center, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, S-141 86 Huddinge, Sweden
| | - Paul Hoff Backe
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, Box 4950, Nydalen, N-0424 Oslo, Norway; Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Lotte N Moens
- Department of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden
| | - Elin Falk-Sörqvist
- Department of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden
| | - Katja B Elgstøen
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Lars Mørkrid
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Box 4950, Nydalen, N-0424 Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, Rikshospitalet, Box 4950, Nydalen, N-0424 Oslo, Norway; Institute for Cancer Research and Molecular Medicine, NTNU, 8905, N-7491 Trondheim, Norway
| | - Carl Granert
- Immunodeficiency Unit, Section of Clinical Immunology, Karolinska University Hospital, S-14186, Stockholm, Sweden
| | - Anna-Carin Norlin
- Immunodeficiency Unit, Section of Clinical Immunology, Karolinska University Hospital, S-14186, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Laboratory, Karolinska University Hospital, S-14186, Stockholm, Sweden
| | - Mats Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden; Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, S-171 21, Stockholm, Sweden
| | - Birger Christensson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, S-141 86, Stockholm, Sweden
| | | | - C I Edvard Smith
- Clinical Research Center, Karolinska Institutet, Department of Laboratory Medicine, Karolinska University Hospital, S-141 86 Huddinge, Sweden; Immunodeficiency Unit, Section of Clinical Immunology, Karolinska University Hospital, S-14186, Stockholm, Sweden.
| |
Collapse
|
32
|
Muylaert DEP, de Jong OG, Slaats GGG, Nieuweboer FE, Fledderus JO, Goumans MJ, Hierck BP, Verhaar MC. Environmental Influences on Endothelial to Mesenchymal Transition in Developing Implanted Cardiovascular Tissue-Engineered Grafts. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:58-67. [PMID: 26414174 DOI: 10.1089/ten.teb.2015.0167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue-engineered grafts for cardiovascular structures experience biochemical stimuli and mechanical forces that influence tissue development after implantation such as the immunological response, oxidative stress, hemodynamic shear stress, and mechanical strain. Endothelial cells are a cell source of major interest in vascular tissue engineering because of their ability to form a luminal antithrombotic monolayer. In addition, through their ability to undergo endothelial to mesenchymal transition (EndMT), endothelial cells may yield a cell type capable of increased production and remodeling of the extracellular matrix (ECM). ECM is of major importance to the mechanical function of all cardiovascular structures. Tissue engineering approaches may employ EndMT to recapitulate, in part, the embryonic development of cardiovascular structures. Improved understanding of how the environment of an implanted graft could influence EndMT in endothelial cells may lead to novel tissue engineering strategies. This review presents an overview of biochemical and mechanical stimuli capable of influencing EndMT, discusses the influence of these stimuli as found in the direct environment of cardiovascular grafts, and discusses approaches to employ EndMT in tissue-engineered constructs.
Collapse
Affiliation(s)
- Dimitri E P Muylaert
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Olivier G de Jong
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Gisela G G Slaats
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Frederieke E Nieuweboer
- 2 Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, The Netherlands
| | - Joost O Fledderus
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Marie-Jose Goumans
- 3 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, The Netherlands
| | - Beerend P Hierck
- 4 Department of Anatomy and Embryology, Leiden University Medical Center , Leiden, The Netherlands
| | - Marianne C Verhaar
- 1 Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
33
|
Genetics of allergy and allergic sensitization: common variants, rare mutations. Curr Opin Immunol 2015; 36:115-26. [PMID: 26386198 DOI: 10.1016/j.coi.2015.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/20/2022]
Abstract
Our understanding of the specific genetic lesions in allergy has improved in recent years due to identification of common risk variants from genome-wide association studies (GWAS) and studies of rare, monogenic diseases. Large-scale GWAS have identified novel susceptibility loci and provided information about shared genetics between allergy, related phenotypes and autoimmunity. Studies of monogenic diseases have elucidated critical cellular pathways and protein functions responsible for allergy. These complementary approaches imply genetic mechanisms involved in Th2 immunity, T-cell differentiation, TGFβ signaling, regulatory T-cell function and skin/mucosal function as well as yet unknown mechanisms associated with newly identified genes. Future studies, in combination with data on gene expression and epigenetics, are expected to increase our understanding of the pathogenesis of allergy.
Collapse
|
34
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This review provides an overview on recent data regarding pathogenesis, diagnostics and clinical care of hyper-IgE syndromes (HIES). HIES are a group of primary immunodeficiencies with overlapping and distinct features, most frequently caused by deficiency in signal transducer and activator of transcription 3 (STAT3) or dedicator of cytokinesis 8 (DOCK8). RECENT FINDINGS Particular progress has been made in deciphering the relevance of STAT3 and DOCK8 for B-cell, T-cell and natural killer-cell immunity as well as in understanding allergic features. Multisystemic features of STAT3-deficient HIES, for example, recurrent fractures and osteopenia, a high degree of vasculopathy and brain white matter hyperintensities, have been thoroughly characterized. IgG replacement may add to the clinical care in STAT3-deficient HIES. In DOCK8-deficient HIES, the high morbidity and deaths in early age seem to justify allogeneic hematopoietic stem cell transplantation. New HIES entities have also been reported. SUMMARY The recent advances expand our understanding of HIES, and improve the diagnostics and clinical care. Yet, more research is required to fully elucidate the specific infection susceptibilities and lung complications, particularly in STAT3-deficient HIES. Future studies also need to focus on clinical care and treatment of nonimmunologic features of HIES, as well as on exploring curative treatments.
Collapse
|
36
|
Early-onset osteoarthritis, Charcot-Marie-Tooth like neuropathy, autoimmune features, multiple arterial aneurysms and dissections: an unrecognized and life threatening condition. PLoS One 2014; 9:e96387. [PMID: 24804794 PMCID: PMC4012990 DOI: 10.1371/journal.pone.0096387] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022] Open
Abstract
Background Severe osteoarthritis and thoracic aortic aneurysms have recently been associated with mutations in the SMAD3 gene, but the full clinical spectrum is incompletely defined. Methods All SMAD3 gene mutation carriers coming to our centre and their families were investigated prospectively with a structured panel including standardized clinical workup, blood tests, total body computed tomography, joint X-rays. Electroneuromyography was performed in selected cases. Results Thirty-four SMAD3 gene mutation carriers coming to our centre were identified and 16 relatives were considered affected because of aortic surgery or sudden death (total 50 subjects). Aortic disease was present in 72%, complicated with aortic dissection, surgery or sudden death in 56% at a mean age of 45 years. Aneurysm or tortuosity of the neck arteries was present in 78%, other arteries were affected in 44%, including dissection of coronary artery. Overall, 95% of mutation carriers displayed either aortic or extra-aortic arterial disease. Acrocyanosis was also present in the majority of patients. Osteoarticular manifestations were recorded in all patients. Joint involvement could be severe requiring surgery in young patients, of unusual localization such as tarsus or shoulder, or mimicking crystalline arthropathy with fibrocartilage calcifications. Sixty eight percent of patients displayed neurological symptoms, and 9 suffered peripheral neuropathy. Electroneuromyography revealed an axonal motor and sensory neuropathy in 3 different families, very evocative of type II Charcot-Marie-Tooth (CMT2) disease, although none had mutations in the known CMT2 genes. Autoimmune features including Sjogren’s disease, rheumatoid arthritis, Hashimoto’s disease, or isolated autoantibodies- were found in 36% of patients. Interpretation SMAD3 gene mutations are associated with aortic dilatation and osteoarthritis, but also autoimmunity and peripheral neuropathy which mimics type II Charcot-Marie-Tooth.
Collapse
|