1
|
Nakken O, Vaage AM, Stigum H, Heldal E, Meyer HE, Holmøy T. Tuberculin responses after BCG vaccination predict amyotrophic lateral sclerosis risk. Brain Behav Immun Health 2023; 34:100704. [PMID: 38033614 PMCID: PMC10681879 DOI: 10.1016/j.bbih.2023.100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Background T cell infiltration around dying motor neurons is a hallmark of amyotrophic lateral sclerosis (ALS). It is not known if this immune response represents a cause or a consequence of the disease. We aimed to establish whether individual variation in regulation of a T cell driven immune response is associated with long-term ALS risk. Methods Tuberculin skin test (TST) following BCG vaccination represents a standardized measure of a secondary T cell driven immune response. During a Norwegian tuberculosis screening program (1963-1975) Norwegian citizens born from 1910 to 1955 underwent TST. In those previously BCG vaccinated (median 7 years prior to TST), we related tuberculin skin tests to later ALS disease identified through validated Norwegian health registers. We fitted Cox proportional hazard models to investigate the association between tuberculin reactivity and ALS risk. Results Among 324,629 participants (52 % women) with median age 22 (IQR 10) years at tuberculosis screening, 496 (50 % women) later developed ALS. Hazard ratio for ALS was 0.74 (95% CI 0.57-0.95) for those who remained TST negative compared to those who mounted a positive TST. The association was strongest when time between BCG immunization and TST was short. The associations observed persisted for more than four decades after TST measurement. Conclusions Negative TST responses after BCG vaccination is associated with decreased long-term risk for ALS development, supporting a primary role for adaptive immunity in ALS development.
Collapse
Affiliation(s)
- Ola Nakken
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Anders Myhre Vaage
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hein Stigum
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Einar Heldal
- Norwegian Institute of Public Health, Oslo, Norway
| | - Haakon E. Meyer
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine and Global Health, University of Oslo, Oslo, Norway
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
The safety and immunogenicity of inactivated COVID-19 vaccine in old pulmonary tuberculosis patients. Eur J Clin Microbiol Infect Dis 2023; 42:503-512. [PMID: 36849838 PMCID: PMC9970849 DOI: 10.1007/s10096-023-04566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The immunogenicity and safety of vaccines against coronavirus disease 2019 (COVID-19) remain unknown in patients with a history of pulmonary tuberculosis (OPTB). Therefore, the safety and effectiveness of inactivated vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in patients with a history of PTB. The study cohort included 106 healthy controls and 93 adult patients with OPTB who received a two-dose vaccination. The study period was 21 to 105 days. Concentrations of antibodies (Abs) against receptor-binding domain (RBD) IgG and SARS-CoV-2 neutralizing Abs (NAbs) were measured, in addition to the frequencies of SARS-CoV-2-specific B and a portion T cells. The incidence of adverse events was similar between the OPTB patients and healthy controls. No severe adverse events occurred. Concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs in addition to the frequencies of RBD-specific memory B cells proportions were lower in OPTB patients than the healthy controls (all, p < 0.05), while the frequencies of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4+) cells were higher (p = 0.023). There was no obvious correlation between age and blood concentrations of Abs against RBD-IgG and CoV-2 neutralizing Abs, while immune responses were similar in the fibrosis and calcification groups. The period of time following full-course vaccination and lymphocyte counts were associated to anti-RBD-IgG responses. Inactivated COVID-19 vaccinations were well tolerated in OPTB patients, although immunogenicity was limited in this population. This study has been registered at ClinicalTrials.gov (NCT05043246).
Collapse
|
3
|
Stringari LL, Covre LP, da Silva FDC, de Oliveira VL, Campana MC, Hadad DJ, Palaci M, Salgame P, Dietze R, Gomes DCDO, Ribeiro-Rodrigues R. Increase of CD4+CD25highFoxP3+ cells impairs in vitro human microbicidal activity against Mycobacterium tuberculosis during latent and acute pulmonary tuberculosis. PLoS Negl Trop Dis 2021; 15:e0009605. [PMID: 34324509 PMCID: PMC8321116 DOI: 10.1371/journal.pntd.0009605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Background Regulatory T cells (Tregs) play a critical role during Mycobacterium tuberculosis (Mtb) infection, modulating host responses while neutralizing excessive inflammation. However, their impact on regulating host protective immunity is not completely understood. Here, we demonstrate that Treg cells abrogate the in vitro microbicidal activity against Mtb. Methods We evaluated the in vitro microbicidal activity of peripheral blood mononuclear cells (PBMCs) from patients with active tuberculosis (TB), individuals with latent tuberculosis infection (LTBI, TST+/IGRA+) and healthy control (HC, TST-/IGRA-) volunteers. PBMCs, depleted or not of CD4+CD25+ T-cells, were analyzed to determine frequency and influence on microbicidal activity during in vitro Mtb infection with four clinical isolates (S1, S5, R3, and R6) and one reference strain (H37Rv). Results The frequency of CD4+CD25highFoxP3+ cells were significantly higher in Mtb infected whole blood cultures from both TB patients and LTBI individuals when compared to HC. Data from CD4+CD25+ T-cells depletion demonstrate that increase of CD4+CD25highFoxP3+ is associated with an impairment of Th-1 responses and a diminished in vitro microbicidal activity of LTBI and TB groups. Conclusions Tregs restrict host anti-mycobacterial immunity during active disease and latent infection and thereby may contribute to both disease progression and pathogen persistence. Our immune system has an enormous capacity of recognizing and responding to foreign antigens and, likewise, presents an extremely efficient mechanism of controlling these responses. Here, we investigated how a specific cell type with regulatory abilities can interfere in the immunological response against tuberculosis bacillus. For this, we used blood samples from individuals sensitized with the bacillus and patients with active pulmonary tuberculosis to understand how these cells act and their impact on the host/parasite relationship in the development of the disease. We could observe the negative impact that such regulatory cells cause during the immune response against Mycobacterium tuberculosis, decreasing the control/elimination of the bacillus in asymptomatic individuals and patients with tuberculosis. We also observed a recovery in the immune response when Treg cells were removed during in vitro challenge, restoring the capacity of Mtb clearance. Thus, these regulatory cells, when present, may represent a possible facilitator of the asymptomatic permanence of the bacillus, or even of the development of the disease itself. These data allowed us to see latency and tuberculosis from a new angle and thus postulate new approaches to fight tuberculosis.
Collapse
Affiliation(s)
- Lorenzzo Lyrio Stringari
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- * E-mail: (LLS); (RR-R)
| | - Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | | | - David Jamil Hadad
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Moisés Palaci
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Padmini Salgame
- Center for Emerging Pathogens, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, New Jersey, United States of America
| | - Reynaldo Dietze
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Daniel Cláudio de Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Rodrigo Ribeiro-Rodrigues
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- * E-mail: (LLS); (RR-R)
| |
Collapse
|
4
|
Tang J, Huang Y, Cai Z, Ma Y. Mycobacterial heparin-binding hemagglutinin (HBHA)-induced interferon-γ release assay (IGRA) for discrimination of latent and active tuberculosis: A systematic review and meta-analysis. PLoS One 2021; 16:e0254571. [PMID: 34270559 PMCID: PMC8284824 DOI: 10.1371/journal.pone.0254571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The Mycobacterial heparin-binding hemagglutinin (HBHA) is an important latency-associated antigen that can be used to distinguish between latent tuberculosis infection (LTBI) and active tuberculosis (ATB). Although many studies were explored the efficiency of the HBHA-induced interferon-γ release assay (IGRA) in different populations, the clinical differential value of HBHA-IGRA is still controversial. Therefore, the aim of this study was to determine whether the HBHA-IGRA can be used as an efficient test for the discrimination of LTBI and ATB by a systematic review and meta-analysis. METHODS Relevant articles were retrieved from PubMed, Embase, Web of Science, and the Cochrane Library on Oct 18, 2020, with no start date limitation. The quality of each study was evaluated using Review Manager 5.4. The Stata MP v.14.0 software was used to combine sensitivity, specificity, likelihood ratio (LR), diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curve, and area under SROC (AUC) to evaluate the diagnostic value of HBHA-IGRA for discrimination of LTBI and ATB. Meta-regression and subgroup analysis were performed for the sources of heterogeneity based on the selection criteria for active TB, the population, the TB burden, the type of antigen, the type of sample, and the time of antigen stimulation. RESULTS A total of 13 studies (14 results) were included in this meta-analysis, including 603 ATB patients and 514 LTBI individuals. The pooled sensitivity and specificity of the HBHA-IGRA for discrimination of the LTBI and ATB were 0.70 (95% CI, 0.57~0.80) and 0.78 (95% CI, 0.71~0.84), respectively. The pooled positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were 3.15 (95%CI, 2.43~4.09), 0.39 (95% CI, 0.27~0.56), and 8.11 (95% CI, 4.81~13.67), respectively. The AUC was 0.81 (95% CI, 0.77~0.84). The subgroup analysis showed that the main source of heterogeneity was due to the HIV-infected population incorporated, and the different selection criteria of active TB subjects would also lead to the variation of the pooled sensitivity and specificity. Different TB burdens, HBHA antigen types, sample types, antigen stimulation time and BCG vaccination did not affect the heterogeneity in this analysis. CONCLUSION The HBHA-IGRA is a promising immunodiagnostic test for discrimination of latent and active TB, which can be added in commercial IGRAs to enhance the differential diagnostic performance.
Collapse
Affiliation(s)
- Jinhua Tang
- Department of Clinical Laboratory, Air Force Medical Centre, Air Force Medical University, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, Air Force Medical Centre, Air Force Medical University, Beijing, China
| | - Zheng Cai
- Department of Clinical Laboratory, Air Force Medical Centre, Air Force Medical University, Beijing, China
| | - Yueyun Ma
- Department of Clinical Laboratory, Air Force Medical Centre, Air Force Medical University, Beijing, China
| |
Collapse
|
5
|
Benhadou F, Dirix V, Domont F, Willaert F, Van Praet A, Locht C, Mascart F, Corbière V. Tuberculosis Risk Stratification of Psoriatic Patients Before Anti-TNF-α Treatment. Front Immunol 2021; 12:672894. [PMID: 34149708 PMCID: PMC8209474 DOI: 10.3389/fimmu.2021.672894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a skin inflammatory condition for which significant progress has been made in its management by the use of targeted biological drugs. Detection of latent M. tuberculosis infection (LTBI) is mandatory before starting biotherapy that is associated with reactivation risk. Together with evaluation of TB risk factors and chest radiographs, tuberculin skin tests (TST) and/or blood interferon-γ-release assays (IGRA), like the QuantiFERON (QFT), are usually performed to diagnose M. tuberculosis infection. Using this approach, 14/49 psoriatic patients prospectively included in this study were identified as LTBI (14 TST+, induration size ≥ 10mm, 8 QFT+), and 7/14 received prophylactic anti-TB treatment, the other 7 reporting past-treatment. As the specificity and sensitivity of these tests were challenged, we evaluated the added value of an IGRA in response to a mycobacterial antigen associated with latency, the heparin-binding haemagglutinin (HBHA). All but one TST+ patient had a positive HBHA-IGRA, indicating higher sensitivity than the QFT. The HBHA-IGRA was also positive for 12/35 TST-QFT- patients. Measurement for 15 psoriatic patients (12 with HBHA-IGRA+) of 8 chemokines in addition to IFN-γ revealed a broad array of HBHA-induced chemokines for TST+QFT- and TST-QFT- patients, compared to a more restricted pattern for TST+QFT+ patients. This allowed us to define subgroups within psoriatic patients characterized by different immune responses to M. tuberculosis antigens that may be associated to different risk levels of reactivation of the infection. This approach may help in prioritizing patients who should receive prophylactic anti-TB treatment before starting biotherapies in order to reduce their number.
Collapse
Affiliation(s)
- Farida Benhadou
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Violette Dirix
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Fanny Domont
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Fabienne Willaert
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| |
Collapse
|
6
|
Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, Torres M. Diagnosis for Latent Tuberculosis Infection: New Alternatives. Front Immunol 2020; 11:2006. [PMID: 33013856 PMCID: PMC7511583 DOI: 10.3389/fimmu.2020.02006] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Latent tuberculosis infection (LTBI) is a subclinical mycobacterial infection defined on the basis of cellular immune response to mycobacterial antigens. The tuberculin skin test (TST) and the interferon gamma release assay (IGRA) are currently used to establish the diagnosis of LTB. However, neither TST nor IGRA is useful to discriminate between active and latent tuberculosis. Moreover, these tests cannot be used to predict whether an individual with LTBI will develop active tuberculosis (TB) or whether therapy for LTBI could be effective to decrease the risk of developing active TB. Therefore, in this article, we review current approaches and some efforts to identify an immunological marker that could be useful in distinguishing LTBI from TB and in evaluating the effectiveness of treatment of LTB on the risk of progression to active TB.
Collapse
Affiliation(s)
- Claudia Carranza
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Sigifredo Pedraza-Sanchez
- Unidad de Bioquímica Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City, Mexico
| | | | - Martha Torres
- Departamento de Microbiología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Subdirección de Investigación Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
7
|
Keikha M, Soleimanpour S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020. [DOI: 10.1016/j.mgene.2019.100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
Ferrian S, Ross M, Conradie F, Vally Omar S, Ismail N, Little F, Kaplan G, Fallows D, Gray CM. Frequency of Circulating CD4 +Ki67 +HLA-DR - T Regulatory Cells Prior to Treatment for Multidrug Resistant Tuberculosis Can Differentiate the Severity of Disease and Predict Time to Culture Conversion. Front Immunol 2018; 9:2438. [PMID: 30410488 PMCID: PMC6209685 DOI: 10.3389/fimmu.2018.02438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Identifying a blood circulating cellular biomarker that can be used to assess severity of disease and predict the time to culture conversion (TCC) in patients with multidrug resistant tuberculosis (MDR-TB) would facilitate monitoring response to treatment and may be of value in the design of future drug trials. We report on the frequency of blood Ki67+HLA-DR- CD4+ T regulatory (Treg) cells in predicting microbiological outcome before initiating second-line treatment for MDR-TB. Fifty-one patients with MDR-TB were enrolled and followed over 18 months; a subset of patients was sputum culture (SC) negative at baseline (n = 9). SC positive patients were divided into two groups, based on median TCC: rapid responders (≤71 days TCC; n = 21) and slow responders (>71 days TCC; n = 21). Whole blood at baseline, months 2 and 6 was stimulated with M tuberculosis (Mtb) antigens and Treg cells were then identified as CD3+CD4+CD25hiFoxP3+CD127-CD69- and further delineated as Ki67+HLA-DR- Treg. The frequency of these cells was significantly enlarged at baseline in SC positive relative to SC negative and smear positive relative to smear negative patients and in those with lung cavitation. This difference was further supported by unsupervised hierarchical clustering showing a significant grouping at baseline of total and early differentiated memory Treg cells in slow responders. Conversely, there was a clustering of a lower proportion of Treg cells and activated IFNγ-expressing T cells at baseline in the rapid responders. Examining changes over time revealed a more gradual reduction of Treg cells in slow responders relative to rapid responders to treatment. Receiver operating curve analysis showed that baseline Mtb-stimulated Ki67+HLA-DR- Treg cells could predict the TCC of MDR-TB treatment response with 81.2% sensitivity and 85% specificity (AUC of 0.87, p < 0.0001), but this was not the case after 2 months of treatment. In conclusion, our data show that the frequency of a highly defined Mtb-stimulated blood Treg cell population at baseline can discriminate MDR-TB disease severity and predict time to culture clearance.
Collapse
Affiliation(s)
- Selena Ferrian
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Melinda Ross
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Francesca Conradie
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shaheed Vally Omar
- Centre for Tuberculosis, National Institute of Communicable Diseases, Johannesburg, South Africa
| | - Nazir Ismail
- Centre for Tuberculosis, National Institute of Communicable Diseases, Johannesburg, South Africa.,Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Gilla Kaplan
- Public Health Research Institute, Rutgers University, Newark, NJ, United States
| | - Dorothy Fallows
- Public Health Research Institute, Rutgers University, Newark, NJ, United States
| | - Clive M Gray
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Services, Cape Town, South Africa
| |
Collapse
|
9
|
Zhou Y, Du J, Hou HY, Lu YF, Yu J, Mao LY, Wang F, Sun ZY. Application of ImmunoScore Model for the Differentiation between Active Tuberculosis and Latent Tuberculosis Infection as Well as Monitoring Anti-tuberculosis Therapy. Front Cell Infect Microbiol 2017; 7:457. [PMID: 29164066 PMCID: PMC5670161 DOI: 10.3389/fcimb.2017.00457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/12/2017] [Indexed: 01/17/2023] Open
Abstract
Tuberculosis (TB) is a leading global public health problem. To achieve the end TB strategy, non-invasive markers for diagnosis and treatment monitoring of TB disease are urgently needed, especially in high-endemic countries such as China. Interferon-gamma release assays (IGRAs) and tuberculin skin test (TST), frequently used immunological methods for TB detection, are intrinsically unable to discriminate active tuberculosis (ATB) from latent tuberculosis infection (LTBI). Thus, the specificity of these methods in the diagnosis of ATB is dependent upon the local prevalence of LTBI. The pathogen-detecting methods such as acid-fast staining and culture, all have limitations in clinical application. ImmunoScore (IS) is a new promising prognostic tool which was commonly used in tumor. However, the importance of host immunity has also been demonstrated in TB pathogenesis, which implies the possibility of using IS model for ATB diagnosis and therapy monitoring. In the present study, we focused on the performance of IS model in the differentiation between ATB and LTBI and in treatment monitoring of TB disease. We have totally screened five immunological markers (four non-specific markers and one TB-specific marker) and successfully established IS model by using Lasso logistic regression analysis. As expected, the IS model can effectively distinguish ATB from LTBI (with a sensitivity of 95.7% and a specificity of 92.1%) and also has potential value in the treatment monitoring of TB disease.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Du
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan, China
| | - Hong-Yan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Fang Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Yan Mao
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Yong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Auld SC, Lee SH, Click ES, Miramontes R, Day CL, Gandhi NR, Heilig CM. IFN-γ Release Assay Result Is Associated with Disease Site and Death in Active Tuberculosis. Ann Am Thorac Soc 2016; 13:2151-2158. [PMID: 27580246 PMCID: PMC5466186 DOI: 10.1513/annalsats.201606-482oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
RATIONALE The IFN-γ release assays and tuberculin skin tests are used to support the diagnosis of both latent and active tuberculosis. However, we previously demonstrated that a negative tuberculin test in active tuberculosis is associated with disseminated disease and death. It is unknown whether the same associations exist for IFN-γ release assays. OBJECTIVES To determine the association between these tests and site of tuberculosis and death among persons with active tuberculosis. METHODS We analyzed IFN-γ release assays and tuberculin test results for all persons with culture-confirmed tuberculosis reported to the U.S. National Tuberculosis Surveillance System from 2010 to 2014. We used logistic regression to calculate the association between these tests and site of disease and death. MEASUREMENTS AND MAIN RESULTS A total of 24,803 persons with culture-confirmed tuberculosis had either of these test results available for analysis. Persons with a positive tuberculin test had lower odds of disseminated disease (i.e., miliary or combined pulmonary and extrapulmonary disease), but there was no difference in the odds of disseminated disease with a positive IFN-γ release assay. However, persons who were positive to either of these tests had lower odds of death. An indeterminate IFN-γ release assay result was associated with greater odds of both disseminated disease and death. CONCLUSIONS Despite perceived equivalence in clinical practice, IFN-γ release assays and tuberculin test results have different associations with tuberculosis site, yet similar associations with the risk of death. Furthermore, an indeterminate IFN-γ release assay result in a person with active tuberculosis is not unimportant, and rather carries greater odds of disseminated disease and death. Prospective study may improve our understanding of the underlying mechanisms by which these tests are associated with disease localization and death.
Collapse
Affiliation(s)
- Sara C. Auld
- Division of Pulmonary and Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Scott H. Lee
- Center for Surveillance, Epidemiology, and Laboratory Services
| | | | - Roque Miramontes
- Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cheryl L. Day
- Emory Vaccine Center and Department of Microbiology, Emory University, Atlanta, Georgia; and
| | - Neel R. Gandhi
- Departments of Epidemiology, Global Health, and Medicine, Emory University Rollins School of Public Health and School of Medicine, Atlanta, Georgia
| | | |
Collapse
|