1
|
Dotta L, Todaro F, Baronio M, Giacomelli M, Pinelli M, Giambarda M, Brognoli B, Greco S, Rota F, Cortesi M, Soresina A, Moratto D, Tomasi C, Ferraro RM, Giliani S, Badolato R. Patients with STAT1 Gain-of-function Mutations Display Increased Apoptosis which is Reversed by the JAK Inhibitor Ruxolitinib. J Clin Immunol 2024; 44:85. [PMID: 38578354 PMCID: PMC10997685 DOI: 10.1007/s10875-024-01684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION The signal transducer and activator of transcription (STAT1) gain-of-function (GOF) syndrome accounts for most cases of chronic mucocutaneous candidiasis but is characterized by a broader clinical phenotype that may include bacterial, viral, or invasive fungal infections, autoimmunity, autoinflammatory manifestations, vascular complications, or malignancies. The severity of lymphopenia may vary and influence the infectious morbidity. METHODS In our cohort of seven STAT1-GOF patients, we investigated the mechanisms that may determine T lymphopenia, we characterized the interferon gene signature (IGS) and analyzed the effect of ruxolitinib in reverting the immune dysregulation. RESULTS STAT1-GOF patients exhibited increased T lymphocyte apoptosis that was significantly augmented in both resting conditions and following stimulation with mitogens and IFNα, as evaluated by flow cytometry by Annexin V/ Propidium iodide assay. The JAK inhibitor ruxolitinib significantly reduced the IFNα-induced hyperphosphorylation of STAT1 and reverted the stimulation-induced T-cell apoptosis, in vitro. In two adult STAT1-GOF patients, the JAKinib treatment ameliorated chronic mucocutaneous candidiasis and lymphopenia. Most STAT1-GOF patients, particularly those who had autoimmunity, presented increased IGS that significantly decreased in the two patients during ruxolitinib treatment. CONCLUSION In STAT1-GOF patients, T lymphocyte apoptosis is increased, and T lymphopenia may determine higher risk of severe infections. The JAKinib target therapy should be evaluated to treat severe chronic candidiasis and lymphopenia, and to downregulate the IFNs in patients with autoinflammatory or autoimmune manifestations.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy.
| | - Francesca Todaro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Baronio
- Department of Clinical and Experimental Sciencies, University of Brescia, Brescia, Italy
| | - Mauro Giacomelli
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marinella Pinelli
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Martina Giambarda
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Beatrice Brognoli
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Silvia Greco
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Francesca Rota
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Manuela Cortesi
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Pediatrics, ASST Spedali Civili of Brescia and University of Brescia, Brescia, Italy
| | - Daniele Moratto
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cesare Tomasi
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Department of Pediatrics, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Wang L, Luo Y, Li X, Li Y, Xia Y, He T, Huang Y, Xu Y, Yang Z, Ling J, Weng R, Zhu X, Qi Z, Yang J. Talaromyces marneffei Infections in 8 Chinese Children with Inborn Errors of Immunity. Mycopathologia 2022; 187:455-467. [PMID: 36180657 PMCID: PMC9524311 DOI: 10.1007/s11046-022-00659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Talaromyces marneffei (TM) is an opportunistic fungus leading to multi-organ damages and poor prognosis in immunocompromised individuals. TM infections in children are rare and our knowledge to TM infection is insufficient. To investigate the clinical characteristics of TM-infected children and to explore the underlying mechanisms for host against TM, we analysed TM-infected patients diagnosed in our hospital. METHODS Eight patients with TM infections have been identified in Shenzhen Children's Hospital during 2017-2021. Clinical data were collected from medical records. Immunological features were evaluated by flow cytometry. Literatures were also reviewed to summarize the reported inborn errors of immunity (IEIs) with TM infections. RESULTS All 8 children were HIV-negative. The most common symptom of TM infections was fever (8/8), followed by weight loss (7/8), pneumonia (7/8), hepatomegaly (7/8), splenomegaly (6/8), anemia (6/8), lymphadenopathy (5/8), thrombocytopenia (3/8), diarrhea (3/8), rashes or skin lesions (3/8), and osteolytic lesions (1/8). Five children died during the follow-ups. CD3+ T cells were decreased in 6 patients. Eight patients had reduced natural killer cells. All patients went gene sequencing and were finally diagnosed as IEIs, including STAT1 gain-of-function, IL-2 receptor common gamma chain deficiency, adenosine deaminase deficiency, CD40 ligand deficiency, and STAT3 deficiency. Another 4 types of IEIs (CARD9, IFN-γ receptor 1, RelB, and NFKB2 deficiency), have been reported with TM infections based on literature review. CONCLUSION TM infections resulted in systemic injuries and high mortality. The spectrum of IEIs underlying TM infections indicated that T cell-mediated immunity, IFN-γ, IL-17 signalings and NF-κB pathways were important for host responses against TM infection. In reverse, for HIV-negative children without other secondary immunodeficiencies, IEIs should be considered in TM-infected children.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ying Luo
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Xiaolin Li
- Department of Pediatric Rheumatology and Immunology, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, 528403, China
| | - Yixian Li
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yu Xia
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Tingyan He
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yanyan Huang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Yongbin Xu
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Zhi Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jiayun Ling
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Ruohang Weng
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Xiaona Zhu
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Zhongxiang Qi
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China
| | - Jun Yang
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518026, China.
| |
Collapse
|
3
|
Lyra PT, Falcão ACAM, Cruz RA, Coelho AVC, Souza EDS, Alencar LCAD, Oliveira JB. Gain-of-function STAT1 mutation and visceral leishmaniasis. EINSTEIN-SAO PAULO 2022; 20:eRC0048. [PMID: 36102410 PMCID: PMC9444186 DOI: 10.31744/einstein_journal/2022rc0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
|
4
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Phan QT, Lin J, Solis NV, Eng M, Swidergall M, Wang F, Li S, Gaffen SL, Chou TF, Filler SG. The Globular C1q Receptor Is Required for Epidermal Growth Factor Receptor Signaling during Candida albicans Infection. mBio 2021; 12:e0271621. [PMID: 34724825 PMCID: PMC8561387 DOI: 10.1128/mbio.02716-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1β (IL-1β) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1β, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.
Collapse
Affiliation(s)
- Quynh T. Phan
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jianfeng Lin
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Norma V. Solis
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Michael Eng
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Marc Swidergall
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Feng Wang
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Shan Li
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Sarah L. Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tsui-Fen Chou
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
6
|
Dabas A, Arora P, Kumar S, Kapoor S, Yadav S. STAT 1 mutation associated with chronic mucocutaneous candidiasis and pancytopenia. Pediatr Allergy Immunol 2021; 32:798-800. [PMID: 33421196 DOI: 10.1111/pai.13451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Aashima Dabas
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Prerna Arora
- Department of Pathology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Somesh Kumar
- Division of Genetics, Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Seema Kapoor
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India.,Division of Genetics, Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Sangeeta Yadav
- Department of Pediatrics, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
7
|
Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, Puel A. Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy. J Clin Immunol 2020; 40:1065-1081. [PMID: 32852681 DOI: 10.1007/s10875-020-00847-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Stephanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France.
- Imagine Institute, University of Paris, Paris, France.
| |
Collapse
|
8
|
Huh HJ, Jhun BW, Choi SR, Kim YJ, Yun SA, Nham E, Kong T, Ki CS, Koh WJ. Bronchiectasis and Recurrent Respiratory Infections with a De Novo STAT1 Gain-of-Function Variant: First Case in Korea. Yonsei Med J 2018; 59:1004-1007. [PMID: 30187709 PMCID: PMC6127433 DOI: 10.3349/ymj.2018.59.8.1004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022] Open
Abstract
Bronchiectasis is a chronic disease characterized by airway infection and inflammation, leading to permanent dilation of the bronchi. Evaluation of underlying etiology is important in managing young bronchiectasis patients with recurrent infections caused by unusual pathogens. The signal transducer and activator of transcription 1 (STAT1) protein plays a key role in STAT signaling and immune system regulation. Heterozygotes for gain-of-function (GOF) alleles of the STAT1 gene usually display autosomal dominant chronic mucocutaneous candidiasis (CMC) and a wide range of clinical features, such as bronchiectasis. Here, we report on a patient with CMC and bronchiectasis with various types of infections who carried a pathogenic variant of the STAT1 gene. The 24-year-old female presented with recurrent respiratory bacterial and nontuberculous mycobacterial infections complicated by severe bronchiectasis and CMC. Whole-exome sequencing revealed a c.800C>T (p.Ala267Val) heterozygous mutation in the STAT1 gene. Further analysis by Sanger sequencing of STAT1 from the patient and her parents revealed the patient had a de novo occurrence of the variant. This is the first report of a Korean patient with a GOF pathogenic variant in STAT1. Physicians should be aware of the existence of this variant as a genetic factor associated with CMC and bronchiectasis complicated by recurrent infection.
Collapse
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sae Rom Choi
- Division of Pediatric Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yae Jean Kim
- Division of Pediatric Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Eliel Nham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Taehwan Kong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Won Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
An update on gain-of-function mutations in primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol 2018; 17:391-397. [PMID: 29040208 DOI: 10.1097/aci.0000000000000401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Most primary immunodeficiencies described since 1952 were associated with loss-of-function defects. With the advent and popularization of unbiased next-generation sequencing diagnostic approaches followed by functional validation techniques, many gain-of-function mutations leading to immunodeficiency have also been identified. This review highlights the updates on pathophysiology mechanisms and new therapeutic approaches involving primary immunodeficiencies because of gain-of-function mutations. RECENT FINDINGS The more recent developments related to gain-of-function primary immunodeficiencies mostly involving increased infection susceptibility but also immune dysregulation and autoimmunity, were reviewed. Updates regarding pathophysiology mechanisms, different mutation types, clinical features, laboratory markers, current and potential new treatments on patients with caspase recruitment domain family member 11, signal transducer and activator of transcription 1, signal transducer and activator of transcription 3, phosphatidylinositol-4,5-biphosphate 3-kinase catalytic 110, phosphatidylinositol-4,5-biphosphate 3-kinase regulatory subunit 1, chemokine C-X-C motif receptor 4, sterile α motif domain containing 9-like, and nuclear factor κ-B subunit 2 gain-of-function mutations are reviewed for each disease. SUMMARY With the identification of gain-of-function mutations as a cause of immunodeficiency, new genetic pathophysiology mechanisms unveiled and new-targeted therapeutic approaches can be explored as potential rescue treatments for these diseases.
Collapse
|
11
|
Khosravi AR, Mansouri P, Saffarian Z, Vahedi G, Nikaein D. Chronic mucocutaneous candidiasis, a case study and literature review. J Mycol Med 2018; 28:206-210. [PMID: 29500032 DOI: 10.1016/j.mycmed.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 10/17/2022]
Abstract
Chronic mucocutaneous candidiasis (CMC) is a clinically heterogeneous disease. Some immunologic and hormonal abnormalities have been associated with CMC. The factors that predispose host to CMC infection could be autosomal or acquisitive. The disease usually occurs in childhood. Here, we reviewed the published literature on chronic mucocutaneous candidiasis and a four years old girl is presented with CMC. She had a history of recurrent thrush and otomycosis since the age of one. Candida albicans was detected in skin scraping and biopsy samples. Serum iron was low. TSH hormone level was high and T4 level was low. Giardia cysts were found in stool sample. Mucocutaneous and nail manifestations of the disease were disappeared after a period of Itraconazole therapy.
Collapse
Affiliation(s)
- A R Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - P Mansouri
- Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Z Saffarian
- Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - G Vahedi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - D Nikaein
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr 2017; 29:711-717. [PMID: 28914637 DOI: 10.1097/mop.0000000000000551] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To describe primary immunodeficiencies caused by gain-of-function (GOF) mutations of signal transducer and activator of transcription (STAT) genes, a group of genetically determined disorders characterized by susceptibility to infections and, in many cases, autoimmune manifestations. RECENT FINDINGS GOF mutations affecting STAT1 result in increased STAT tyrosine phosphorylation and secondarily increased response to STAT1-signaling cytokines, such as interferons. In contrast, STAT3 hyperactivity is not usually related to hyperphosphorylation but rather to increased STAT3-mediated transcriptional activity. In both cases, heterozygous STAT1 and STAT3 GOF mutations trigger a distinct set of genes in target cells that lead to abnormal functioning of antimicrobial response and/or autoimmunity and result in autosomal dominant diseases. SUMMARY Clinical manifestations of patients with STAT1 GOF are characterized by mucocutaneous candidiasis and recurrent lower tract respiratory infections. In addition, many patients have thyroiditis, type 1 diabetes mellitus, autoimmune cytopenias, cancer or aneurysms. Patients with germline STAT3 GOF mutations have an increased frequency of early-onset multiorgan autoimmunity (i.e. autoimmune enteropathy, type 1 diabetes mellitus, autoimmune interstitial lung disease and autoimmune cytopenias), lymphoproliferation, short stature and, less frequently, severe recurrent infections. Treatment options range from antimicrobial therapy, intravenous or subcutaneous immunoglobulin and immunosuppressive drugs. Some patients with STAT1 GOF disorder have undergone hematopoietic stem cell transplantation, although these have been difficult because of the underlying proinflammatory milieu from the mutation.
Collapse
|
13
|
Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Dadak M, Jacobs R, Skuljec J, Jirmo AC, Yildiz Ö, Donnerstag F, Baerlecken NT, Schmidt RE, Lanfermann H, Skripuletz T, Schwenkenbecher P, Kleinschnitz C, Tumani H, Stangel M, Pul R. Gain-of-function STAT1 mutations are associated with intracranial aneurysms. Clin Immunol 2017; 178:79-85. [PMID: 28161409 DOI: 10.1016/j.clim.2017.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 12/04/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Chronic mucocutaneous candidiasis, characterized by persistent or recurrent fungal infections, represents the clinical hallmark in gain-of-function (GOF) signal transducer and activator of transcription 1 (STAT1) mutation carriers. Several cases of intracranial aneurysms have been reported in patients with GOF STAT1 mutation but the paucity of reported cases likely suggested this association still as serendipity. In order to endorse this association, we link the development of intracranial aneurysms with STAT1 GOF mutation by presenting the two different cases of a patient and her mother, and demonstrate upregulated phosphorylated STAT4 and IL-12 receptor β1 upon stimulation in patient's blood cells. We also detected increased transforming growth factor (TGF)-β type 2 receptor expression, particularly in CD14+ cells, and a slightly higher phosphorylation rate of SMAD3. In addition, the mother of the patient developed disseminated bacille Calmette-Guérin disease after vaccination, speculating that GOF STAT1 mutations may confer a predisposition to weakly virulent mycobacteria.
Collapse
Affiliation(s)
- Mete Dadak
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany
| | - Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany
| | - Özlem Yildiz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Frank Donnerstag
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Reinhold Ernst Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Refik Pul
- Department of Neurology, University Clinic Essen, Essen, Germany.
| |
Collapse
|
15
|
Tabellini G, Vairo D, Scomodon O, Tamassia N, Ferraro RM, Patrizi O, Gasperini S, Soresina A, Giardino G, Pignata C, Lougaris V, Plebani A, Dotta L, Cassatella MA, Parolini S, Badolato R. Impaired natural killer cell functions in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations. J Allergy Clin Immunol 2017; 140:553-564.e4. [PMID: 28069426 DOI: 10.1016/j.jaci.2016.10.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/19/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gain-of-function (GOF) mutations affecting the coiled-coil domain or the DNA-binding domain of signal transducer and activator of transcription 1 (STAT1) cause chronic mucocutaneous candidiasis disease. This condition is characterized by fungal and bacterial infections caused by impaired generation of TH17 cells; meanwhile, some patients with chronic mucocutaneous candidiasis disease might also have viral or intracellular pathogen infections. OBJECTIVE We sought to investigate the effect of STAT1 GOF mutations on the functioning of natural killer (NK) cells. METHODS Because STAT1 is involved in the signaling response to several cytokines, we studied NK cell functional activities and STAT1 signaling in 8 patients with STAT1 GOF mutations. RESULTS Functional analysis of NK cells shows a significant impairment of cytolytic and degranulation activities in patients with STAT1 GOF mutations. Moreover, NK cells from these patients display lower production of IFN-γ in response to IL-15 and reduced proliferation after stimulation with IL-2 or IL-15, suggesting that STAT5 signaling is affected. In addition, signaling studies demonstrate that the increased phosphorylation of STAT1 in response to IFN-α is associated with detectable activation of STAT1 and increased STAT1 binding to the interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) promoter in response to IL-15, whereas STAT5 phosphorylation and DNA binding to IL-2 receptor α (IL2RA) are reduced or not affected in response to the same cytokine. CONCLUSION These observations suggest that persistent activation of STAT1 might affect NK cell proliferation and functional activities.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Omar Scomodon
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Rosalba Monica Ferraro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy
| | - Ornella Patrizi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | | | - Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Vassilios Lougaris
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Laura Dotta
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Institute of Molecular Medicine "Angelo Nocivelli," University of Brescia, Brescia, Italy; Department of Experimental and Clinical Sciences, University of Brescia, Brescia, Italy.
| |
Collapse
|
16
|
Kagawa R, Fujiki R, Tsumura M, Sakata S, Nishimura S, Itan Y, Kong XF, Kato Z, Ohnishi H, Hirata O, Saito S, Ikeda M, El Baghdadi J, Bousfiha A, Fujiwara K, Oleastro M, Yancoski J, Perez L, Danielian S, Ailal F, Takada H, Hara T, Puel A, Boisson-Dupuis S, Bustamante J, Casanova JL, Ohara O, Okada S, Kobayashi M. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants. J Allergy Clin Immunol 2016; 140:232-241. [PMID: 28011069 DOI: 10.1016/j.jaci.2016.09.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. OBJECTIVE We estimated variations in the CCD/DBD of STAT1. METHODS We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. RESULTS Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. CONCLUSION The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases.
Collapse
Affiliation(s)
- Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ryoji Fujiki
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sonoko Sakata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Zenichiro Kato
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Satoshi Saito
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Maiko Ikeda
- Department of Pediatrics, Okazaki City Hospital, Aichi, Japan
| | | | - Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Kaori Fujiwara
- Department of Pediatrics, National Hospital Organization Fukuyama Medical Center, Hiroshima, Japan
| | - Matias Oleastro
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Judith Yancoski
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Laura Perez
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Silvia Danielian
- Department of Immunology, "Juan Pedro Garrahan" National Hospital of Pediatrics, Buenos Aires, Argentina
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco; Clinical Immunology Unit, Department of Pediatric Infectious Diseases, Averroes University Hospital, Casablanca, Morocco
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| |
Collapse
|
17
|
Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A 2016; 113:E8277-E8285. [PMID: 27930337 DOI: 10.1073/pnas.1618300114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or persistent infection of the skin, nails, and/or mucosae with commensal Candida species. The first genetic etiology of isolated CMC-autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency-was reported in 2011, in a single patient. We report here 21 patients with complete AR IL-17RA deficiency, including this first patient. Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8 of which create a premature stop codon upstream from the transmembrane domain and have been predicted and/or shown to prevent expression of the receptor on the surface of circulating leukocytes and dermal fibroblasts. Three other mutant alleles create a premature stop codon downstream from the transmembrane domain, one of which encodes a surface-expressed receptor. Finally, the only known missense allele (p.D387N) also encodes a surface-expressed receptor. All of the alleles tested abolish cellular responses to IL-17A and -17F homodimers and heterodimers in fibroblasts and to IL-17E/IL-25 in leukocytes. The patients are currently aged from 2 to 35 y and originate from 12 unrelated kindreds. All had their first CMC episode by 6 mo of age. Fourteen patients presented various forms of staphylococcal skin disease. Eight were also prone to various bacterial infections of the respiratory tract. Human IL-17RA is, thus, essential for mucocutaneous immunity to Candida and Staphylococcus, but otherwise largely redundant. A diagnosis of AR IL-17RA deficiency should be considered in children or adults with CMC, cutaneous staphylococcal disease, or both, even if IL-17RA is detected on the cell surface.
Collapse
|
18
|
Ueki M, Yamada M, Ito K, Tozawa Y, Morino S, Horikoshi Y, Takada H, Abdrabou SSMA, Takezaki S, Kobayashi I, Ariga T. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin Immunol 2016; 174:24-31. [PMID: 27856304 DOI: 10.1016/j.clim.2016.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/02/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Heterozygous dominant-negative mutations of STAT1 are responsible for autosomal-dominant Mendelian susceptibility to mycobacterial diseases (AD-MSMD). So far, only 7 mutations have been previously described and are localized to 3 domains: the DNA-binding domain, the SH2 domain, and the tail segment. In this study, we demonstrated the first coiled-coil domain (CCD) mutation of c.749G>C, p.G250A (G250A) in STAT1 as a genetic cause of AD-MSMD in a patient with mycobacterial multiple osteomyelitis. This de novo heterozygous mutation was shown to have a dominant-negative effect on the gamma-activated sequence (GAS) transcriptional activity following IFN-γ stimulation, which could be attributable to the abolished phosphorylation of STAT1 from the wild-type (WT) allele. The three-dimensional structure of STAT1 revealed the G250 residue was located distant from a cluster of residues affected by gain-of-function mutations responsible for chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Masahiro Ueki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Kenta Ito
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Yusuke Tozawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Saeko Morino
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Yuho Horikoshi
- Division of Infectious Diseases, Department of Pediatrics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shunichiro Takezaki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Kobayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Gallo V, Dotta L, Giardino G, Cirillo E, Lougaris V, D'Assante R, Prandini A, Consolini R, Farrow EG, Thiffault I, Saunders CJ, Leonardi A, Plebani A, Badolato R, Pignata C. Diagnostics of Primary Immunodeficiencies through Next-Generation Sequencing. Front Immunol 2016; 7:466. [PMID: 27872624 PMCID: PMC5098274 DOI: 10.3389/fimmu.2016.00466] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PIDs) have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS) technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. OBJECTIVE To evaluate the role of targeted NGS and whole exome sequencing (WES) in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures. METHODS We retrospectively analyzed genetic variants identified through targeted NGS or WES in 45 patients with complex PID of unknown etiology. RESULTS Forty-seven variants were identified using targeted NGS, while 5 were identified using WES. Newly identified genetic variants were classified into four groups: (I) variations associated with a well-defined PID, (II) variations associated with atypical features of a well-defined PID, (III) functionally relevant variations potentially involved in the immunological features, and (IV) non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%). Among them, four patients presented with a typical well-defined PID. In the remaining three cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder. CONCLUSION NGS technologies represent a cost-effective and rapid first-line genetic approach for the evaluation of complex PIDs. WES, despite a moderate higher cost compared to targeted, is emerging as a valuable tool to reach in a timely manner, a PID diagnosis with a considerable potential to draw genotype-phenotype correlation. Nevertheless, a large fraction of patients still remains without a conclusive diagnosis. In these patients, the sum of non-diagnostic variants might be proven informative in future studies with larger cohorts of patients.
Collapse
Affiliation(s)
- Vera Gallo
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Laura Dotta
- Department of Clinical and Experimental Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia , Brescia , Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia , Brescia , Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| | - Alberto Prandini
- Department of Clinical and Experimental Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia , Brescia , Italy
| | - Rita Consolini
- Department of Clinical and Experimental Medicine, University of Pisa , Pisa , Italy
| | - Emily G Farrow
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital , Kansas City, MO , USA
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital , Kansas City, MO , USA
| | - Carol J Saunders
- Center for Pediatric Genomic Medicine, Children's Mercy Hospital , Kansas City, MO , USA
| | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University , Naples , Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia , Brescia , Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Medicine, "Angelo Nocivelli" Institute for Molecular Medicine, University of Brescia , Brescia , Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University , Naples , Italy
| |
Collapse
|
20
|
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016. [PMID: 27114460 DOI: 10.1182/blood-2015-11-679902.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.
Collapse
|
21
|
Ciuca S, Badea M, Pozna E, Pana I, Kiss A, Floroian L, Semenescu A, Cotrut C, Moga M, Vladescu A. Evaluation of Ag containing hydroxyapatite coatings to the Candida albicans infection. J Microbiol Methods 2016; 125:12-8. [DOI: 10.1016/j.mimet.2016.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
|
22
|
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood 2016; 127:3154-64. [PMID: 27114460 DOI: 10.1182/blood-2015-11-679902] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/01/2016] [Indexed: 02/06/2023] Open
Abstract
Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis.
Collapse
|
23
|
Dotta L, Scomodon O, Padoan R, Timpano S, Plebani A, Soresina A, Lougaris V, Concolino D, Nicoletti A, Giardino G, Licari A, Marseglia G, Pignata C, Tamassia N, Facchetti F, Vairo D, Badolato R. Clinical and immunological data of nine patients with chronic mucocutaneous candidiasis disease. Data Brief 2016; 7:311-5. [PMID: 26981552 PMCID: PMC4777981 DOI: 10.1016/j.dib.2016.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 11/28/2022] Open
Abstract
This paper describes the heterogeneous clinical phenotype of a cohort of nine patients diagnosed with heterozygous mutations in STAT1. We report data of extended immunophenotyping over time and we show lung damage in four patients. The increased phosphorylation of STAT1 in response to IFNγ and IFNα stimulation proves the gain-of-function nature of the defects. The data are supplemental to our original article concurrently published “Clinical heterogeneity of dominant chronic mucocutaneous candidiasis disease: presenting as treatment-resistant candidiasis and chronic lung disease” [1], where additional results and interpretation of our research can be found.
Collapse
Affiliation(s)
- Laura Dotta
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli", University of Brescia, Brescia, Italy
| | - Omar Scomodon
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli", University of Brescia, Brescia, Italy
| | - Rita Padoan
- Unit of Paediatric Pneumonology, Spedali Civili of Brescia, Brescia, Italy
| | - Silviana Timpano
- Unit of Paediatric Pneumonology, Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli", University of Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli", University of Brescia, Brescia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli", University of Brescia, Brescia, Italy
| | - Daniela Concolino
- Department of Paediatrics, University of Catanzaro, Catanzaro, Italy
| | - Angela Nicoletti
- Department of Paediatrics, University of Catanzaro, Catanzaro, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Amelia Licari
- Department of Paediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gianluigi Marseglia
- Department of Paediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Nicola Tamassia
- Department of Medicine, General Pathology Unit, University of Verona, Verona, Italy
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia, Brescia, Italy
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli", University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Giardino G, Gallo V, Prencipe R, Gaudino G, Romano R, De Cataldis M, Lorello P, Palamaro L, Di Giacomo C, Capalbo D, Cirillo E, D'Assante R, Pignata C. Unbalanced Immune System: Immunodeficiencies and Autoimmunity. Front Pediatr 2016; 4:107. [PMID: 27766253 PMCID: PMC5052255 DOI: 10.3389/fped.2016.00107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023] Open
Abstract
Increased risk of developing autoimmune manifestations has been identified in different primary immunodeficiencies (PIDs). In such conditions, autoimmunity and immune deficiency represent intertwined phenomena that reflect inadequate immune function. Autoimmunity in PIDs may be caused by different mechanisms, including defects of tolerance to self-antigens and persistent stimulation as a result of the inability to eradicate antigens. This general immune dysregulation leads to compensatory and exaggerated chronic inflammatory responses that lead to tissue damage and autoimmunity. Each PID may be characterized by distinct, peculiar autoimmune manifestations. Moreover, different pathogenetic mechanisms may underlie autoimmunity in PID. In this review, the main autoimmune manifestations observed in different PID, including humoral immunodeficiencies, combined immunodeficiencies, and syndromes with immunodeficiencies, are summarized. When possible, the pathogenetic mechanism underlying autoimmunity in a specific PID has been explained.
Collapse
Affiliation(s)
- Giuliana Giardino
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Vera Gallo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Rosaria Prencipe
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Giovanni Gaudino
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Marco De Cataldis
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Paola Lorello
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Loredana Palamaro
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Chiara Di Giacomo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Donatella Capalbo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Federico II University of Naples , Naples , Italy
| |
Collapse
|