1
|
Zhang L, Feng L, Shi H, Niu W, Wang Y, Bu B, Liu Y, Bao X, Song W, Jin H, Sun Y. Preimplantation genetic testing for four families with severe combined immunodeficiency: Three unaffected livebirths. Orphanet J Rare Dis 2025; 20:14. [PMID: 39789600 PMCID: PMC11720562 DOI: 10.1186/s13023-024-03525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Severe combined immunodeficiency (SCID) is a set of rare monogenic inherited diseases that together represent the most severe form of the primary immunodeficiency disease phenotype. Preimplantation genetic testing for monogenic defects (PGT-M) is an effective reproductive technology strategy to prevent disease-causing gene mutations from being transmitted to offspring. The aim of this study was to report the use of PGT-M strategy based on karyomapping in four families to avoid the birth of SCID children. METHODS Four couples underwent the PGT-M strategy due to SCID. The strategy of PGT-M started with a biopsy of the trophectoderm cells of embryos, and the whole genome was amplified by multiple replacement amplification (MDA). Then, the single nucleotide polymorphisms (SNPs) in the region upstream and downstream of the mutation site were subsequently identified via karyomapping, and the results were analyzed via SNPs linkage analysis. The aneuploids of the embryos were identified simultaneously. Finally, prenatal amniocentesis was used to verify the validity of the PGT-M results. RESULTS We identified three novel variants (case1: IL2RG c.720_726delGAGCCAC; case 3: RAG2 c.770 C > T; and case 4: LIG4 c.1347 A > T). All four couples with SCID pathogenic gene mutations were subjected to karyomapping linkage analysis, and embryos with the pathogenic gene mutation were successfully identified. Euploid blastocysts without pathogenic alleles were transplanted, and healthy offspring were ultimately born. Prenatal diagnosis also confirmed the validity of our results. CONCLUSION This study revealed that karyomapping is an efficient approach for identifying SCID. Through PGT-M with karyomapping linkage analysis, healthy babies were born to families carrying mutations in the SCID pathogenic gene.
Collapse
Affiliation(s)
- Lingyun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lei Feng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bei Bu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Liongue C, Ratnayake T, Basheer F, Ward AC. Janus Kinase 3 (JAK3): A Critical Conserved Node in Immunity Disrupted in Immune Cell Cancer and Immunodeficiency. Int J Mol Sci 2024; 25:2977. [PMID: 38474223 DOI: 10.3390/ijms25052977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The Janus kinase (JAK) family is a small group of protein tyrosine kinases that represent a central component of intracellular signaling downstream from a myriad of cytokine receptors. The JAK3 family member performs a particularly important role in facilitating signal transduction for a key set of cytokine receptors that are essential for immune cell development and function. Mutations that impact JAK3 activity have been identified in a number of human diseases, including somatic gain-of-function (GOF) mutations associated with immune cell malignancies and germline loss-of-function (LOF) mutations associated with immunodeficiency. The structure, function and impacts of both GOF and LOF mutations of JAK3 are highly conserved, making animal models highly informative. This review details the biology of JAK3 and the impact of its perturbation in immune cell-related diseases, including relevant animal studies.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | | | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
3
|
Alizadeh Z, Fazlollahi MR, Mazinani M, Badalzadeh M, Heydarlou H, Carapito R, Molitor A, de Oteyza ACG, Proietti M, Bavani MS, Shariat M, Fallahpour M, Movahedi M, Moradi L, Grimbacher B, Bahram S, Pourpak Z. Clinical, immunological and molecular findings of 8 patients with typical and atypical severe combined immunodeficiency: identification of 7 novel mutations by whole exome sequencing. Genes Immun 2023; 24:207-214. [PMID: 37516813 DOI: 10.1038/s41435-023-00215-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Severe combined immunodeficiency (SCID) is one of the severe inborn errors of the immune system associated with life-threatening infections. Variations in SCID phenotypes, especially atypical SCID, may cause a significant delay in diagnosis. Therefore, SCID patients need to receive an early diagnosis. Here, we describe the clinical manifestations and genetic results of four SCID and atypical SCID patients. All patients (4 males and 4 females) in early infancy presented with SCID phenotypes within 6 months of birth. The mutations include RAG2 (p.I273T,p.G44X), IL7R (p.F361WfsTer17), ADA (c.780+1G>A), JAK3 (p.Q228Ter), LIG4 (p.G428R), and LAT (p.Y207fsTer33), as well as a previously reported missense mutation in RAG1 (p.A444V). The second report of LAT deficiency in SCID patients is presented in this study. Moreover, all variants were confirmed in patients and their parents as a heterozygous state by Sanger sequencing. The results of our study expand the clinical and molecular spectrum associated with SCID and leaky SCID phenotypes and provide valuable information for the clinical management of the patients.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091, Strasbourg, France
| | - Andrés Caballero Garcia de Oteyza
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Michele Proietti
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
| | - Maryam Soleimani Bavani
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Shariat
- Department of Allergy and Clinical Immunology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Movahedi
- Department of Allergy and Clinical Immunology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moradi
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST - Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091, Strasbourg, France.
| | - Zahra Pourpak
- Immunology, Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Sjøgren T, Bratland E, Røyrvik EC, Grytaas MA, Benneche A, Knappskog PM, Kämpe O, Oftedal BE, Husebye ES, Wolff ASB. Screening patients with autoimmune endocrine disorders for cytokine autoantibodies reveals monogenic immune deficiencies. J Autoimmun 2022; 133:102917. [PMID: 36191466 DOI: 10.1016/j.jaut.2022.102917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Autoantibodies against type I interferons (IFN) alpha (α) and omega (ω), and interleukins (IL) 17 and 22 are a hallmark of autoimmune polyendocrine syndrome type 1 (APS-1), caused by mutations in the autoimmune regulator (AIRE) gene. Such antibodies are also seen in a number of monogenic immunodeficiencies. OBJECTIVES To determine whether screening for cytokine autoantibodies (anti-IFN-ω and anti-IL22) can be used to identify patients with monogenic immune disorders. METHODS A novel ELISA assay was employed to measure IL22 autoantibodies in 675 patients with autoimmune primary adrenal insufficiency (PAI) and a radio immune assay (RIA) was used to measure autoantibodies against IFN-ω in 1778 patients with a variety of endocrine diseases, mostly of autoimmune aetiology. Positive cases were sequenced for all coding exons of the AIRE gene. If no AIRE mutations were found, we applied next generation sequencing (NGS) to search for mutations in immune related genes. RESULTS We identified 29 patients with autoantibodies against IFN-ω and/or IL22. Of these, four new APS-1 cases with disease-causing variants in AIRE were found. In addition, we identified two patients with pathogenic heterozygous variants in CTLA4 and NFKB2, respectively. Nine rare variants in other immune genes were identified in six patients, although further studies are needed to determine their disease-causing potential. CONCLUSION Screening of cytokine autoantibodies can efficiently identify patients with previously unknown monogenic and possible oligogenic causes of autoimmune and immune deficiency diseases. This information is crucial for providing personalised treatment and follow-up of patients and their relatives.
Collapse
Affiliation(s)
- Thea Sjøgren
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Marianne Aa Grytaas
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Andreas Benneche
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Olle Kämpe
- KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway; KG Jebsen Center for Autoimmune Diseases, University of Bergen, Norway.
| |
Collapse
|
5
|
Zhao MY, Zhang W, Rao GW. Targeting Janus Kinase (JAK) for Fighting Diseases: The Research of JAK Inhibitor Drugs. Curr Med Chem 2022; 29:5010-5040. [PMID: 35255783 DOI: 10.2174/1568026622666220307124142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Janus Kinase (JAK), a nonreceptor protein tyrosine kinase, has emerged as an excellent target through research and development since its discovery in the 1990s. As novel small-molecule targeted drugs, JAK inhibitor drugs have been successfully used in the treatment of rheumatoid arthritis (RA), myofibrosis (MF) and ulcerative colitis (UC). With the gradual development of JAK targets in the market, JAK inhibitors have also received very considerable feedback in the treatment of autoimmune diseases such as atopic dermatitis (AD), Crohn's disease (CD) and graft-versus host disease (GVHD). This article reviews the research progress of JAK inhibitor drugs: introducing the existing JAK inhibitors on the market and some JAK inhibitors in clinical trials currently. In addition, the synthesis of various types of JAK inhibitors were summarized, and the effects of different drug structures on drug inhibition and selectivity.
Collapse
Affiliation(s)
- Min-Yan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
6
|
Halacli SO. The effect of mutatio-type on proteo-phenotype and clinico-phenotype in selected primary immunodeficiencies. Immunol Res 2021; 70:56-66. [PMID: 34622368 DOI: 10.1007/s12026-021-09239-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/25/2021] [Indexed: 11/29/2022]
Abstract
In the diagnosis of primary immunodeficiencies which are heterogeneous groups of genetic disorders, next-generation sequencing strategies take an important place. Protein expression analyses and some functional studies which are fundamental to determine the pathogenicity of the mutation are also performed to accelerate the diagnosis of PIDs before sequencing. However, protein expressions and functions do not always reflect the genetic and clinical background of the disease even the existence of a pathogenic variant or vice versa. In this study, it was aimed to understand genotype-proteophenotype-clinicophenotype correlation by investigating the effect of mutation types on protein expression, function, and clinical severity in X-linked, autosomal dominant, and autosomal recessive forms of PIDs. It was searched in PubMed and Web of Science without any restrictions on study design and publication time. Totally, 1178 patients with PIDs who have 553 different mutations were investigated from 174 eligible full-text articles. For all mutations, the effect of mutation type on protein expressions and protein functions was analyzed. Furthermore, the most frequent missense and nonsense mutations that were identified in patients with PIDs were evaluated to determine the genotype-clinicophenotype correlation. Protein expressions and functions were changed depending on the mutation type and the affected domain. A significant relationship was observed between protein expression level and clinical severity among all investigated patients. There was also a positive correlation between clinical severity and the affected domains. Mutation types and affected domains should be carefully evaluated with respect to protein expression levels and functional changes during the evaluation of clinico-phenotype.
Collapse
Affiliation(s)
- Sevil Oskay Halacli
- Division of Pediatric Immunology, Department of Basic Sciences of Pediatrics, Institute of Child's Health, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
7
|
Poyraz A, Cansever M, Muderris I, Patiroglu T. Neonatal Lymphopenia Screening Is Important For Early Diagnosis of Severe Combined Immunodeficiency. Am J Perinatol 2021; 40:748-752. [PMID: 34116583 DOI: 10.1055/s-0041-1731044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE T-cell receptor excision circles are expensive for neonatal severe combined immunodeficiency screening in developing countries. We aimed to detect immunodeficiencies presenting with lymphopenia to enable screening in the general population and to improve awareness regarding lymphopenia among clinicians. STUDY DESIGN This study was conducted prospectively. In all newborns included, complete blood count from umbilical cord blood samples was recorded. Absolute lymphopenia was defined as absolute lymphocyte count <3,000/mm3 in umbilical cord blood sample. Complete blood count was repeated at month 1 in cases found to have lymphopenia. RESULTS Overall, 2,000 newborns were included in the study. Absolute lymphopenia was detected in 42 newborns (2.1%), while lymphocyte count was >3,000/mm3 in 1,958 newborns (97.9%). Two infants with persisted lymphopenia at the end of the first month; therefore, further evaluations such as lymphocyte subsets for severe combined immunodeficiency (SCID) were done. In the first infant, the lymphocyte subgroups were detected as compatible with T (-), B (-), natural killer cells (NK) (+) SCID phenotype RAG defect. Sanger sequencing revealed that NM_000448 c.2209C > T (p.R737C) homozygous mutation of RAG1 gene. In the other infant, the lymphocyte subgroups were found as considered with T (-), B (+) NK (-) SCID phenotype JAK3 defect. Both patients underwent hematopoietic stem cell transplantation from human leukocyte antigen-matched family member. CONCLUSION Absolute lymphopenia by complete blood count is a more simpler, relatively noninvasive and inexpensive screening methodfor detection of SCID in newborns compared with T-cell receptor excision circles technique. KEY POINTS · Our study was conducted with a much smaller number of study groups compared with the previous ones.. · However, SCID was found at a higher rate compared with other studies.. · Our study for this disease that is common in our country where consanguineous marriages are common.
Collapse
Affiliation(s)
- Aykut Poyraz
- Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Murat Cansever
- Division of Allergy and Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Ipek Muderris
- Department of Gynecology and Obstetrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Hematology and Oncology, Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| |
Collapse
|
8
|
Favoino E, Prete M, Catacchio G, Ruscitti P, Navarini L, Giacomelli R, Perosa F. Working and safety profiles of JAK/STAT signaling inhibitors. Are these small molecules also smart? Autoimmun Rev 2021; 20:102750. [PMID: 33482338 DOI: 10.1016/j.autrev.2021.102750] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
The Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway is an important intracellular route through which many different extracellular soluble molecules, by reaching membrane receptors, can signal the nucleus. The spectrum of soluble molecules that use the JAK/STAT pathway through their corresponding receptors is quite large (almost 50 different molecules), and includes some cytokines involved in the pathogenesis of many immune-mediated diseases. Such diseases, when left untreated, present an evident hyperactivation of JAK/STAT signaling. Therefore, given the pathogenetic role of JAK/STAT, drugs known as JAK inhibitors (JAKi), that target one or more JAKs, have been developed to counteract JAK/STAT signal hyperactivation. As some hematological malignancies present an intrinsic JAK/STAT hyperactivation due to a JAK mutation, some JAKi have also been successfully used in this context. Regulatory agencies for drug administration in different countries have already approved a few JAKi in the setting of either immune-mediated diseases or hematological malignancies. Aim of this review is to describe the physiology of intracellular JAK/STAT pathway signaling and the pathological conditions associated to its dysregulation. Then, the rationale for targeting JAK in rheumatic autoimmune diseases is discussed, along with clinical data from registration studies showing the efficacy of these drugs. Finally, the excellent safety profile of JAKi is discussed in the context of the apparent poor specificity of JAK/STAT pathway signal.
Collapse
Affiliation(s)
- Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Marcella Prete
- Internal Medicine, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Giacomo Catacchio
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy
| | - Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luca Navarini
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome 'Campus Biomedico', Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Biomedical Science and Human Oncology (DIMO), University of Bari Medical School, Italy.
| |
Collapse
|
9
|
NaserEddin A, Dinur-Schejter Y, Shadur B, Zaidman I, Even-Or E, Averbuch D, Shamriz O, Tal Y, Shaag A, Warnatz K, Elpeleg O, Stepensky P. Bacillus Calmette-Guerin (BCG) Vaccine-associated Complications in Immunodeficient Patients Following Stem Cell Transplantation. J Clin Immunol 2020; 41:147-162. [PMID: 33111199 PMCID: PMC7591244 DOI: 10.1007/s10875-020-00892-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Bacillus Calmette-Guerin (BCG) is a live attenuated vaccine with the potential of causing severe iatrogenic complications in patients with primary immunodeficiency diseases (PID) before and after hematopoietic stem cell transplantation (HSCT). We aim to investigate risk factors of post-HSCT BCG-related complications in PID patients. METHODS A retrospective analysis of pediatric PID patients who had received the BCG vaccine and underwent HSCT at Hadassah-Hebrew University Medical Center, between 2007 and 2019. RESULTS We found 15/36 (41.67%) patients who developed post-HSCT BCG-related complications. The most significant risk factor for developing BCG-related complications was T cell deficiency (47.6% of the non-complicated vs 83.3% of the BCGitis and 100% of the BCGosis groups had T cell lymphopenia, p = 0.013). None of the chronic granulomatous patients developed BCG-related manifestation post-transplant. Among T cell-deficient patients, lower NK (127 vs 698 cells/μl, p = 0.04) cell counts and NK-SCID were risk factors for ongoing post-HSCT BCGosis, as was pretransplant disseminated BCGosis (33.3% of patients with BCGosis vs none of the non-BCGosis patients, p = 0.04). Immune reconstitution inflammatory syndrome (IRIS) was observed in 3/5 patients with Omenn syndrome. Prophylactic antimycobacterial treatment was not proven effective. CONCLUSION BCG vaccination can cause significant morbidity and mortality in the post-transplant T cell-deficient patient, especially in the presence of pre-transplant disease. Taking a detailed medical history prior to administering, the BCG vaccine is crucial for prevention of this complication.
Collapse
Affiliation(s)
- Adeeb NaserEddin
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. .,Hadassah Medical Organization, POB 12000, Kiryat Hadassah, 91120, Jerusalem, Israel.
| | - Yael Dinur-Schejter
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Allergy & Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Shadur
- Garvan Institute of Medical Research, Sydney, Australia.,Graduate Research School, University of New South Wales, Kensington, Australia
| | - Irina Zaidman
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ehud Even-Or
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Diana Averbuch
- Pediatric Infectious Diseases Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Shamriz
- Allergy & Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Tal
- Allergy & Clinical Immunology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avraham Shaag
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Klaus Warnatz
- Department for Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, Freiburg im Breisgau, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, Faculty of Medicine, Freiburg im Breisgau, Germany
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Polina Stepensky
- Bone Marrow Transplantation Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
11
|
A rare deep intronic mutation of PKHD1 gene, c.8798-459 C > A, causes autosomal recessive polycystic kidney disease by pseudoexon activation. J Hum Genet 2019; 64:207-214. [PMID: 30617278 DOI: 10.1038/s10038-018-0550-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), is a rare hepatorenal fibrocystic disorder primarily associated with progressive growth of multiple cysts in the kidneys causing progressive loss of renal function. The disease is linked to mutations in the PKHD1 gene. In this study, we describe the gene diagnosis and prenatal diagnosis for a consanguineous family with two fetuses diagnosed with polycystic kidney disease by fetal sonography during the pregnancy. Sequence analysis of cDNA synthesized from the PKHD1 mRNA of the second induced fetus identified a 111-nucleotide insert at the junction of exon 56 and 57 that originated from intervening sequence (IVS) 56. Further genomic sequencing of IVS 56 of the PKHD1 gene identified a rare homozygous deep intronic mutation (c.8798-459 C > A), which was inherited from the parents and not detectable in 100 unrelated control subjects. Moreover, we explored the pathogenicity of this deep intronic mutation by conducting a minigene splicing assay experiment, which demonstrated that the mutation causes a pseudoexon insertion, which results in a frameshift followed by a premature termination codon in exon 57. Eventually, the parents had a healthy baby by undergoing prenatal genetic diagnosis based on the targeted detection of the intron mutation. The newly identified deep intronic mutation is associated with a rare mechanism of abnormal splicing that expands the spectrum of known PKHD1 gene mutations. It can be used in evidence-based genetic and reproductive counseling for families with ARPKD.
Collapse
|
12
|
Nourizadeh M, Shakerian L, Borte S, Fazlollahi M, Badalzadeh M, Houshmand M, Alizadeh Z, Dalili H, Rashidi-Nezhad A, Kazemnejad A, Moin M, Hammarström L, Pourpak Z. Newborn screening using TREC/KREC assay for severe T and B cell lymphopenia in Iran. Scand J Immunol 2018; 88:e12699. [PMID: 29943473 DOI: 10.1111/sji.12699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
T-cell receptor excision circles (TRECs) and κ-deleting recombination excision circles (KRECs) are recently used for detection of T or B cell lymphopenia in neonates based on region-specific cutoff levels. Here, we report cutoffs for TREC and KREC copies useful for newborn screening and/or diagnosis of primary immunodeficiency diseases (PID) in Iran. DNA was extracted from a single 3.2 mm punch of dried blood spots collected from 2160 anonymized newborns referred to two major referral health centres between 2014 and 2016. For refinement of the cutoffs, 51 patients with a definite diagnosis of severe combined immunodeficiency, X-linked agammaglobulinaemia and combined immunodeficiency, including ataxia telangiectasia, human phosphoglucomutase 3 and Janus kinase-3 deficiency, as well as 47 healthy controls were included. Samples from patients with an X-linked hyper-IgM-syndrome, Wiskott-Aldrich syndrome and DNA ligase 4 deficiency were considered as disease controls. Triplex-quantitative real-time PCR was used. Cutoffs were calculated as TRECs < 11 and KRECs < 6 copies with an ACTB > 700 copies with sensitivity of 100% for TREC and 97% for KREC. Among thirty anonymized newborn samples (1.5%) with abnormal results for TREC and/or KREC, only twenty-one available cases were retested and shown to be in the normal range except for three samples (0.15%). All of the patients with a definitive diagnosis were correctly identified based on our established TREC/KREC copy numbers. Determining cutoffs for TREC/KREC is essential for correctly identifying children with PID in newborn screening. Early diagnosis of PID patients enables appropriate measures and therapies like stem cell transplantation.
Collapse
Affiliation(s)
- Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shakerian
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stephan Borte
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Municipal Hospital, Leipzig, Germany
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohammadreza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Dalili
- Breastfeeding Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Di Matteo G, Chiriaco M, Scarselli A, Cifaldi C, Livadiotti S, Di Cesare S, Ferradini V, Aiuti A, Rossi P, Finocchi A, Cancrini C. JAK3 mutations in Italian patients affected by SCID: New molecular aspects of a long-known gene. Mol Genet Genomic Med 2018; 6:713-721. [PMID: 30032486 PMCID: PMC6160700 DOI: 10.1002/mgg3.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in the Janus Kinase 3 (JAK3) gene cause an autosomal recessive form of severe combined immunodeficiency (SCID) usually characterized by the absence of both T and NK cells, but preserved numbers of B lymphocytes (T‐B+NK‐SCID). The detection of larger (>100 bp) genomic duplications or deletions can be more difficult to be detected by PCR‐based methods or standard NGS protocols, and a broad range of mutation detection techniques are necessary. Methods We report four unrelated Italian patients (two females and two males) with SCID phenotype. Protein expression, functional studies, molecular analysis by standard methods and NGS, and transcripts studies were performed to obtain a definitive diagnosis. Results Here, we describe four JAK3‐deficient patients from four unrelated families. The first patient is homozygous for the known c.1951 C>T mutation causing the amino acidic change p.R651W. The other two patients, originating from the same small Italian town, resulted compound heterozygotes for the same g.15410_16542del deletion and two different novel mutations, g.13319_13321delTTC and c.933T>G (p.F292V), respectively. The fourth patient was compound heterozygous for the novel mutations p.V599G and p.W709R. Defective STAT5 phosphorylation after IL2 or IL15 stimulation corroborated the mutation pathogenicity. Concerning g.15410_16542del mutation, probably due to an unequal homologous recombination between Alu elements of JAK3 gene, microsatellites analysis revealed that both unrelated Pt2 and Pt3 and their carrier family members shared the same haplotype. These data support the hypothesis of a founder effect for the g.15410_16542del mutation that might have inherited in both unrelated families from the same ancient progenitor. Conclusion Different molecular techniques are still required to obtain a definitive diagnosis of AR‐SCID particularly in all cases in which a monoallelic mutation is found by standard mutation scanning methods.
Collapse
Affiliation(s)
- Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Chiriaco
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Alessia Scarselli
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Cristina Cifaldi
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Silvia Di Cesare
- Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Valentina Ferradini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Pediatric Immunohematology Unit, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatrics, Children's Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
14
|
Zhong L, Wang W, Ma M, Gou L, Tang X, Song H. Chronic active Epstein-Barr virus infection as the initial symptom in a Janus kinase 3 deficiency child: Case report and literature review. Medicine (Baltimore) 2017; 96:e7989. [PMID: 29049190 PMCID: PMC5662356 DOI: 10.1097/md.0000000000007989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE With the progress of sequencing technology, an increasing number of atypical primary immunodeficiency (PID) patients have been discovered, including Janus kinase 3 (JAK3) gene deficiency. PATIENT CONCERNS We report a patient who presented with chronic active Epstein-Barr virus (CAEBV) infection but responded poorly to treatment with ganciclovir. DIAGNOSES Next-generation sequencing (NGS) was performed, including all known PID genes, after which Sanger sequencing was performed to verify the results. Genetic analysis revealed that our patient had 2 novel compound heterozygous mutations of JAK3, a gene previously reported to cause a rare form of autosomal recessive severe combined immunodeficiency with recurrent infections. The p.H27Q mutation came from his father, while p. R222H from his mother. Thus, his diagnosis was corrected for JAK3-deficiency PID and CAEBV. INTERVENTIONS Maintenance treatment of subcutaneous injection of recombinant human interferon α-2a was given to our patient with 2 MU, 3 times a week. OUTCOMES Interferon alpha was applied and the EBV infection was gradually controlled and his symptoms ameliorated remarkably. Our patient is in good health now and did not have relapses. LESSONS The diagnoses of PID should be taken into consideration when CAEBV patients respond poorly to conventional treatments. Good results of our patient indicate that interferon α-2a may be an alternative treatment for those who are unwilling to accept hematopoietic stem cell transplantation (HSCT) like our patient. Literature review identified 59 additional cases of JAK3 deficiency with various infections.
Collapse
|