1
|
Liu M. Effector and regulatory B-cell imbalance in systemic sclerosis: cooperation or competition? Clin Rheumatol 2024; 43:2783-2789. [PMID: 39080112 PMCID: PMC11330388 DOI: 10.1007/s10067-024-07086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024]
Abstract
B cells play a central role in the pathogenesis of systemic sclerosis (SSc). Most B-cell studies have focused on their pathological role as antibody producers. However, in addition to immunoglobulin secretion, these cells have a wide range of functions in the immune response, including antigen presentation to T cells and cytokine production. Importantly, not all B-cell subsets promote the immune response. Regulatory B cells (Bregs) attenuate inflammation and contribute to the maintenance of immune tolerance. However, effector B cells (Beffs) positively modulate the immune response through the production of various cytokines. In SSc, Bregs are insufficient and/or dysfunctional. B-cell-targeting biologics have been trialled with promising results in the treatment of SSc. These therapies can affect Bregs or Beffs, which can potentially limit their long-term efficacy. Future strategies might involve the modulation of effector B cells in combination with the stimulation of regulatory subsets. Additionally, the monitoring of individual B-cell subsets in patients may lead to the discovery of novel biomarkers that could help predict disease relapse or progression. The purpose of this review is to summarize the relevant literatures and explain how Bregs and Beffs jointly participate in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12Th Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
2
|
Loisel S, Lansiaux P, Rossille D, Ménard C, Dulong J, Monvoisin C, Bescher N, Bézier I, Latour M, Cras A, Farge D, Tarte K. Regulatory B Cells Contribute to the Clinical Response After Bone Marrow-Derived Mesenchymal Stromal Cell Infusion in Patients With Systemic Sclerosis. Stem Cells Transl Med 2023; 12:194-206. [PMID: 36928395 PMCID: PMC10108721 DOI: 10.1093/stcltm/szad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have recently emerged as an interesting therapeutic approach for patients with progressive systemic sclerosis (SSc), a rare and life-threatening orphan autoimmune disease. Whereas MSC immunomodulatory potential is considered as a central mechanism for their clinical benefit, very few data are available on the impact of MSCs on immune cell subsets in vivo. In the current extended study of a phase I/II clinical trial exploring the injection of a single dose of allogeneic bone marrow-MSCs (alloBM-MSCs) in patients with severe SSc (NCT02213705), we performed a longitudinal in-depth characterization of circulating immune cells in 19 MSC-treated patients, including 14 responders and 5 non-responders. By a combination of flow cytometry and transcriptomic analyses, we highlighted an increase in circulating CD24hiCD27posCD38lo/neg memory B cells, the main IL-10-producing regulatory B cell (Breg) subset, and an upregulation of IL10 expression in ex-vivo purified B cells, specifically in responder patients, early after the alloBM-MSC infusion. In addition, a deeper alteration of the B-cell compartment before alloBM-MSC treatment, including a higher expression of profibrotic cytokines IL6 and TGFβ by sorted B cells was associated with a non-responder clinical status. Finally, BM-MSCs were able to directly upregulate IL-10 production in activated B cells in vitro. These data suggest that cytokine-producing B cells, in particular Breg, are pivotal effectors of BM-MSC therapeutic activity in SSc. Their quantification as activity biomarkers in MSC potency assays and patient selection criteria may be considered to reach optimal clinical benefit when designing MSC-based clinical trials.
Collapse
Affiliation(s)
- Séverine Loisel
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04), CRMR Maladies auto-immunes et thérapie cellulaire (MATHEC), Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, Hôpital St-Louis, Paris, France
- Université de Paris Cité, IRSL, Recherche clinique appliquée à l’hématologie, URP 3518, Paris, France
| | - Delphine Rossille
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Cédric Ménard
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Joëlle Dulong
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Céline Monvoisin
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Nadège Bescher
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Isabelle Bézier
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Maëlle Latour
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Audrey Cras
- Cell Therapy Unit, Saint Louis Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
- UMR1140, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| | - Dominique Farge
- Unité de Médecine Interne (UF 04), CRMR Maladies auto-immunes et thérapie cellulaire (MATHEC), Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, Hôpital St-Louis, Paris, France
- Université de Paris Cité, IRSL, Recherche clinique appliquée à l’hématologie, URP 3518, Paris, France
- Department of Medicine, McGill University, Montreal, Canada
| | - Karin Tarte
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
3
|
Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals (Basel) 2022; 15:ph15080936. [PMID: 36015084 PMCID: PMC9413112 DOI: 10.3390/ph15080936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 12/07/2022] Open
Abstract
Systemic sclerosis and systemic lupus erythematosus represent two distinct autoimmune diseases belonging to the group of connective tissue disorders. Despite the great progress in the basic science, this progress has not been translated to the development of novel therapeutic approaches that can radically change the face of these diseases. The discovery of JAK kinases, which are tyrosine kinases coupled with cytokine receptors, may open a new chapter in the treatment of so far untreatable diseases. Small synthetic compounds that can block Janus kinases and interact directly with cytokine signalling may provide therapeutic potential in these diseases. In this review, we discuss the therapeutic potential of Jak kinases in light of the cytokine network that JAK kinases are able to interact with. We also provide the theoretical background for the rationale of blocking cytokines with specific JAK inhibitors.
Collapse
|
4
|
Capriello S, Ferrari SM, Gatto I, Santaguida MG, Fallahi P, Antonelli A, Mangino G, Romeo G, Virili C, Centanni M. Regulatory B Cells in Systemic Sclerosis Isolated or Concomitant With Hashimoto Thyroiditis. Front Immunol 2022; 13:921260. [PMID: 35874691 PMCID: PMC9296862 DOI: 10.3389/fimmu.2022.921260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune disease in which gastrointestinal disorders represent a complication in up to 90% of patients. SSc may associate with thyroid autoimmune disorders, with Hashimoto’s thyroiditis (HT) being the more prevalent worldwide. Previous studies have examined the behavior of Th17 lymphocytes and Breg cells in patients with HT and concomitant autoimmune organ-specific disorders. These immune phenotypes seem to play a significant role in the pathogenesis of both these autoimmune processes, but their behavior when these two disorders coexist has not been described. We analyzed Th17 and Breg (CD24hiCD38hi) cell subsets in 50 subjects (45F/5M; median age = 49 years): 18 were healthy donors (HD), 20 had isolated HT, and 12 had SSc, seven of whom had both HT and SSc. Breg cells’ function was also evaluated by measuring their IL-10 production when stimulated by specific activators. An increased percentage of Th17 lymphocytes characterized HT patients as compared to both HD and the whole group of SSc patients (p = 0.0018). On the contrary, the percentage of unstimulated Breg cells in SSc patients was higher (p = 0.0260), either associated or not with HT, as compared to both HT patients and HD, which, instead, showed a similar percentage of Breg cells. Following a specific stimulation with CpG, the percentages of Breg cells were increased in the whole sample of SSc patients (p < 0.001) as well as in isolated SSc and in SSc+HT ones as compared to isolated HT. However, qualitative analysis, obtained through the detection of the IL-10-producing phenotype, revealed that the percentage of CpG-stimulated CD24hiCD38hi-IL10+cells was significantly decreased in SSc patients (p < 0.0001) with no difference between isolated SSc and SSc+HT patients. The IL-10-producing phenotype was instead slightly increased in HT patients as compared to HD (4.1% vs. 2.8%). The presence of SSc seems to be characterized by an enrichment of total Breg cells but by a reduced Breg IL-10-producing phenotype, representing functional Bregs. This last finding was entirely due to the presence of SSc independently from the association with HT. This behavior is different from the ones described about the association of HT with organ-specific autoimmune disorders.
Collapse
Affiliation(s)
- Silvia Capriello
- Department of Medico-surgical Sciences and Biotechnologies, Endocrinology Section, ‘‘Sapienza’’ University of Rome, Latina, Italy
| | | | - Ilenia Gatto
- Department of Medico-surgical Sciences and Biotechnologies, Endocrinology Section, ‘‘Sapienza’’ University of Rome, Latina, Italy
| | | | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Giorgio Mangino
- Department of Medico-surgical Sciences and Biotechnologies, Immunology Section, ‘‘Sapienza’’ University of Rome, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-surgical Sciences and Biotechnologies, Immunology Section, ‘‘Sapienza’’ University of Rome, Latina, Italy
| | - Camilla Virili
- Department of Medico-surgical Sciences and Biotechnologies, Endocrinology Section, ‘‘Sapienza’’ University of Rome, Latina, Italy
| | - Marco Centanni
- Department of Medico-surgical Sciences and Biotechnologies, Endocrinology Section, ‘‘Sapienza’’ University of Rome, Latina, Italy
- Endocrine Unit, Azienda Unità Sanitaria Locale (AUSL) Latina, Latina, Italy
- *Correspondence: Marco Centanni,
| |
Collapse
|
5
|
Zou J, Zeng Z, Xie W, Zeng Z. Immunotherapy with regulatory T and B cells in periodontitis. Int Immunopharmacol 2022; 109:108797. [PMID: 35487085 DOI: 10.1016/j.intimp.2022.108797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023]
Abstract
Periodontitis (PD), also known as gum disease, is a condition causing inflammatory bone resorption and tooth loss. Regulatory T cells (Tregs) and regulatory B cells (Bregs) are vital in controlling the immune response and hence play a role in infections and peripheral tolerance adjustment. These cells have immunosuppressive and tissue-repairing capabilities that are important for periodontal health; however, in inflammatory circumstances, Tregs may become unstable and dysfunctional, accelerating tissue deterioration. In recent years, Regulatory cell-mediated immunotherapy has been shown to be effective in many inflammatory diseases. Considering the roles of Tregs and Bregs in shaping immune responses, this study aimed to review the published articles in this field to provide a comprehensive view of the existing knowledge about the role of regulatory T and B cells, as well as their therapeutic applications in PD.
Collapse
Affiliation(s)
- Juan Zou
- Department of stomatology, Maternal and Child Health Centre, Ganzhou, Jiangxi 341000, China
| | - Zijun Zeng
- Anesthesia surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Wen Xie
- Health Management Center, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000, China
| | - Zhimei Zeng
- The First Affiliated Hospital of Gannan Medical College Dental Department Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
6
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
7
|
Bogdanos DP, Gkoutzourelas A, Papadopoulos V, Liaskos C, Patrikiou E, Tsigalou C, Saratziotis A, Hajiioannou J, Scheper T, Meyer W, Sakkas LI, Papandreou C. Anti-Ro52 antibody is highly prevalent and a marker of better prognosis in patients with ovarian cancer. Clin Chim Acta 2021; 521:199-205. [PMID: 34245687 DOI: 10.1016/j.cca.2021.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/13/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Anti-Ro52 antibody (Ab) reactivity is highly prevalent in autoimmune rheumatic diseases (ARDs), mainly Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE), but also in other inflammatory disorders. Thorough assessment of the prevalence, clinical significance and epitope specificity of Ro52-autoAbs in cancerous diseases is still lacking. MATERIAL AND METHODS Anti-Ro52 Ab reactivity was tested in a large cohort of 490 patients with various malignant diseases. Ro52-autoAb epitope mapping by an in house line immunoassay was carried out using 5 recombinant Ro52 polypeptides spanning Ro52. RESULTS Anti-Ro52 abs were significantly more prevalent in patients with ovarian cancer (30%) compared to patients with 6 other malignant diseases (median 8.1%, range 5.9-15.8%). The presence of anti-Ro52 abs in patients with ovarian cancer was strongly associated with better overall survival. Ro52 epitope mapping of patients with ovarian cancer was dissimilar to that of SLE and SjS ARDs, less frequently recognizing Ro52-1 and Ro52-4 fragments compared to patients with SLE and SjS. CONCLUSION We demonstrate for first time an unexpectedly high frequency of anti-Ro52 abs in patients with ovarian cancer, their presence indicating better overall survival. Their distinguishing epitope profile may suggest a non-SLE or SjS-related stimulus for autoAb production.
Collapse
Affiliation(s)
- Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasilios Papadopoulos
- Department of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Patrikiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Saratziotis
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - John Hajiioannou
- Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Thomas Scheper
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Papandreou
- Department of Medical Oncology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
The Potential of IgG to Induce Murine and Human Thymic Maturation of IL-10+ B Cells (B10) Revealed in a Pilot Study. Cells 2020; 9:cells9102239. [PMID: 33027887 PMCID: PMC7600151 DOI: 10.3390/cells9102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory B (B10) cells can control several inflammatory diseases, including allergies; however, the origin of peripheral B10 cells is not fully understood, and the involvement of primary lymphoid organs (PLOs) as a primary site of maturation is not known. Here, using a murine model of allergy inhibition mediated by maternal immunization with ovalbumin (OVA), we aimed to evaluate whether B10 cells can mature in the thymus and whether IgG can mediate this process. Female mice were immunized with OVA, and offspring thymus, bone marrow, spleen, lung, and serum samples were evaluated at different times and after passive transfer of purified IgG or thymocytes. A translational approach was implemented using human nonatopic thymus samples, nonatopic peripheral blood mononuclear cells (PBMCs), and IgG from atopic or nonatopic individuals. Based on the expression of CD1d on B cells during maturation stages, we suggest that B10 cells can also mature in the murine thymus. Murine thymic B10 cells can be induced in vitro and in vivo by IgG and be detected in the spleen and lungs in response to an allergen challenge. Like IgG from atopic individuals, human IgG from nonatopic individuals can induce B10 cells in the infant thymus and adult PBMCs. Our observations suggest that B10 cells may mature in the thymus and that this mechanism may be mediated by IgG in both humans and mice. These observations may support the future development of IgG-based immunoregulatory therapeutic strategies.
Collapse
|
9
|
Patrikiou E, Liaskos C, Mavropoulos A, Ntavari N, Gkoutzourelas A, Simopoulou T, Fechner K, Scheper T, Meyer W, Katsiari CG, Roussaki-Schulze A, Zafiriou E, Sakkas LI, Bogdanos DP. Autoantibodies against specific nuclear antigens are present in psoriatic disease and are diminished by secukinumab. Clin Chim Acta 2020; 510:400-407. [PMID: 32710943 DOI: 10.1016/j.cca.2020.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Anti-nuclear antibodies (ANA) are frequently detected in patients with psoriasis (Ps) and psoriatic arthritis (PsA), but their target autoantigens remain unknown. We assessed antibody (ab) reactivity against 23 known nuclear antigens in patients with Ps and PsA and assess the effects of secukinumab (anti-IL17A) treatment on ANA levels. A total of 201 patients, 101 with Ps and 100 with PsA, and 50 ANA-negative healthy controls (HCs) were tested for ANAs by a line immunoassay testing reactivity to 23 nuclear antigens. Ab reactivity to at least 1 antigen was found in 20.4% psoriatic disease patients (25.7% Ps and 15% PsA) compared to 8% HCs (p = ns), the most frequent being against dense fine speckled 70 (DFS70) (6.5%). In Ps and PsA patients with secukinumab-induced remission, anti-DFS70 and other antigen-specific autoantibodies were diminished over time. No decline was noted for IgG abs against antigens from pathogens such as cytomegalovirus, Epstein-Barr virus and Helicobacter pylori. Autoantibody decrease was associated with significant reduction of plasmablasts, follicular B and follicular T cells. In conclusion, one third of antigen-specific ANA patients with psoriatic disease recognize DFS70. Secukinumab decreases nuclear antigen autoreactivity, plasmablasts, follicular B and follicular T cells, highlighting a new mechanism of its action.
Collapse
Affiliation(s)
- Eleni Patrikiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Niki Ntavari
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Kai Fechner
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Thomas Scheper
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Christina G Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Aggeliki Roussaki-Schulze
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece. http://www.autorheumatology.com
| |
Collapse
|
10
|
Gu Y, Li K, Sun J, Zhang J. Characterization of CD19 + CD24 hi CD38 hi B cells in Chinese adult patients with atopic dermatitis. J Eur Acad Dermatol Venereol 2020; 34:2863-2870. [PMID: 32242984 DOI: 10.1111/jdv.16399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease. Human interleukin-10+ B cells (B10 cells) is one of regulatory B cells and is enriched in CD19+ CD24hi CD38hi B cells. A little is known about these cells in atopic dermatitis. OBJECTIVE To study CD19+ CD24hi CD38hi B cells and their clinical significance in Chinese adult patients with atopic dermatitis. METHODS Thirty-two adult patients with AD and nineteen healthy controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and stained with fluorescein-conjugated monoclonal antibodies for CD19, CD24, CD27, CD38 and Annexin V. The stained PBMCs were analysed by flow cytometry. B10 cells were prepared by stimulating PBMCs with CpG, LPS and CD40L followed by restimulation with phorbol12-myristate 13-acetate (PMA) and ionomycin. Serum IL-10, B-cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) levels were measured by using the ELISA. Apoptosis and proliferation of CD19+ CD24hi CD38hi B cells were measured by flow cytometry. 4/P-signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase 1/2 (Erk) phosphorylation were also studied. RESULTS The number of CD19+ CD24hi CD38hi B cells in patients with AD was similar to that in healthy controls. However, B10 cells were decreased in patients with AD. The proportion of B10 cells was negatively associated with blood basophil counts but not associated with disease activity. CD19+ CD24hi CD38hi B cells from AD patients were more susceptible to apoptosis upon stimulation with CpG, LPS and CD40L. B cells from AD patients showed lower STAT3 and Erk phosphorylation. CONCLUSIONS CD19+ CD24hi CD38hi B cells were unchanged in atopic dermatitis while B10 cells were decreased. The increased B-cell apoptosis, decreased STAT3 and Erk phosphorylation might contribute to these changes.
Collapse
Affiliation(s)
- Y Gu
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - K Li
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - J Sun
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - J Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
11
|
Guan H, Peng J, Jiang L, Mo G, Li X, Peng X. CD19 +CD1d hiCD5 hi B Cells Can Downregulate Malaria ITV Protection by IL-10 Secretion. Front Public Health 2020; 8:77. [PMID: 32257991 PMCID: PMC7090139 DOI: 10.3389/fpubh.2020.00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/25/2020] [Indexed: 11/13/2022] Open
Abstract
Infection treatment vaccine (ITV) can lead to sterile protection against malaria infection in mice and humans. However, parasite breakthrough is frequently observed post-challenge. The mechanism of rapid decline in protection after the last immunization is unclear. Herein, C57BL/6 mice were immunized with 103, 105, or 107 ITV thice at 14-day intervals. Mice were challenged with 103 parasites at 1, 3, and 6 months after last immunization and the protection was checked using blood smear. The phenotypes of B cells were analyzed by flow cytometry. The levels of serum cytokines were quantified using cytometric bead array. The 103 ITV vaccination group exhibited 100% protection at 1 month after last immunization, and the 105 group showed sterile protection at 3 months after last immunization. However, the 107 group showed only partial protection. Further, the protection declined to 16.7% at 6 months after last immunization in 105 and 107 groups, whereas it maintained for more than 60% in 103 group. The number of memory B cells (MBC) decreased along with the decline in protection. However, programmed cell death protein 1 (PD-1) expressed on MBCs did not show significant variation among the three groups. Interestingly, CD19+CD1dhiCD5hi B cells, defined as B10 cells, exhibited negative regulation with respect to protection. The numbers of CD19+CD1dhiCD5hi B cells in the 103 group at 1 months and in the 105 group at 3 months post-immunization were the lowest compared to those in the other groups. Moreover, the serum levels of interleukin 10 (IL-10) in these two groups were also significantly lower than those in other groups. We conclude that higher immunization dose may not lead to better protection with the malaria vaccine as CD19+CD1dhiCD5hi B cells can downregulate ITV protection against malaria via IL-10 secretion. These results could facilitate the design of an effective long-lasting malaria vaccine with the aim of maintaining MBC function.
Collapse
Affiliation(s)
- Hongli Guan
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Jiacong Peng
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Liping Jiang
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Gang Mo
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Xiang Li
- Department of Parasitology, Guilin Medical University, Guilin, China
| | - Xiaohong Peng
- Department of Parasitology, Guilin Medical University, Guilin, China
| |
Collapse
|
12
|
Mavropoulos A, Zafiriou E, Simopoulou T, Brotis AG, Liaskos C, Roussaki-Schulze A, Katsiari CG, Bogdanos DP, Sakkas LI. Apremilast increases IL-10-producing regulatory B cells and decreases proinflammatory T cells and innate cells in psoriatic arthritis and psoriasis. Rheumatology (Oxford) 2020; 58:2240-2250. [PMID: 31209492 DOI: 10.1093/rheumatology/kez204] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Psoriatic arthritis (PsA) and psoriasis are immune-mediated inflammatory diseases sharing common immunological mechanisms. Regulatory B cells (Breg cells) producing IL-10 (B10 cells), a critical anti-inflammatory B-cell subset, were found to be decreased in both PsA and psoriasis. Apremilast, a phosphodiesterase-4(PDE4) inhibitor, increases IL-10 and therefore, we examined the effect of apremilast on Breg cells. METHODS Fifty patients, including 20 with PsA and 30 with psoriasis, were included in the study. The effect of apremilast on Breg cells at 3, 6 and 12 months post-treatment, was examined by flow cytometry in ODN2006 (TLR9)-stimulated peripheral blood mononuclear cells and magnetically-isolated cells. Th1 cells, Th17 cells and NKT were also measured. RESULTS Ex vivo stimulated cell analysis identified that post-apremilast (IL-10+CD19+) B10 cells were increased in all PsA and psoriasis patients and correlated with psoriatic skin and joint clinical improvement. Apremilast decreased IFNγ(+) T and NKT cells and IL-17(+)NKT cells. B10 cells also inversely correlated with Th1 cells, and IFNγ(+)NKT cells. CONCLUSION These results suggest that Breg cells are a major target of apremilast in PsA and psoriasis and that apremilast-induced increase of Breg cells is associated with a decrease of Th1 cells, IFNγ-producing NKT cells and IL-17-producing NKT cells.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurosurgery, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Aggeliki Roussaki-Schulze
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina G Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
13
|
IL-10 secreting B cells regulate periodontal immune response during periodontitis. Odontology 2019; 108:350-357. [DOI: 10.1007/s10266-019-00470-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
|
14
|
Gkoutzourelas A, Liaskos C, Mytilinaiou MG, Simopoulou T, Katsiari C, Tsirogianni A, Daoussis D, Scheper T, Meyer W, Bogdanos DP, Sakkas LI. Anti-Ro60 Seropositivity Determines Anti-Ro52 Epitope Mapping in Patients With Systemic Sclerosis. Front Immunol 2018; 9:2835. [PMID: 30581434 PMCID: PMC6293197 DOI: 10.3389/fimmu.2018.02835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022] Open
Abstract
Epitope mapping of anti-Ro52 antibodies (Abs) has been extensively studied in patients with Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE). Comprehensive epitope mapping in systemic sclerosis (SSc), where anti-Ro52 antibodies are also frequently detected, has not been performed. The aim of the present study was to fully characterize Ro52 epitopes in anti-Ro52-positive SSc using Ro52 fragments spanning the full antigen. Further analysis was made according to anti-Ro60 status. Epitope mapping was performed in 43 anti-Ro52-positive SSc patients. Seventy eight anti-Ro52-positive pathological controls, including 20 patients with SjS, 28 patients with SLE, 15 patients with dermatomyositis (DM), and 15 patients with primary biliary cholangitis (PBC), and 20 anti-Ro52-negative healthy individuals as normal controls were also tested. Five recombinant Ro52 fragments [Ro52-1 (aa 1-127), Ro52-2 (aa 125-268), Ro52-3 (aa 268-475), Ro52-4 (aa 57-180), and Ro52-5 (aa 181-320) were used to test reactivity by line-immunoassay and in house ELISA. Anti-Ro60 reactivity was tested by ELISA. All anti-Ro52 positive sera reacted with Ro52-2; none recognized Ro52-3. Antibodies against Ro52-1 were less frequently found in SSc than in SjS/SLE (11.6 vs. 41.7%, p = 0.001); and antibodies against Ro52-4 were less frequently found in SSc than in SjS/SLE (27.9 vs. 50%, p = 0.03). In SSc patients, reactivity against Ro52-1 was more frequent in anti-Ro52+/anti-Ro60+ than in anti-Ro52+/anti-Ro60-patients (33.3 vs. 0%, p = 0.003). In this comprehensive analysis of Ro52 epitope mapping in SSc, the coiled coil domain remains the predominant epitope on Ro52. Contrary to SjS and SLE, patients with SSc fail to identify epitopic regions within the N-terminus of the protein, especially if they lack con-current anti-Ro60 reactivity.
Collapse
Affiliation(s)
- Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria G. Mytilinaiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Daoussis
- Department of Rheumatology, Patras University Hospital, Faculty of Medicine, University of Patras Medical School, Patras, Greece
| | - Thomas Scheper
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology Affiliated to Euroimmun AG, Lübeck, Germany
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I. Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
15
|
Sakkas LI, Daoussis D, Mavropoulos A, Liossis SN, Bogdanos DP. Regulatory B cells: New players in inflammatory and autoimmune rheumatic diseases. Semin Arthritis Rheum 2018; 48:1133-1141. [PMID: 30409417 DOI: 10.1016/j.semarthrit.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulatory B cells (Bregs) are a new subset of B cells with immunoregulatory functions, mainly through IL-10 production. Bregs suppress inflammatory Th1 and Th17 differentiation and induce Tregs suppressing autoimmune diseases. The aim of the study was to review the literature related to Bregs in autoimmune rheumatic diseases (ARDs). METHODS A literature review of publications in PUBMED published in English was performed using the relevant combinations of terms. RESULTS All relevant publications are discussed. Overall, recent studies in rheumatic diseases found Bregs to be decreased in ANCA-associated vasculitides (AAV) and in systemic sclerosis (SSc), particularly in SSc-associated lung fibrosis. In AAV Bregs levels are negatively correlated with autoantibody levels whereas in SSc this association is less clear but there is an inverse association with Th1 and Th17 cells. In rheumatoid arthritis (RA), Bregs were decreased, particularly in RA-associated lung fibrosis. In psoriatic arthritis IL-10 + Bregs are decreased and inversely associated with Th1 and Th17 cells. In systemic lupus erythematosus (SLE), the role of Bregs is unclear. In experimental diseases, when Bregs were expanded ex-vivo, they ameliorated established disease. CONCLUSION Bregs appear to be a new player in the pathogenesis of ARDs, and may offer a new strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece.
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras, Rio, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa 41 110, Greece
| |
Collapse
|
16
|
Liaskos C, Marou E, Simopoulou T, Gkoutzourelas A, Barmakoudi M, Efthymiou G, Scheper T, Meyer W, Katsiari CG, Bogdanos DP, Sakkas LI. Multiparametric autoantibody profiling of patients with systemic sclerosis in Greece. Mediterr J Rheumatol 2018; 29:120-126. [PMID: 32185313 PMCID: PMC7046048 DOI: 10.31138/mjr.29.3.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Systemic sclerosis (SSc) is an autoimmune rheumatic disease characterized by a wide range of disease-specific and disease-related autoantibodies (autoAbs). Profile assays have been developed and are currently in use to meet the demand for better characterization of all autoAbs found in SSc patients. Aim: To assess the clinical relevance of SSc-related autoantibodies in 158 patients with SSc, all from Central Greece, taking advantage of a multiparametric SSc autoantibody line immunoassay. Material and methods: 158 consecutive patients with SSc (137 females, mean age 53.2 ± 10 years; 63 patients with dcSSc and 95 with lcSSc) from central Greece were included in the study. Eighteen patients with morphea were also included. Serum samples were analyzed by a profile SSc nucleoli line assay (Euroimmun) to detect Abs against 13 autoantigens: Scl-70, Centromere (A, B), RNA polymerase III (subunits 11 & 155), fibrillarin, NOR90, Th/To, PM/Scl 100, PM/Scl75, Ku, PDGFR and Ro52. Antinuclear autoAbs (ANAs) were detected by indirect immunofluorescence. Results: ANAs were detected in 97.5% of SSc patients. Reactivities to specific autoantigens were as follows: Topo I, 40.5%; CENP, 32.9%; Ro52, 21.5%; RP11, 8.9%; RP155, 13.3%; NOR 90, 4.4%; Ku 3.8%; PM-Scl75, 3.2%; PM-Scl100, 1.3%; Th/To, 1.3%; Fibrillarin, 1.3%; PDGFR 0%; Ro52 21.5%. Twenty-one of SSc did not have any of the main autoAbs, namely anti-Topo I, anti-CENP, anti-RNA pol III Abs. Conclusions: Multiparametric autoAb test provides positive SSc-associated autoAb reactivities in SSc patients negative for the three main autoAbs and this may prove of significance in early disease diagnosis.
Collapse
Affiliation(s)
- Christos Liaskos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Emmanouela Marou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theodora Simopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athanasios Gkoutzourelas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Maria Barmakoudi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Efthymiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Thomas Scheper
- Institute of Immunology affiliated to Euroimmun AG, Lübeck, Germany
| | - Wolfgang Meyer
- Institute of Immunology affiliated to Euroimmun AG, Lübeck, Germany
| | - Christina G Katsiari
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
17
|
Lira AADL, de-Oliveira MG, Inoue AHS, Beltrame GR, Duarte AJDS, Victor JR. Preconceptional allergen immunization can induce offspring IL-17 secreting B cells (B17): do they share similarities with regulatory B10 cells? Allergol Immunopathol (Madr) 2018; 46:454-459. [PMID: 30082063 DOI: 10.1016/j.aller.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND IL-17-producing B cells can be identified in both mice and human and were named B17 cells. The role of B17 cells still needs to be elucidated and its inflammatory or regulatory functions remain controversial. OBJECTIVE We evaluate the effect of maternal immunization with OVA on offspring B cells that produces IL-17 and can show a regulatory potential by IL-10 production. METHODS C57BL/6 WT, IL-10-/- or CD28-/- female mice were immunized or not with OVA in Alum, and immunized females were boosted after 10 and 20 days. Immunized and non-immunized females were mated, and pups from both groups were evaluated at 3 or 20 days old (d.o.). Some offspring from the aforementioned two groups were immunized with OVA at 3 d.o., boosted after 10 days and evaluated at 20 d.o. RESULTS Maternal immunization with OVA induced offspring B cells to produce IL-17 at higher intensity compared to the control group of offspring at 3 d.o. This effect was maintained until 20 d.o. and even after neonatal immunization with OVA. The co-production of IL-10 on offspring IL-17+B cells is up-regulated in response to maternal immunization with OVA. Maternal immunization with OVA on IL-10-/- mice reveals reduced percentage and mean of fluorescence intensity of IL-17 on B cells of offspring. CONCLUSION Preconception OVA immunization can induce offspring B cells that produce IL-17 at higher intensity and co-produce mainly IL-10. This could be the reason why B17 cells had been described in the literature with controversial roles upon their regulatory function.
Collapse
Affiliation(s)
- Aline Aparecida de Lima Lira
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Marília Garcia de-Oliveira
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Amanda Harumi Sabô Inoue
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Rossi Beltrame
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil; Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Jefferson Russo Victor
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil; Division of Pathology, Medical School, University of Sao Paulo, Sao Paulo, Brazil; Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Collagen-induced arthritis in Dark Agouti rats as a model for study of immunological sexual dimorphisms in the human disease. Exp Mol Pathol 2018; 105:10-22. [DOI: 10.1016/j.yexmp.2018.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
|
19
|
Decreased Breg/Th17 Ratio Improved the Prognosis of Patients with Ulcerative Colitis. Can J Gastroenterol Hepatol 2018; 2018:5760849. [PMID: 29765931 PMCID: PMC5885404 DOI: 10.1155/2018/5760849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the effects of regulatory B (Breg) cells and T helper 17 (Th17) cells on pathogenesis of ulcerative colitis, explore the clinical significance of Breg/Th17 ratio on the prognosis of ulcerative colitis, and provide the theoretical basis for the targeted therapy, diagnosis, and prognosis of the disease. METHODS Peripheral blood and colonic mucosa were collected from patients with ulcerative colitis. Hematoxylin-eosin staining was used to observe the pathological changes of colonic mucosa. Flow cytometry was utilized to analyze the percentages of Breg cells and Th17 cells. Real-time fluorescent quantitative polymerase chain reaction and immunohistochemistry were applied to determine the expression of Breg cells-related cytokines IL-10 and Th17 cell transcription factor RORγT. Enzyme-linked immunosorbent assay was employed to detect serum IL-10 and IL-17 levels. RESULTS The colonic mucosa of ulcerative colitis patients presented massive inflammatory cell infiltration and hemorrhagic necrosis. The number of Breg cells and Th17 cells, the gene expressions of IL-10 and RORγT, and serum levels of IL-10 and IL-17 all increased in peripheral blood. Compared with nonremission group, the remission group showed that the percentage of Breg cells reduced, the percentage of Th17 cells increased, and thus the B10/Th17 ratio was significantly decreased in peripheral blood. In addition, serum IL-10 levels diminished, IL-17 levels increased, and thus IL-10/IL-17 ratio was remarkably reduced in remission group. B10/Th17 ratio and IL-10/IL-17 ratio were positively correlated with the severity of disease. CONCLUSIONS Breg and Th17 cells participate in the occurrence and development of ulcerative colitis. B10/Th17 ratio and IL-10/IL-17 ratio can be used as prognostic markers for ulcerative colitis. This provides a theoretical basis for design of targeted treatment and prognosis assessment of the disease.
Collapse
|
20
|
Selmi C, Bin Gao, Gershwin ME. The long and latent road to autoimmunity. Cell Mol Immunol 2018; 15:543-546. [PMID: 29568115 DOI: 10.1038/s41423-018-0018-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy. .,Department BIOMETRA, University of Milan, Milan, Italy.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute for Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Chizzolini C, Dufour AM, Brembilla NC. Is there a role for IL-17 in the pathogenesis of systemic sclerosis? Immunol Lett 2018; 195:61-67. [PMID: 28919455 DOI: 10.1016/j.imlet.2017.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
In systemic sclerosis (SSc) immuno-inflammatory events are central to disease development. Amongst other mediators of inflammation, interleukin 17 (IL-17) and Th17 cells have been reported to be increased in the peripheral blood and target organs including involved skin in SSc. They participate and amplify inflammatory responses by inducing the production of cytokines such as IL-6, chemokines such as CCL2 and CXCL8 (IL-8), matrix metalloproteinases-1, -2, -9 and the expression of adhesion molecules in stromal cells including fibroblasts and endothelial cells. In this respect, IL-17 and Th17 cells behave paradigmatically as documented in other autoimmune pathological conditions or infectious diseases. In experimental animal models of skin and lung fibrosis, IL-17 indirectly enhances the fibrotic process by favoring further inflammation by recruiting inflammatory cells, by activating and/or stimulating the production of TGF-β and other pro-fibrotic mediators, by inhibiting autophagy. Whether the findings generated in animal models of fibrosis can be translated to human SSc is unproven. Furthermore, it is controversial whether IL-17 directly promotes the transdifferentiation of human fibroblasts into myofibroblasts and enhances collagen production, with most of the available evidence against this possibility. The reductionist approach in which fibroblast in monolayers are cultured in plastic dishes under the influence of IL-17 limits the relevance of these findings. Further in vitro/ex vivo models with human tissues are being developed to investigate the real effect of IL-17 on extracellular matrix deposition, since agents blocking IL-17 are available for the clinic and it will be important to know whether their use in SSc would be beneficial or detrimental.
Collapse
Affiliation(s)
- Carlo Chizzolini
- Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland; Pathology and Immunology, University Hospital and School of Medicine, Geneva, Switzerland.
| | - Aleksandra Maria Dufour
- Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland; Pathology and Immunology, University Hospital and School of Medicine, Geneva, Switzerland.
| | - Nicolò Costantino Brembilla
- Pathology and Immunology, University Hospital and School of Medicine, Geneva, Switzerland; Dermatology, University Hospital and School of Medicine, Geneva, Switzerland.
| |
Collapse
|