1
|
Tang N, Luo X, Ding Z, Shi Y, Cao X, Wu S. Single-Cell Multi-Dimensional data analysis reveals the role of ARL4C in driving rheumatoid arthritis progression and Macrophage polarization dynamics. Int Immunopharmacol 2024; 141:112987. [PMID: 39182267 DOI: 10.1016/j.intimp.2024.112987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Rheumatoid arthritis (RA) is an enduring autoimmune inflammatory condition distinguished by continual joint inflammation, hyperplasia of the synovium, erosion of bone, and deterioration of cartilage.Fibroblast-like synoviocytes (FLSs) exhibiting "tumor-like" traits are central to this mechanism.ADP-ribosylation factor-like 4c (ARL4C) functions as a Ras-like small GTP-binding protein, significantly impacting tumor migration, invasion, and proliferation.However, it remains uncertain if ARL4C participates in the stimulation of RA FLSs exhibiting "tumor-like" features, thereby fostering the advancement of RA. In our investigation, we unveiled, for the inaugural instance, via the amalgamated scrutiny of single-cell RNA sequencing (scRNA-seq) and Bulk RNA sequencing (Bulk-seq) datasets, that activated fibroblast-like synoviocytes (FLSs) showcase high expression of ARL4C, and the ARL4C protein expression in FLSs derived from RA patients significantly surpasses that observed in individuals with osteoarthritis (OA) and traumatic injury (trauma).Silencing of the ARL4C gene markedly impeded the proliferation of RA FLSs by hindered the transition of cells from the G0/G1 phase to the S phase, and intensified cell apoptosis and diminished the migratory and invasive capabilities. Co-culture of ARL4C gene-silenced RA FLSs with monocytes/macrophages significantly inhibited the polarization of monocytes/macrophages toward M1 and the repolarization of M2 to M1.Furthermore, intra-articular injection of shARL4C significantly alleviated synovial inflammation and cartilage erosion in collagen-induced arthritis (CIA) rats. In conclusion, our discoveries propose that ARL4C assumes a central role in the synovial inflammation, cartilage degradation, and bone erosion associated with RA by triggering the PI3K/AKT and MAPK signaling pathways within RA FLSs.ARL4C holds promise as a prospective target for the development of pharmaceutical agents targeting FLSs, with the aim of addressing RA.
Collapse
Affiliation(s)
- Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin Luo
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yanbin Shi
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
3
|
Aihaiti Y, Zheng H, Cai Y, Tuerhong X, Kaerman M, Wang F, Xu P. Exploration and validation of therapeutic molecules for rheumatoid arthritis based on ferroptosis-related genes. Life Sci 2024; 351:122780. [PMID: 38866217 DOI: 10.1016/j.lfs.2024.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
AIMS This study aimed to identify hub ferroptosis-related genes (FRGs) and investigate potential therapy for RA based on FRGs. MAIN METHODS The differentially expressed FRGs in synovial tissue of RA patients were obtained from the dataset GSE12021 (GPL96). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to investigate the potential signaling pathways associated with FRGs. Hub genes were identified through topological analysis. The expression levels of these hub genes as well as their diagnostic accuracies were further evaluated. Connectivity Map (CMap) database was utilized to analyze the top 10 FRGs-guided potential drugs for RA. In vitro and in vivo experiments were carried out for further validation. KEY FINDINGS 2 hub genes among 58 FRGs were identified (EGR1 and CDKN1A), and both were down regulated in RA synovial tissue. GPx4 expression was also decreased in the RA synovial tissue. The natural compound withaferin-a exhibited the highest negative CMap score. In-vitro and in-vivo experiments demonstrated anti-arthritic effects of withaferin-a. SIGNIFICANCE Ferroptosis participates in pathogenesis of RA, ferroptosis-related genes EGR1 and CDKN1A can be used as diagnostic and therapeutic targets for RA. Withaferin-a can be used as potential anti-arthritic treatment.
Collapse
Affiliation(s)
- Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China; Translational Medicine Centre, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Xiadiye Tuerhong
- Translational Medicine Centre, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Minawaer Kaerman
- Department of Rheumatology, Immunology and Endocrinology, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Fan Wang
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China.
| |
Collapse
|
4
|
Gavriilidi IK, Wielińska J, Bogunia-Kubik K. Updates on the Pathophysiology and Therapeutic Potential of Extracellular Vesicles with Focus on Exosomes in Rheumatoid Arthritis. J Inflamm Res 2024; 17:4811-4826. [PMID: 39051053 PMCID: PMC11268846 DOI: 10.2147/jir.s465653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is an incurable autoimmune disease with high morbidity and socioeconomic burden. Advances in therapeutics have improved patients' quality of life, however due to the complex disease pathophysiology and heterogeneity, 30% of patients do not respond to treatment. Understanding how different genetic and environmental factors contribute to disease initiation and development as well as uncovering the interactions of immune components is key to the implementation of effective and safe therapies. Recently, the role of extracellular vesicles (EVs) in RA development and possible treatment has been an area of interest. EVs are small lipid-bound entities, often containing genetic material, proteins, lipids and amino acids, facilitating paracrine intercellular communication. They are secreted by all cells, and it is believed that they possess regulatory functions due to high complexity and functional diversity. Although it has been shown that EVs participate in RA pathophysiology, through immune modulation, their exact role remains elusive. Furthermore, EVs could be a promising therapeutic agent in various diseases including RA, due to their biocompatibility, low toxicity and possible manipulation, but further research is required in this area. This review provides a comprehensive discussion of disease pathophysiology and summarizes the latest knowledge regarding the role and therapeutic potential of EVs in RA.
Collapse
Affiliation(s)
- Ioulia Karolina Gavriilidi
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joanna Wielińska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Lei P, Yu L, Sun X, Hao J, Shi W, Sun H, Guo X, Jia X, Liu T, Zhang DL, Li L, Wang H, Xu C. Exploring the role of PRDX4 in the development of uterine corpus endometrial carcinoma. Med Oncol 2024; 41:48. [PMID: 38177789 DOI: 10.1007/s12032-023-02265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
Peroxicedoxin 4 (PRDX4), a member of the peroxicedoxins (PRDXs), has been reported in many cancer-related studies, but its role in uterine corpus endometrial carcinoma (UCEC) is not fully understood. In the present study, we found that PRDX4 was highly expressed in UCEC tissues and cell lines through the combination of bioinformatics analysis and experiments, and elevated PRDX4 levels were associated with poor prognosis. Knockdown of PRDX4 significantly blocked the proliferation and migration of the UCEC cell line Ishikawa and reduced degree of cell confluence. These findings highlight the oncogenic role of PRDX4 in UCEC. In addition, genes that interact with PRDX4 in UCEC were MT-ATP8, PBK, and PDIA6, and we speculated that these genes interacted with each other to promote disease progression in UCEC. Thus, PRDX4 is a potential diagnostic biomarker for UCEC, and targeting PRDX4 may be a potential therapeutic strategy for patients with UCEC.
Collapse
Affiliation(s)
- Ping Lei
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Liting Yu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoli Sun
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Junmei Hao
- Department of Pathology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Wenning Shi
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haojie Sun
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiangji Guo
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xikang Jia
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Tianli Liu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Dao-Lai Zhang
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Lianqin Li
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China.
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
| | - Cong Xu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
6
|
He J, Lin X, Wang X, Lin T, Lyu S, Gao X, Chen J, Wang Q. Arecoline hydrobromide suppresses PI3K/AKT pathway in rheumatoid arthritis synovial fibroblasts and relieves collagen-induced arthritis in mice. Int Immunopharmacol 2023; 124:110925. [PMID: 37742366 DOI: 10.1016/j.intimp.2023.110925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVE This study investigated the effectiveness of arecoline hydrobromide (AH) on the functions of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) and collagen-induced arthritis (CIA) mice. METHODS Immunofluorescence was used to identify RA-FLSs. Cell Counting Kit-8 (CCK-8) was used to determine the viability of RA-FLSs and the half maximal inhibitory concentration (IC50) of AH. The 5-ethynyl-2'-deoxyuridine (EdU) assay was used to detect DNA replication in RA-FLSs. Cell cycle and apoptosis were examined by flow cytometry. Migration and invasion, as well as wound healing assays, were employed to determine cell migration and invasion ability. Proteins and mRNA expression levels were investigated using Western blot, quantitative real-time PCR (RT-qPCR), and immunofluorescence. The CIA mice model was used to assess the effect of AH in vivo. RNA-sequencing (RNA-seq) was used to find the potential signaling pathways of AH against RA, and Western blot was used to verify the key signaling pathway of AH on RA-FLSs. Network pharmacology and molecular docking were used to predict drug targets. RESULTS AH inhibited the proliferation and DNA replication of RA-FLSs, promoted cell cycle arrest by reducing the levels of cyclin-dependent kinase 1 (CDK1), cyclin A2, and cyclin B1, promoted apoptosis by suppressing B-cell lymphoma-2 (Bcl-2) expression, and suppressed migration and invasion by inhibiting vimentin expression in RA-FLSs. AH was also effective in relieving arthritis in vivo. RNA sequencing analyses suggested that AH inhibited the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway in RA-FLSs, which was also confirmed in Western blot analysis. Furthermore, network pharmacology and molecular docking suggested that F2, MAPK14, SRC, AKT1, and CTSK might be the direct targets of AH. CONCLUSION AH can modulate the pathological process of RA-FLSs by blocking the PI3K/AKT pathway and relieve CIA in mice, making it a potential new small molecule candidate.
Collapse
Affiliation(s)
- Jiaxin He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Xiaocheng Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Tengyu Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Shuyan Lyu
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| |
Collapse
|
7
|
Wu XN, Gao ZW, Yang L, Zhang J, Liu C, Zhang HZ, Dong K. CD5L aggravates rheumatoid arthritis progression via promoting synovial fibroblasts proliferation and activity. Clin Exp Immunol 2023; 213:317-327. [PMID: 37191481 PMCID: PMC10571003 DOI: 10.1093/cei/uxad054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease with progressive cartilage erosion and joint destruction. Synovial fibroblasts (SFs) play a crucial role in the pathogenesis of RA. This study aims to explore the function and mechanism of CD5L during RA progression. We examined the levels of CD5L in synovial tissues and SFs. The collagen-induced arthritis (CIA) rat models were used to investigate the effect of CD5L on RA progression. We also investigated the effects of exogenous CD5L on the behavior and activity of RA synovial fibroblasts (RASFs). Our results showed that CD5L expression was significantly upregulated in synovium of RA patients and CIA-rats. Histology and Micro-CT analysis showed that synovial inflammation and bone destruction were more severe in CD5L-treated CIA rats compared with control rats. Correspondingly, CD5L blockade alleviated bone damage and synovial inflammation in CIA-rats. The exogenous CD5L treatment promoted RASFs proliferation invasion and proinflammatory cytokine production. Knockdown of CD5L receptor by siRNA significantly reversed the effect of CD5L treatment on RASFs. Moreover, we observed that CD5L treatment potentiated PI3K/Akt signaling in the RASFs. The promoted effects of CD5L on IL-6 and IL-8 expression were significantly reversed by PI3K/Akt signaling inhibitor. In conclusion, CD5L promote RA disease progression via activating RASFs. CD5L blocking is a potential therapeutic approach for RA patients.
Collapse
Affiliation(s)
- Xia-Nan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Zhao-Wei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Juan Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Airforce Medical University, Xi’an, China
| |
Collapse
|
8
|
Niu X, Yang Y, Yu J, Song H, Yu J, Huang Q, Liu Y, Zhang D, Han T, Li W. Panlongqi tablet suppresses adjuvant-induced rheumatoid arthritis by inhibiting the inflammatory reponse in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116250. [PMID: 36791928 DOI: 10.1016/j.jep.2023.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panlongqi Tablet is prepared with the ancestral secret recipe provided by Mr. Wang Jiacheng, a famous specialist in orthopedics and traumatology of China. The efficacy and safety of PLQT have been supported by years of clinical practice in the treatment of joint-related conditions. Has remarkable effect for treating rheumatoid arthritis (RA) clinically. However, its mechanism is not entirely clear. AIM OF THE STUDY We aim to evaluate the anti-inflammatory activity of PLQT and explore its mechanism in adjuvant-induced arthritis (AA) mice and LPS-induced Human fibroblast-like synovial (HFLS) cells. MATERIALS AND METHODS To this end, we analyzed the active ingredients in PLQT by HPLC-MS/MS. Furthermore, the anti-RA effect of PLQT was studied through proliferation, apoptosis, foot swelling, cytokine levels, immune organ index, histopathology and related signal pathways in LPS-induced HFLS cells and AA-treated mice. RESULTS HPLC-MS/MS results showed that PLQT contained a variety of active compounds, such as epicatechin, imperatorin, hydroxysafflor yellow A and so on. PLQT significantly inhibited the abnormal proliferation of HFLS cells induced by LPS, promoted cell apoptosis. In AA-treated mice, PLQT alleviated RA symptoms by alleviating paw swelling, synovial hyperplasia, pannus formation, inflammatory cell infiltration, and inhibiting abnormal immune responses. The results showed that PLQT significantly decreased the expression of inflammatory mediators (IL-1β, IL-6, IL-17) in vivo and in vitro, which may be related to the regulation of PI3K/Akt, MAPK and JAK/STAT signaling pathways. CONCLUSION Based on serum pharmacology and in vivo pharmacology studies, PLQT may regulate RA symptoms by regulating inflammatory and immune response-related pathways, which is an effective method for the treatment of RA.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
9
|
Luo Y, Lei Y, Guo X, Zhu D, Zhang H, Guo Z, Xu Z, Zhao H, Xi Y, Peng X, Xiao L, Wang Z, Niu X, Chen G. CX-4945 inhibits fibroblast-like synoviocytes functions through the CK2-p53 axis to reduce rheumatoid arthritis disease severity. Int Immunopharmacol 2023; 119:110163. [PMID: 37060808 DOI: 10.1016/j.intimp.2023.110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Fibroblast-like synoviocytes (FLS) mediate many pathological processes in rheumatoid arthritis (RA), including pannus formation, bone erosion, and inflammation. RA FLS have unique aggressive phenotypes and exhibit several tumor cell-like characteristics, including hyperproliferation, excessive migration and invasion. Casein kinase 2 (CK2) is reportedly overexpressed in numerous tumor types, and targeted inhibition of CK2 has therapeutic benefits for tumors. However, the expression level of CK2 and its functions in RA FLS remain unclear. Herein, we aimed to elucidate whether CK2 is responsible for the aggressive phenotypes of RA FLS and whether targeted therapy can alleviate the severity of RA. We found that CK2 subunits were elevated in RA FLS compared with osteoarthritis FLS, and the activity of CK2 also markedly increased in RA FLS. Targeted inhibition of CK2 using CX-4945 suppressed RA FLS proliferation through cell cycle arrest. Cell migration and invasion were also inhibited by CX-4945 treatment. Moreover, CX-4945 reduced Interleukin-6 (IL-6), CC motif chemokine ligand 2 (CCL2) and Matrix metalloproteinase-3 (MMP-3) secretion in RA FLS. Further proteomic investigation revealed that p53 signaling pathway significantly changes after CX-4945 treatment in RA FLS. The siRNA-mediated p53 knockdown partly abolished the anti-proliferation and reduced IL-6, MMP-3 secretion effects of CX-4945. Furthermore, CX-4945 administration alleviates arthritis severity in CIA mice. Collectively, our results demonstrated the abnormal elevation of CK2 and its positive association with abnormal phenotypes in RA FLS. Our novel findings suggest the possible therapeutic potential of CX-4945 for RA.
Collapse
Affiliation(s)
- Yanping Luo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yunxuan Lei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Xin Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Dehao Zhu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Haiyang Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zizhen Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Zichong Xu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Hanqing Zhao
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Yebin Xi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lianbo Xiao
- Department of Joint Surgery, Guanghua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200052, China
| | - Zhaojun Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China.
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China.
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai 200025, China.
| |
Collapse
|
10
|
Wan L, Liu J, Huang C, Zhu Z, Wang K, Sun G, Zhu L, Hu Z. Comprehensive Analysis and Functional Characteristics of Differential Expression of N6-Methyladenosine Methylation Modification in the Whole Transcriptome of Rheumatoid Arthritis. Mediators Inflamm 2022; 2022:4766992. [PMID: 36330380 PMCID: PMC9626244 DOI: 10.1155/2022/4766992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/22/2022] [Indexed: 08/04/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent chemical modification in eukaryotic mRNA and is associated with the development of various immune diseases. However, the role of m6A methylation in rheumatoid arthritis (RA) development is unclear. We preliminarily explored the role of m6A methylation-related mRNAs in RA for its clinical application. The discovery of m6A methylation-modifying genes in this study may provide a fresh perspective on the development of drugs for RA treatment. High-throughput sequencing combined with methylated RNA immunoprecipitation (MeRIP-seq) and RNA sequencing were used to assess whole-transcriptome m6A modifications in the synovium of patients with RA. The relationship between m6A-modified target genes and RA inflammation and macrophages was determined. The expression of the m6A-modified significant transcript-enriched inflammatory signaling pathway was assessed through animal experiments. Differentially expressed m6A genes were correlated with macrophage activation involved in immune response, vascular endothelium, MAPK signaling pathway, PI3K - Akt signaling pathway, and other inflammatory processes. Furthermore, combined analysis with m6A-seq and RNA-seq revealed 120 genes with significant changes in both m6A modification and mRNA expression. We selected the top 3 candidate mRNAs that were upregulated and downregulated simultaneously. The expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) mRNA and protein in RA patients was lower than that in healthy control (HC). SHC-binding protein 1 (SHCBP1) and neurexophilin-3 (NXPH3) mRNA expressions were increased in RA patients. The expression of M1 macrophages was increased in RA patients. RA markers are such as rheumatoid factor (RF) and peptide containing citrulline (CCP). Further animal experiments showed that the expression of synovial MAPK, PI3K, and Akt1 proteins in the RA model was increased, and the PTEN, p-PTEN protein expression was decreased. PI3K, Akt1, PTEN, and p-PTEN were correlated to RA joint inflammation. This study revealed a unique pattern of differential m6A methylation modifications in RA and concluded that m6A modification is related to the occurrence of RA synovial inflammation.
Collapse
Affiliation(s)
- Lei Wan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin'an Medical Education Ministry, Hefei 230038, China
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin'an Medical Education Ministry, Hefei 230038, China
| | - Chuanbing Huang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ziheng Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Kun Wang
- Key Laboratory of Xin'an Medical Education Ministry, Hefei 230038, China
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guanghan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lei Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhongxiang Hu
- The First Affiliated Hospital of University of Science and Technology of China, Hefei 230000, China
| |
Collapse
|
11
|
Essential Roles of Peroxiredoxin IV in Inflammation and Cancer. Molecules 2022; 27:molecules27196513. [PMID: 36235049 PMCID: PMC9573489 DOI: 10.3390/molecules27196513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxiredoxin IV (Prx4) is a 2-Cysteine peroxidase with ubiquitous expression in human tissues. Prx4 scavenges hydrogen peroxide and participates in oxidative protein folding in the endoplasmic reticulum. In addition, Prx4 is secreted outside the cell. Prx4 is upregulated in several cancers and is a potential therapeutic target. We have summarized historical and recent advances in the structure, function and biological roles of Prx4, focusing on inflammatory diseases and cancer. Oxidative stress is known to activate pro-inflammatory pathways. Chronic inflammation is a risk factor for cancer development. Hence, redox enzymes such as Prx4 are important players in the crosstalk between inflammation and cancer. Understanding molecular mechanisms of regulation of Prx4 expression and associated signaling pathways in normal physiological and disease conditions should reveal new therapeutic strategies. Thus, although Prx4 is a promising therapeutic target for inflammatory diseases and cancer, further research needs to be conducted to bridge the gap to clinical application.
Collapse
|