1
|
Liu Y, Li H, Chai D, Lian B, Bai Z, Gao Y, Li J. LncRNA TCL6 regulates miR-876-5p/MYL2 axis to suppress breast cancer progression. Transl Oncol 2025; 53:102210. [PMID: 39874729 DOI: 10.1016/j.tranon.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 01/30/2025] Open
Abstract
We explored the influence of the TCL6/miR-876-5p axis on breast cancer cell proliferation and migration. Using The Cancer Genome Atlas (TCGA) database, we evaluated the expression of TCL6 in breast cancer patients and studied its effects on cell proliferation, migration, and the cell cycle in vitro. The regulatory effect of miR-876-5p on myosin light chain-2 (MYL2) 3' untranslated regions (3'UTR) was analyzed through luciferase reporter assays, and rescue experiments confirmed TCL6-driven upregulation of MYL2 via a competitive RNA binding mechanism. Furthermore, we used a mouse subcutaneous tumor model to assess the impact of TCL6 knockdown combined with immune checkpoint blockade therapy. Our results indicated that higher TCL6 expression correlated with a favorable prognosis in breast cancer patients. In vitro experiments showed that knockdown of TCL6 and MYL2 enhanced breast cancer cell proliferation and migration. The luciferase and rescue assays demonstrated that TCL6 interacted with miR-876-5p to upregulate MYL2, thereby inhibiting cell proliferation and migration. Both in vitro and in vivo studies revealed that overexpression of TCL6 suppressed tumor growth and improved the response to PD-1 immunotherapy in tumor-bearing mice. This research highlights the pivotal role of lncRNA TCL6 in breast cancer development via a ceRNA network involving miR-876-5p and MYL2, suggesting a novel molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- YaoBang Liu
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Hong Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - DaHai Chai
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Bin Lian
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | | | - YaLi Gao
- Ningxia Medical University, Yinchuan 750004, China
| | - JinPing Li
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Qi X, Zhou J, Wang X, Shen Y, Cao Y, Jiang L, Shen M, Zhang H, Wang T, Wei P, Xu R, Yang Y, Ding X, Wang C, Jia X, Yan Q, Li W, Lu C. HPV E6/E7-Induced Acetylation of a Peptide Encoded by a Long Non-Coding RNA Inhibits Ferroptosis to Promote the Malignancy of Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414018. [PMID: 39836502 DOI: 10.1002/advs.202414018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Although a fraction of functional peptides concealed within long non-coding RNAs (lncRNAs) is identified, it remains unclear whether lncRNA-encoded peptides are involved in the malignancy of cervical cancer (CC). Here, a 92-amino acid peptide is discovered, which is named TUBORF, encoded by lncRNA TUBA3FP and highly expressed in CC tissues. TUBORF inhibits ferroptosis to promote the malignant proliferation of CC cells. Mechanistically, human papillomavirus (HPV) oncogenes E6 and E7 upregulate TUBORF through CREB-binding protein (CBP)/E1A-binding protein p300 (p300)-mediated histone H3 lysine 27 acetylation (H3K27ac) of lncTUBA3FP enhancer. Furthermore, E6 and E7 elevate and recruit acetyltransferase establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) to bind to and acetylate TUBORF, which facilitates the degradation of immunity-related GTPase Q (IRGQ) via a ubiquitin-proteasome pathway, resulting in the inhibition of ferroptosis and promotion of the malignant proliferation of CC cells. Importantly, silencing ESCO1 or TURORF amplifies anticancer effects by paclitaxel both in CC cells and in vivo. These novel findings reveal oncopeptide TUBORF and its acetyltransferase ESCO1 as important regulators of ferroptosis and tumorigenesis during cervical cancer pathogenesis and establish the scientific basis for targeting these molecules for treating CC.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xinyue Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yan Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuxun Cao
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Liangzi Jiang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Miaomiao Shen
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ruoqi Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yue Yang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiangya Ding
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Cong Wang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Wan Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
- Department of Infectious Diseases, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Chun Lu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
- Department of Infectious Diseases, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, P. R. China
| |
Collapse
|
3
|
Herhaus L, Gestal-Mato U, Eapen VV, Mačinković I, Bailey HJ, Prieto-Garcia C, Misra M, Jacomin AC, Ammanath AV, Bagarić I, Michaelis J, Vollrath J, Bhaskara RM, Bündgen G, Covarrubias-Pinto A, Husnjak K, Zöller J, Gikandi A, Ribičić S, Bopp T, van der Heden van Noort GJ, Langer JD, Weigert A, Harper JW, Mancias JD, Dikic I. IRGQ-mediated autophagy in MHC class I quality control promotes tumor immune evasion. Cell 2024; 187:7285-7302.e29. [PMID: 39481378 DOI: 10.1016/j.cell.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024]
Abstract
The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B. In the absence of IRGQ, free MHC class I heavy chains do not only accumulate in the cell but are also transported to the cell surface, thereby promoting an immune response. Mice and human patients suffering from hepatocellular carcinoma show improved survival rates with reduced IRGQ levels due to increased reactivity of CD8+ T cells toward IRGQ knockout tumor cells. Thus, we reveal IRGQ as a regulator of MHC class I quality control, mediating tumor immune evasion.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Uxía Gestal-Mato
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Vinay V Eapen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Igor Mačinković
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Institute of Biochemistry I, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Henry J Bailey
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Mohit Misra
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Anne-Claire Jacomin
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Aparna Viswanathan Ammanath
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Bagarić
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jolina Michaelis
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Joshua Vollrath
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Georg Bündgen
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adriana Covarrubias-Pinto
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jonathan Zöller
- Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Ajami Gikandi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sara Ribičić
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Julian D Langer
- Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhang F, Wei D, Xie S, Ren L, Qiao S, Li L, Ji J, Fan Z. CircZCCHC2 decreases pirarubicin sensitivity and promotes triple-negative breast cancer development via the miR-1200/TPR axis. iScience 2024; 27:109057. [PMID: 38361605 PMCID: PMC10867422 DOI: 10.1016/j.isci.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has attracted attention due to its poor prognosis and limited treatment options. The mechanisms underlying the association between circular RNAs (circRNAs) and the occurrence and development of TNBC remain unclear. CircZCCHC2 is observed to be upregulated in TNBC cells, tissues, and plasma exosomes. Knockdown of circZCCHC2 inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition of TNBC cells in vitro and in vivo. Pirarubicin (THP) treatment downregulated circZCCHC2, and circZCCHC2 affected the sensitivity to THP. CircZCCHC2/miR-1200/translocated promoter region, the nuclear basket protein (TPR) pathway was cascaded and verified. It is demonstrated that circZCCHC2 plays a crucial role in the malignant progression of TNBC via the miR-1200/TPR axis, thereby activating the RAS-RAF-MEK-ERK pathway. The present results indicate that circZCCHC2 has the potential to serve as a novel prognostic biomarker for TNBC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dexian Wei
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Shishun Xie
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Sennan Qiao
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Liying Li
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Jiahua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
6
|
Fu J, Si L, Zhou Y, Li D, Wang R. Distinct N7-methylguanosine profiles of circular RNAs in drug-resistant acute myeloid leukemia. Sci Rep 2023; 13:14704. [PMID: 37679400 PMCID: PMC10485064 DOI: 10.1038/s41598-023-41974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023] Open
Abstract
Post-transcriptional methylation modifications, such as the N7-methylguanosine (m7G) modification, are increasingly acknowledged for their role in the development and resistance to chemotherapy in acute myeloid leukemia (AML). This study employed MeRIP-seq technology to investigate the m7G sites within circular RNAs (circRNAs) derived from human AML cells and drug-resistant AML cells, in order to identify these sites more comprehensively. In addition, a detailed analysis of the relationship between m7G and drug-resistant AML was conducted. The bioinformatics analysis was utilized to predict the functions of specific methylated transcripts. The findings revealed a significant difference in m7G level between AML cells and drug-resistant AML cells, suggesting a potentially critical role of m7G in circRNAs in drug-resistant AML development. The methylation of M7G could affect the circRNA-miRNA-mRNA co-expression during the development of AML resistance, which could further influence the regulation of resistance-associated target genes in AML. Furthermore, gene ontology analysis indicated that the distinct distribution pattern of circRNAs with m7G methylation in drug-resistant AML cells was correlated with metabolism-related pathways. These results suggested a potential association between drug-resistant AML and m7G methylation of circRNAs. Moreover, the results revealed a novel role of m7G RNA methylation in circRNAs in the progression of AML chemoresistance.
Collapse
Affiliation(s)
- Jinqiu Fu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Libo Si
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yao Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Ran Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Kousar K, Ahmad T, Abduh MS, Kanwal B, Shah SS, Naseer F, Anjum S. miRNAs in Regulation of Tumor Microenvironment, Chemotherapy Resistance, Immunotherapy Modulation and miRNA Therapeutics in Cancer. Int J Mol Sci 2022; 23:ijms232213822. [PMID: 36430305 PMCID: PMC9699074 DOI: 10.3390/ijms232213822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
miRNAs are 20-22 long nucleotide non-coding ribonucleic acid molecules critical to the modulation of molecular pathways. Immune evasion and the establishment of a suitable tumor microenvironment are two major contributors that support tumor invasion and metastasis. Tumorigenic miRNAs support these two hallmarks by desensitizing important tumor-sensitive regulatory cells such as dendritic cells, M1 macrophages, and T helper cells towards tumors while supporting infiltration and proliferation of immune cells like Treg cells, tumor-associated M2 macrophages that promote self-tolerance and chronic inflammation. miRNAs have a significant role in enhancing the efficacies of immunotherapy treatments like checkpoint blockade therapy, adoptive T cell therapy, and oncolytic virotherapy in cancer. A clear understanding of the role of miRNA can help scientists to formulate better-targeted treatment modalities. miRNA therapeutics have emerged as diverse class of nucleic acid-based molecules that can suppress oncogenic miRNAs and promote the expression of tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Kousain Kousar
- Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Correspondence: (K.K.); (T.A.)
| | - Tahir Ahmad
- Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Correspondence: (K.K.); (T.A.)
| | - Maisa S. Abduh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Balquees Kanwal
- Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Syeda Saba Shah
- Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Faiza Naseer
- Industrial Biotechnology, Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad 44000, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
9
|
Gao M, Zhang Z, Sun J, Li B, Li Y. The roles of circRNA-miRNA-mRNA networks in the development and treatment of osteoporosis. Front Endocrinol (Lausanne) 2022; 13:945310. [PMID: 35992137 PMCID: PMC9388761 DOI: 10.3389/fendo.2022.945310] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is a systemic metabolic disease, mainly characterized by reduced bone mineral density and destruction of bone tissue microstructure. However, the molecular mechanisms of osteoporosis need further investigation and exploration. Increasing studies have reported that circular RNAs (circRNAs), a novel type of RNA molecule, play crucial roles in various physiological and pathological processes and bone-related diseases. Based on an in-depth understanding of their roles in bone development, we summarized the multiple regulatory roles and underlying mechanisms of circRNA-miRNA-mRNA networks in the treatment of osteoporosis, associated with bone marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Deeper insights into the vital roles of circRNA-miRNA-mRNA networks can provide new directions and insights for developing novel diagnostic biomarkers and therapeutic targets in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Manqi Gao
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Zhongkai Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiabin Sun
- Department of Pharmacy, Deqing People’s Hospital, Huzhou, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Suzhou Research Institute, Shandong University, Suzhou, China
- *Correspondence: Yuan Li, ; Bo Li,
| |
Collapse
|